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Use of the 9-Photon Analogy in a Model of Isobar Production*f
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A model for the production of isobars by the exchange of a spin-1 meson is presented. In particular we
discuss the production of the Ã*(1238) and Y*(1380)P3/Q isobars by s., K+ and X mesons by the exchange
of p or X*.The vertex p+E —+ X+m or X*+3?—+ A.+~ is treated by assuming a magnetic dipole transition
(3f 1 ~ Psn) in analogy with virtual photoproduction (electroproduction). This assumption then leads to a
prediction for the decay distribution, the over-all production distribution and the mass distribution of the
isobar with no free parameters. This description is found to be in agreement with experiment in a variety of
cases, although to obtain quantitative agreement with the production angular distributions at higher ener-

gies a form factor must be assumed to give sufhcient backward peaking for the isobar. It is further shown
how the absolute cross section for isobar production by this mechanism may be found in terms of the photo-
production cross section by assuming the "p-photon analogy" (i.e., total p dominance of isovector photon
interactions) which at zero momentum transfer reads

(1/s)(~."")= (1/f~)(~")
The resulting number is reasonable as far as order of magnitude is concerned. To make a quantitative
comparison with experimental cross sections, the reaction E++P ~E*~+E', where some detailed
information exists, is examined. The value of the pEE coupling needed here is found in terms of the known
pal.~ coupling by assuming universal coupling of the p to the isospin current. The resulting theoretical cross
section is found to be too small by roughly a factor of six at 910 MeV/c and in rough agreement within
theoretical uncertainties at 1.4 BeV/c and 1.96 BeV/c if the effect of the form factor in reducing the cross
section is taken into account. Formulas for the decay of an arbitrary isobar excited by spin-1 exchange
and a test for spin-1 exchange are given. In the Appendices, production of or' with E*is discussed and a brief
treatment in terms of E*as a spin--,' particle is given.

I. INTRODUCTION opening the way for a check on the universality of the
coupling to the isotopic spin current. ' While the Frazer-
Fulco analysis could be loosely characterized by saying
the p mediates the interaction between the (isovector
part of the) photon and the nucleon, Gell-Mann and.

Zachariasen' exploiting universality, crystallized what

we shall call the "p-photon analogy" by saying: "In
a/l problems each matrix element for a virtual isovector

y ray (to lowest order in e) can be expressed in terms of
the corresponding matrix element for a virtual p meson

by multiplying by the factor (e/f„)(—m, '/s —m, '),"
[where we have used a form of the coupling constants
corresponding to Eq. (1)j. A similar conjecture, of

course, is also made for the isoscalar interactions of the
photon with strongly interacting particles. In this paper,
Gell-Mann and Zachariasen also suggested how the
usual techniques of making calculations with vector
mesons in terms of neglecting their instability and using

Feynman diagrams could be put on a somewhat more

satisfactory footing. Finally, unitary symmetry~ sug-

gests that we place the p in a octet of similarly interact-

ing vector mesons' —consisting of the p, K*, E~, and a
neutral vector meson, presumably a linear combination
of the co and d mesons.

In view of the intrinsic theoretical interest and ele-

gance in the idea of the p as a "heavy (isovector)

~ ~HE p meson, or the 780 MeV, T=1 JP=1,
x —

m resonance, plays the central role in this
model even though it never "appears. " The existence
of such a resonance, although with a somewhat lower
mass, was suggested by Frazer and Fulco' in connection
with their study of the electromagnetic form factors of
the nucleon. Later, Sakurai, ' associating it with the
Yang —Mills field, ' suggested its existence could be moti-
vated by considering it as one of three spin-1 mesons,
each one universally coupled to a current conserved
within the realm of strong interactions, an analogy with
the photon's universal coupling to the electric current-
in this case the p being coupled to the isotopic spin
current. This implies the effective Lagrangian density

fP[sfrr'ysQe /+1 )( (BP/ )+$(Bsprr )sag rr

gz+', ~(&,yx)+— j 9.. (1)

Subsequently, this resonance was actually "seen"4 in
the mass plots of high-energy pion production reactions
and its quantum numbers were verified. From the width
of the observed resonance (=100 MeV) the coupling of
the p to two rr's f(pz.z), could be estimated, thereby
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photon" it would seem desirable to find situations in
which quite specific aspects of the analogy may be
exploited and tested. Production of the (3,3) resonance,
or Ã~(1238) isobar, via one p exchange, by s or K
mesons on nucleons presents an interesting opporunity.
In this situation one m exchange is forbidden, so that it
might be possible to isolate the p exchange effect.

The p vertex involved would then be of the type

p+E ~E*~E+~,
which we then can view in terms of the p-photon analogy
as "photoproduction" off the mass shell —a process
closely related to y+E —+ cV+m, which has been well
studied experimentally, particularly with iVx energies
in the resonance region. Note that since only the iso-
vector part of the photon enters in exciting the

the real-life photoproduction is entirely parallel to our
hypothesized "strong photoproduction. " The electro-
magnetic analog of our problem then is the electro-
production of pions;

e +P ~ e +E+s.
This reaction was discussed by Dalitz and Yennie. '
Later Fubini, Nambu, and Wataghin, ' and others" used
dispersion relations, particularly to discuss the effects
of high-momentum transfers. Experiments on electro-
production have confirmed the general expectations of
the theoretical treatments. The essential idea used in
the theory of electroproduction is that the field of the
fast moving electron appears as a cloud of "almost real"
photons one of which "strikes" the proton, creating a
pion by "photoproduction. " In field-theoretic termi-
nology, the pion is produced by one-photon exchange.
The effects of more photon exchanges are neglected be-
cause a factor of |, must enter with each photon, thus
strongly reducing the effect of such higher exchanges.
In our case, since all our particles are strongly inter-
acting, we cannot so easily discount the effects of other
mechanisms. We merely appeal to the not yet fully
understood pragmatic success of one-particle exchange
models, " and hope that situations can be found where
the mechanism can be isolated. As we shall see, this
seems to be possible. The diagram corresponding to the
mechanism is shown in Fig. 1. The parts played by the
initial and final electron are now taken by the initial
and final "peripheral" mesons labeled qi and q2, the
photon has become a p, while the proton and "extra"
pion q remain as in electroproduction. The algebra of

' R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1957)."S.Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329
(1958).

» I. M. Barbour, Nuovo Cimento 27, 1382 (1963). This paper
contains further references to experimental and theoretical work
on electroproduction. See also Ph. Salin, University of Bordeaux
(to be published).

'2E. Ferrari and F. Selleri, Nuovo Cimento Suppl. 24, 453
(1962), give a list of references on the one-pion exchange model.

FIG. 1. Diagram for isobar produc-
tion by vector boson exchange.

this problem is actually simpler than that of electro-
production. In the latter case the interaction is taken
to be J„B„.J„is the matrix element of the electromag-
netic current connecting 1V to Ãx states while 8„ is
eu(qs)y„u(qt), the Moiler potential of the electron. But
in our case b„ is essentially just f(p7rx) (q&+q&)„, which
is much simpler due to the absence of spin.

If we use an idea like the octet model which states
that the K* (J~=1,880 MeV, mK resonance) interacts
similarly to the p and that the Y&' (Psis, 1380 MeV
Am. resonance) interacts similarly to the Ã~, then we
can extend our chain of association to include reactions
like K +P~ V*+x and rr++P —& I'"+K, where a
K* is exchanged and our vector meson —nucleon-isobar
vertex becomes K*+P—& F*—& A+s..

For convenience we summarize our notation here.
The scalar product of two four-vectors is A B=A B
+A4B4=A'8 —ApBp, and q& is the four-momentum of
incident meson; q2 is the four-momentum of final
"peripheral" meson; q is the four-momentum of "extra"
meson produced as part of isobar; Pi is the four-mo-
mentum of incident nucleon; Ps is the four-momentum
of final nucleon; Q= q+ps ——four-momentum of isobar;—Q'=3f*'= (mass)' of isobar; K= qt —qs, four-mo-
mentum of virtual p; t = K'= (qt —qs)s—, square—of in-
variant momentum transfer; s = —(pi+ qt)' = —(Q+ qs)',
total c.m. (energy)'; ('") means "as evaluated in the
rest frame of the isobar. "

A letter by Sakurai and the author" presented some
preliminary results of this model. The essential idea
was; Since the photoproduction matrix element for
y+P —+ 1V*—& P+rr is known to correspond to a
magnetic dipole transition (M1 —+ Ps~s), and since the
electroproduction investigations have indicated this
does not change essentially as we move t away from
zero, then the vertex p+1V ~E*~E+xmust also.
go via 3fj ~ P3/2 This means that in the isobar rest
frame we have the matrix element 3E= (3q K x a—o"qo" K x e) by assumption, where a, however, the
space part of the polarization of the virtual p, is (qi+ qs)*.
This then means that since (Kxa)*=2(qi xq&)*, the
decay distribution of the isobar is |1+3(j.n)'j, where
n is the normal to the production plane, n=q&xq2.
Furthermore, since (q, xq, ) varies with the production
angle 8, in the over-all c.m. (qi qs ——cos8, ), then
the distribution in 0, for the "two-body" process
vr=iV~ E*+7r varies as sin'8, /(1 —m ')'

As this work was being concluded, it was brought to

'3L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90
(1963).
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our attention that Solov'ev and Ch'en Ts'ung-Mo"
have noted on similar grounds that this angular distri-
bution should follow in or+X~ E*+vr Th. ese authors
also suggested a method for calculating the size of the
cross section for this reaction related to, but different
from that which we present in the next section. In Sec.
III we compare the predictions of the model with experi-
ments for several reactions.

II. ABSOLUTE CROSS SECTION

Thus far we have exploited the hypothesis that the
p meson and the isovector component of the photon are
coupled to essentially the same current only to the
extent that we have taken the matrix elements for the
pal"Lt* and yES* couplings to have the same algebraic
form, namely, 3q Kx e—e q s K x e; however, we can
use the idea that the p and isophoton currents are
actually proportional to attempt to estimate the abso-
lute cross section for isobar production, thereby per-
haps presenting more stringent tests of the concepts
we are using.

We can proceed as follows: To calculate the cross
section we need to know the absolute strengths of the
two vertices of our diagram (Fig. 1) where the p meson
is coupled. On the side where the p is coupled to the two
pseudoscalar bosons, we can use the value of f'(p7rn)/47r

2.2 given by the experimental width of the p. ' If the
bosons are not x's we may use some symmetry assump-
tion, such as that implied by Eq. (1), to relate the rele-
vant coupling constants to f(pzx) If a E*is.exchanged,

'

one may again use the width of the E*to give f(E*7rE)
This involves an extrapolation of the coupling constants
from the mass of the vector boson to negative values of

t, but we presume the form factors are not varying
drastically. At the other side of the diagram, we must
determine the strength of the pSÃ~ coupling. However,
we know the magnitude of the yES* interaction since
that is merely photoproduction. If we now use our
assumption that the p dominates isovector photon in-

teractions, then the photoproduction process may be
diagrammed" as in Fig. 2. If we know the p-photon
coupling we may then "divide out" the photon in Fig. 2
and relate our results directly to the photoproduction
cross section. This effective p-photon coupling in fact
must be related' ~ at zero-momentum transfer to the
pXX coupling constant by y» ——eicos/f (pSfq) Again we.
will leave aside for the moment complications due to

'4L. D. Solov'ev and Ch'en Ts'ung-Mo, Zh. Eksperim. i Teor.
Fiz. 42, 526 (1962) LEnglish transl. :Soviet Phys. —JETP 15, 369
(1962)g, Sec. 8.

'~The effective interaction corresponding to this diagram,
p„A„, may at first sight appear to violate gauge invariance, since
under A„-+ A„+B„A we get an extra term p„o(&~A); however,
since we are assuming that the p couples to conserved currents,
we can show B„p„=o.Therefore, using an integration by parts,
we can apply the 8„ to the p~ and the extra term vanishes. On
the other hand, the more sophisticated approach of Ref. 6, which
also motivates the assumption that the p can dominate the iso-
vector photon interactions, gives a result equivalent to this without
explicitly introducing a p —y coupling.

I'ro. 2. Effective diagram for photo-
production into T=-,' state, assuming
p dominance of isovector photon
interactions.

the extrapolation of the photoproduction process to
photons of negative (mass)'. Specifically, we write the
isovector electromagnetic current connecting a proton
and a proton-vr' state as

(P~'~ J„~P)=u(P, )m„m(P, ), (2)

where u and u are the initial and final proton spinors
and 3/I„ is a four-vector constructed from y matrices
and the energy-momentum four-vectors of the particles
involved. We can express the photoproduction cross
section in terms of this:

T= (2z-)'84(Pt+E —Ps —
q)

X (Miv'/PptPps2qp2Ep)'"

Xs2(P,)M„~(Pi)8„,
1 M&)' fq'f

o(yP +Prr').=- dn,
16z' M*) E

xp ~e(p, gr„N(p, ) ~,

where %*=total mass of the system, and the (*) on
the photon and pion momenta are for later convenience,
indicating evaluation at the energy of the Px system.

Now if we consider the process rr++P ~ rr++P+rro
going via po exchange, the po+P +P+rrp verte—x is
analogous to the photoproduction process and the T
matrix element corresponding to Fig. 1 is

)where 1= —(q,+q,)'j.
The p-photon analogy,

~P)t=o= (f(p&&)/e)(Pw ( J ~P)t=o
= (f(plVÃ)/e)u(P, )M„u(Pi),

will allow us to relate our results to o (pP —& Pm ). By
introducing the four-vectors s(q —Ps) and Ps+q so
that Ps+ q is the four-momentum vector of the Prr' sys-
tem as a whole, —(Ps+q)'=M*', and sr(q

—Ps) —+ q*,
the momentum of the m' in the Px' center of mass, the
phase-space integrations for our three-body final state

X/2

7= (27r)'o'(P, +q, P-
EProP202qsp2qlo2qp

8„„—E„E„/mps
Xf(p~~)(q, +q,)„(P~~~„"~P) (4)
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can be broken up so that
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the directions of q* in the Plr rest frame, we express
Eq. (5) in terms of the photoproduction cross section:

dn„16(2~)& s !q, !
M":

8„„+E„E,/224,
2

XZ f(p~lr) (qi+ q2).
t—5$p

f(plV1V) -2
24(P2)M„24(Pl) d&,.dM", (5)

e

which represents the "two-body" reaction 2r++P~
2r++ (Piro) with an integration over the "internal" P2ro

phase space.
Note that thus far we have made no assumptions

about the system resonating, or the reaction proceeding
through an intermediate isobaric state, although for
convenience we may eall the I'm' system the "isobar. "
Equation (5) in principle applies to any final state which
can be thought of as resulting from vector boson ex-
change. In practice, of course, we must confine ourselves
to situations where strong final-state interactions (or
the absence of strong competing mechanisms) will allow
this mechanism to predominate. For an indication of
an alternative formulation actually using an isobaric
intermediary, see Appendix II Lwhere the (3,3) reso-
nance is treated covariantly as a spin- —', "particle"].
The assumption that the system is resonant comes in
when we give M„ the form known for photoproduction
at resonance.

Now the assumption of magnetic dipole implies that
Ma ~~ 5 (1+y4)/2]L3 (q x K) —tr q tr x K] in the P2r'

rest frame near resonance. (This gives M e=3q Kxe
—e q tr K xe, which is the M1 matrix element for
photoproduction. ) If we then evaluate the quantity in
brackets in Eq. (5) in the Plr' rest frame we get

!

/f(plr2r) f(ptU1V) '

e t—f5p

XQ!24(P2)M'(ql+q2)N(Pl)! prs rest frame

(the extra term in the propagator does not come in
because K x K=O). Observe now that the last paren-
thesis here is exactly what enters into the photoproduc-
tion cross section LEq. (3)], except that where K xe
inust have appeared in photoproduction K* x (ql*+q2*)
= (q,*—q2*) x (ql*+q,*) now appears. We therefore
relate the matrix element we need to the one appearing
in photoproduction:

p!u(P2)M (ql*+q, ')N(P, )!'= 14(q,*x q2*)2/E, ]
XEl (P.)M', (P)l,

where K~ is the momentum of the photon in photopro-
duction of the relevant isobar mass and q&* and q2* are
the momenta of the initial and final m's as seen in I'm'

rest frame. Finally, carrying out the integration over

do (lr+P +2r—+Piro) dM"'
o (yP —& P2ro)

dQ~, x'

j'(s~r) j (s ) 4 & )' (4 "x 4,*)'
X

4~ e2 t—mp2 E,
Due to the fact that the Lorentz transformation from
the isobar c.m. to the over-all c.m. is along q2 we can
simplify

(ql x q2)a2 —
q 2q '2 (zl /2/Mt)

using the production angle in the over-all c.m. , 0,
Furthermore, we introduce the Clebsch —Gordan coef-
ficients (C.G.) which will enter when using isotopic
spin or symmetry relations to connect other reactions
to the 2r++P~lr++P+lr' via p' exchange reaction
which we have used as a basis. In addition we provide
for a form factor F(t) which may be necessary, and set
the p coupling constants equal, ' giving the final formula
entirely in terms of over-all c.m. quantities:

f' f.)' Iqll lq2I'»n'0'-.=dM*—(C.G.)—
d (cos8, ) lr 42r e J (t—22t„2)2

o(yP —+ Plr').
X IP(t) I' (7)

where m, is the mass of the vector boson exchanged.
Values of (C.G.) for a number of reactions are given
in Table I.The factors for the reactions with K particles
come from assuming coupling of the p to the isotopic spin
current pEq. (1)], which gives f'(p'E E+)=4f2(plrlr),
2f(p+E E') = f2(pvrlr) Although . in principle Eq. (7)
holds for reactions like E +P-+ I"*+lr if we group
(p,E*) and (1V*,I'~) into supermultiplets, it must be
said that the observed differences in location and width
between S* and I'* make the connection with
(yP ~ P2ro) somewhat tenuous. In such cases the reason-
able thing to do would be to use the phenomenological
I'* parameters to give the shape of the resonance and
then use the symmetry relations to normalize the magni-
tude of the cross section at one value of 3I~.

It is interesting to note that at low total energies
where the variation of the propagator denominator may
be neglected, Eq. (7) corresponds to essentially p-wave
(in the final-state) production of the isobar. The q22

dependence on the final momentum characteristic of

p wave gives a rapid rise in cross section. On the other
hand, at very high energies, where the t in the denomi-
nator predominates over m, 2 the increase will be much
slower. To get some idea of this behavior we make the
(unjustified) assumption of neglecting !F(t)!', integrate
over angles, and obtain (using again our 2r++P —+
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TAnLE I. Coefficients (C.G.) to be used in Eq. (7)
for various reactions.

Reactions

~++P ~ E*~+~'

~++P ~ X+++~+

Pm-'

X~+

~ +P ~37*++~

P7f0

E7I+

-+P A*o+~o

E71-'

Pvr-

(C.G.)

9/4

1/2

1/2

~-+P W ~V'--+~+

E++P ~E*+++ICo 9/4X1/2

1X1/4

1/2X1/4

vr++P+s' example)

l qs l
t'A+ 1&= (const) 2A lnl l

—4
dM*

l qi l
— ~,A —1~

m.+' —qioqss —m, '/2

I qil I qsl
(8)

In the high-energy limit m +'/qi, ss —+ 0, A —+ —1 in such
a way that the cross section diverges logarithmically:

do/dM*= (const)2 1n(4q'/m„') . (9)

1 2 fp'(fp)'o(yI' +P7t)—
(cons t) =———

l

—
l

(C.G.)

(0.11)(C.G.) mb/MeV. (10)

Of course the use of a form factor cutting down high-
momentum transfer, as seems to be required by experi-
ment, will reduce the value of the total cross section.
The divergence at high energy, however, results from
the peaking at low-momentum transfer, so that the
problem of the removal of this divergence is tied in with
the more subtle problem of very high-energy behavior.

In any event, perhaps the more interesting question
is whether the estimate of the cross section makes any
sense quantitatively. If we evaluate do/dM* at the
resonance peak M*=1238 MeV using f„'/47r=2 2, we.
get for the (const) in Eqs. (8) and (9)

Thus, if we were to integrate over the width of the isobar
(=100 MeV), we should get something in millibarns,
depending on the other factors in do./dM*, of course.
This roughly is what is found experimentally, so at least
we are around the right order of magnitude. This is
perhaps not too surprising since we know from photo-
production theories" that the photoproduction matrix
element is e&&(strong interaction part). Therefore in
dividing by e as we have done we might expect to re-
cover a reasonable strong interaction matrix element
on general grounds. Specifically, the matrix element
from photoproduction most relevant here LRef. 16,
Fq. (9)$, corresponds to absorption of the photon by
the nucleon anomalous magnetic moment, pp —p~. In
dividing this by e, we might say (as Sakurai suggests),
that we have an effect induced by "strong magnetism. "
In the next section we present a more detailed compari-
son with experiment.

III. EXPERIMENTS ON ISOBAR PRODUCTION

The tV* (and I'*) have long been seen in the mass
plots of high-energy reactions. Models, particularly for
inelastic m.X scattering, have been constructed which
attempt to explain the total 6nal-state spectra in terms
of production through the (3,3) isobar. A recent refine-
ment by Olsson and Yodh'~ for a+I' reactions below 1
BeV, taking into account interference between di8erent
ways of making the final state, the p-wave decay of the
isobar, and assuming s-wave production of the isobar,
seems to give good agreement with the final-state cor-
relations found in experiments. Here we make no at-
tempt to explain the entire final-state spectrum. Rather,
we would like to find clear-cut cases of isobar production
and discuss their features. Our discussion is more specific
since we discuss not only final-state correlations, but
also correlations with the incident beam, e.g., the dis-
tribution in 8,. .. There are three experimental correla-
tions in p3/s isobar production by mesons that we ad-
dress ourselves to in particular:

(A) The decay of the isobar in its center of muss We.
expect (1+3(j.t1)')dQ, where n is the normal to the
production plane, n=q&xq2. This corresponds to a
distribution in the Treiman-Yang angle p (see Sec. IV)
of (1—ss cos'P)dP, and a distribution in the Adair
angle a of (1—sscos'a)dQ. As pointed out previously, "
this would explain why the Adair method has generally
not worked on these isobars. The reason why the Adair
test fails despite the complete generality used on its
derivation is that while the Adair test requires that we
use events at essentially 0', the sin'0 in Eq. (7) causes
the number of events per solid angle there to go to
zero—hence no contradiction.

(8) The distribution in the over alt center of mass with-
respect to e, We expect sin'8, , lF(t) l'/(t —m, ')'d&
where for small-momentum transfers we hope F(t) does

's G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).'" M. Olsson and G. Il. Yodh, Phys. Rev. Letters 10, 353 (1963).
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not vary greatly. At low energies where large momentum
transfers are not attained, the sin'9 factor can be pre-
dominant. At high energies we expect the characteristic
backward peaking of the isobar, but the differential
cross section still should fall to zero for very small
angles.

(C) The dkstributiots of etients with respect to the mass

of the isobar, M*'= —(q+Ps)', i e , .th. e shape aed loca
tiom of the resonance. A shift comes about in Eq. (7)
through the dependence of o (yP +P7r'—)//Kv on M* and
the fact that q2' is a function of M*. Alternatively, one
may treat this by the phenomenological isobar method
of Bergia et al." as Kehoe" does, but if one takes a
curve for the photoproduction cross section, " the dif-
ference in the two methods is minor across the reso-
nance. We, of course, prefer the relation through photo-
production since we then have a handle on the absolute
magnitude of the cross section. This shift was very
nicely shown by Kehoe" where the resonance peak is
shifted from the usual M*= 1238 MeV as seen in elastic
scattering to about 1200 or 1190 MeV, With respect to
this q2' effect, one power of q2 is to be expected from
phase space; the other two powers are a particular con-
sequence of the mechanism. This leads to a concave
approach to zero at the high end of the mass distribution
as opposed to the square-root behavior expected from
simple phase space (in the absence of beam spread).
In addition to these detailed predictions, the absence
of doubly charged vector mesons simply forbids certain
reactions, for instance,

rr +P W cV* +7r+, (11a)

K +P+) I"* +a+, (11b)

for these would need the exchange of two units of charge.
To date, the most impressive evidence for the model

comes from the reaction

K++P —+ X*+++K"

Kehoe" at 910 MeV/c, which is a little above lt/*

threshold, using essentially all his events (i.e., making
no selection for isobar mass), has found excellent agree-
ment with points (A), (B), (C) above. In particular,
the production angle distribution fits well without the
use of a form factor. However, onlymomentum transfers
up to about 17m ' are tested here. For the same reaction
at higher energies, CrennelP' (1.45 BeV/c) and Gold-
haber" (1.96 BeV/c) selecting events within the Q*

LL. Ro -(

I lo-

FIG. 3. Decay distribution of E*
with respect to normal to production
plane in K++I' -+ X*~+K' at 1.45
BeV/c (Crennell). The solid hne is the
theoretical curve 1+3(j n)'.

I

0

peaks, find the 1X3(j ti)' isobar decay distribution,
although the statistics are rougher and the situation

may be complicated by E* production. In Figs. 3 and
4 we reproduce Crennell's plots of the distributions with
respect to the normal and the Trieman —Yang angle,
respectively. Figure 5 shows the production angular
distribution, curve (1) being the shape predicted with-
out form factor dependence. Curve (2) results from
using a form factor F(t) = exp(t/100m '). The produc-
tion angular distribution in t given by Goldhaber (Fig.
6 of the Ohio Conference talks" ) shows the need for a
form factor rather clearly. The curve seems to drop
steeply at very forward angles as required, but the
strong damping at high-momentum transfer (which
reaches 110m ') and the forward shift of the maximum
require form factor dependence. F(t) =exp(t/SSm ') for
instance, gives a reasonable 6t. The data at these higher
energies also show a down-shift in the location of the
/*peak. To compare the total cross section with Kehoe's
results at 910 MeV/c, we evaluate do"'/dM~ at the
maximum of the mass distribution (M*=1200 MeV)
to get do/dM*=9/8X2. 8X10 ' mb/MeV and then
integrate the mass distribution with this absolute
normalization to get o-"" 0.33 mb Kehoe" 6nds
o""(K P ~ E'P~+) = 1.98+0.20 mb.

This discrepancy is somewhat puzzling because the
higher energy data of Crennell and Goldhaber seem to
give values of o- closer to our theoretical predictions
(see below).

At higher energies, where the form factor makes our
simple integral Eq. (8) over production angle no longer
applicable, the fairest thing to do in testing the estimate
of the cross section would be to test near forward
angles (even better would be

Lim„,s i(1—cos'0) '(do/dM*dQ)],

~~ S. Bergia, F. Bonsignori and A. Stanghellini, Nuovo Cimento
16, 1073 (1963)."B.Kehoe, Phys. Rev. Letters 11,93 (1963);see also the results
of E.Boldt, J. Duboc, N. H. Duong, P. Eberhard, R. George et gl. ,
Phys Rev. .133, B220 (1964).

20 M. Gell-Mann and K. M. Watson, Ann. Rev. Nucl. Sci. 4,
219 (1954).

+ D. J. Crennell, Ph.D. thesis, Oxford University, 1963 (un-
published); and (private communication).

~'S. Goldhaber, %. Chinowsky, G. Goldhaber, and T. O'Hal-
loran, Bull. Am. Phys. Soc. S, 20 (1963).S. Goldhaber, talk at the
Conference on Fundamental Particle Resonances, Ohio University,
Athens, Ohio (to be published); and (private communication).
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FIG. 4. Decay distribution of
E*with respect to Treiman-Yang
angle in K++I' —+N*~+Ko at
1.45 BeV/c (Crennell). The solid
line is the theoretical curve
1—2/3 (cosp) '.
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where form factor effects should be small. The Crennell
data gives a value of do/dM* at M*=1238 MeV of
about 0.023+0.002 mb/MeV while the theoretical
value with neglect of the form factor is 0.036 mb/MeV.
The form factor, although it does not change the shape
of the angular distribution curve drastically, has a
considerable e6ect on the total cross section, introducing
here a factor approximately (0.6), resulting in 0.022
mb/MeV. This reduction is essentially a result of trying
to 6t the angular distribution with a monotonically
decreasing form factor set to one at 1=0. This eBect is
even greater in the case of the Goldhaber data, where
the strongly varying form factor necessary results in
a factor of roughly (0.3) in the total cross section. This
gives a value of 0 2.4 mb as compared with the rough
value of 3 mb suggested by Goldhaber. Thus the use
of the form factor in these cases seems necessary for a
reasonably quantitative agreement with experimental
angular distributions and cross sections. It is encouraging

do
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FiG. 5. Production angular distribution of the E* in E++P —+

N"+++K' at 1.45 BeV/c (Crennell). Curve (1) is the theoretical
distribution with no form factor dependence. Curve (2) is the
distribution with a form factor P(t) =exp(t/100m '). The curves
are drawn to arbitrary and different normalizations.

that the form factors used here to adjust the shape of
the angular distribution also seem to reduce the cross
section more or less correctly, although it should be
emphasized that the result will depend somewhat on
the particular form factor assumed.

We should also note that o. ~ f,e and that f, is not
precisely known at present, so that we can change our
theoretical value of a- by altering this factor. Alter-
natively, we might turn our analysis of the data around
to estimate f, or more pr—ecisely 2f'(p+E K')/4rr,
which we have taken equal to f'(prrrr)/4rr in virtue of
assuming the p s universal coupling to the isospin cur-
rent. If we consider our estimates with the form factors
taken into account, then for the Crennell figure we
need no change and for the Goldhaber estimate we can
get agreement with f'( vpr )n/4r 7~2. .5The present lati-
tude on this 6gure is about 2.0-2.5.' On the other hand,
were we to try to reduce the coupling constant suf-

ficiently to make the cross sections agree without ac-
counting for the form factors, our estimates would fall
below 2.0.

Now turning to E +P~ I'*+s. interactions, we
find that at 1.2 BeV/c, " and at lower energies'4 the
"wrong" resonance (11B), I'* is produced as much or
more than I *+ and the distribution of Y* decay with
respect to the normal is much flatter than 1+3(j ff)'. At
1.5 BeV/c, " I'*+ is somewhat favored, and by 2.2
BeV/c, " lr* has disappeared and the expected decay
distribution is seen. Form factor dependence is again
needed to get sufhcient forward peaking for the x.

In rr+P~ F*+E reactions, Cofiin et al.se at 1.5
BeV/c studied the I'* decay distribution with respect
to the normal for sr +P —+ 7*'+E''and concluded
there was no significant deviation from isotropy. At
the higher momentum of 2.2 BeV/c, however, for
rr++P —+ I'*++K+. Yamamoto'r reports a distribution
in agreement with 1+3(j fl)' and the characteristic
forward peaking requiring some form factor for the
production distribution.

In m.Ã reactions below i. BeV, where extensive data
exists on m production, the situation is complicated by
the fact that over much of the range the bands on the
Dalitz plot corresponding to two different isobars lead-
ing to a given final state (e.g. , rr++P —+rr++P+7r'
via 1V*+++H or %*++sr+) have substantial overlap.
In fact, account of this interference is important in
bringing the isobaric model into accord with the data. "
Of course, one can symmetrize the amplitudes to treat
this, "but there is not much point in doing so unless
we have some confidence that the basic mechanism is
operative, At higher energies where one can escape the
overlap, p production becomes important, but one
might to hope to find some in-between region which is
suitable. To this point, Tautest and Willman" have
analyzed 1800 rr++P —+ %*+++sr' events at 1.3 BeV/c.
Although they 6nd the backward peaking for the isobar,
their E*decay distribution with respect to the normal,

$1+0.75(j t1)'j is too flat. This failing could be
connected with the rr++P bump at 1.5 BeV/c or it may
be, as in the E +P —+ Y*+sr case, that higher energies
are necessary for vector meson exchange to clearly
predominate.

In x P reactions, in addition to the above complica-
tions, there are m P resonances which may decay into
E*m. At low energies below the vr P resonances where

s' J. Button-Shafer et al. , Proceedings of the 196Z International
Conference on High-Energy Physics at CERN, edited by J. Prentki
(CERN, Geneva, 1962), pp. 303, 307.

~ R. H. Dalits, Strange Particles and Strong Interacteons (Tata
Institute of Fundamental Research, Oxford University Press,
1962), p. 97 ff.

'L. Bertanza, V. Brisson, P. L. Connolly et al. , Phys. Rev.
Letters 10, 176 (1963).' C. T. CoKn et al. , Proceedings of the 196Z International
Conference on High Energy Physics at CERN, edited by J. Prentki
(CERN, Geneva, 1962), p. 327."S.S. Yamamoto (private communication). Similar results in
rr++P ~ Fe+K+ at 2.08 BeV/c have recently been reported
by H. W. J. Foelsche and H. L. Kraybill, Yale University
(unpublished)."R. H. Dalitz and D. H. Miller, Phys. Rev. Letters 6, 562
(1961).

"G.W. Tautfest and R. B. Willman (private communication).
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we might hope to get away from this problem, the ex-
tensive work of the Berkeley group" in this area indi-
cates production of the "wrong" isobar (11a) favored.
On the other hand, at 3.3 BeV/c, the mass plots of
Guiragossian" show the excitation of the "right"
resonance (rr +P-+ 1V*++s ) for the final state most
favored by isotopic spin, but no evidence of (11A)
again supporting the idea of developing p exchange
dominance at high energies.

In this light, it might appear as something of a puzzle
that the model agrees so well with Kehoe's experiment,
which is essentially at threshold for g~ production.
The explanation may be found in the fact that there are
no E1V isobars. For in E +P ~ A+x+x or s+P ~
rr+P+rr the "wrong" meson can in principle form an
isobar as well as the "right" one, while in K++P —+

7r++P+K' the absence of a E'P isobar means that
whatever is causing the formation of the isobar with
the "wrong" meson is inoperative and we only see the
isobars that are formed the "right" way. Furthermore,
the absence of EE resonances means that there are no
strong intermediate states like Ts*(1815)or 1Vs/s*(1900)
which can decay directly into an isobar and a meson
as there are in E P or xP reactions. The decay of such
states can be expected to give ratios for the charge
states of our resonances as ratios of small integers and
production angular distributions much more isotropic
than that given by peripheral collisions. Finally, we
should mention that although we have con6ned our
discussion to ps/s isobars, it also is possible that vector
meson exchange effects can be seen in the production
of isobars of other types. For instance study of the pro-
duction of a ds/s isobar such as in E +P —+ P's*(1520)
+E' might be interesting since at least the simplest
matrix element here would predict a decay distribution
with respect to n for the Yo~ curving the opposite way
from the 1+3(j n)' we have found for the Ps/s isobars.
In the next section we discuss the sects of vector-
meson exchange for the production of a general isobar.

IV. ISOBAR DECAY DISTRIBUTIONS

To discuss the decay distribution of an isobar of
arbitrary spin and parity created by vector meson
exchange (in the isobar c.m. ) we analyze the process
p+1V —+ 1V+x in terms of the multipole expansion. (We
use these particles generically; we could equally well
mean K*+1V—+A+s..) We can proceed in a manner
similar to that for photoproduction, except that the
polarization of the p may have longitudinal com-
ponents. "The matrix element for photoproduction may

3 J. Kirz, J. Schwartz, and R. D. Tripp, Phys. Rev. 130, 2481
(1963).This paper contains references to other work."G.T. Guiragossi6n, Phys. Rev. Letters 11, 85 (1963).

3' Note that though the p field has four components the subsidi-
ary condition E ~ a =0 leaves only three independent. There might
appear to be some difficulty when the "peripheral" mesons to
which the vector meson is coupled have unequal masses such as
the TrEE* vertex; however, note that taking 8 as de6ned by (14)
we get K„[8„/(2P+mx") j=+ (m/r' m')/m»" so-we still have

be written"
M=gI+h o, (12)

where the vector h has three elements. To allow for
longitudinal polarization we add two more parts to h."
Thus we now have

g=aq XX&,
h=be+c(j e)E+d(j e)q+eE+fj, (13)

where in the isobar c.m. j is the direction of the out-
going m, X is the direction of the incoming p, namely,
(qi —qs)/~ qi —qs~, and e is the direction of that part of
e which is perpendicular to K. By e, we now mean the
spatial components, in the isobar frame, of whatever
we have dotted into the current operator connecting
the nucleon and the isobar. Thus, after contracting the
indices in the propagator with the vertex factor V„
for the mesons, the matrix element is essentially

6„„—K„E„/m„' S„M„
M„=V„

&
—nz„' t—842

Thus in the reactions discussed so far e=q&+q&, for
a more complicated situation see the Appendix on co

production or the work in electroproduction.
We note that b, c, d result from electric and magnetic

multipoles and e and f from longitudinal multipoles.
For clarity, we bring together the expressions for

these quantities to conform to our notation" ":

a=++ [((+1)Mi++lMg-]P/'(s),
l=l

f/= P [Mi+—Mi ][i(l+1)Pg(s)—sP, '(s)]
l=1

+[E(&-t)++E(&+i)—] & (s) ~

c= P—[M/„—Mi ][Pi'(s)+sPi" (s)]
l=1

+[Eti »++Et'-&i ]Pi"(s),

d= P [M,+ M/ Ei+ E& ]P—i"(s)—, —
l=l

= 2 [(~+1)1-i+P '( )—lL -P '( )]
l=i

f=2 L~l-i (i+1)I-i+]Pi'(s)-—
l=l

where / refers to the orbital angular momentum of the
final s- and + or —refers to whether the total angular
momentum is l+-,', and s=j X. Writing the amplitude

only three independent components. Footnote 4 of Ref. 13 contains
an erroneous sign on this point. In the cases where we have applied
the model so far, however, the assumption of an M1 matrix ele-
ment has been used and enters only through K xe so that any
complication due to longitudinal (parallel to K) components oi
s do not come up anyway.

» G. T. HoB, Phys. Rev. 122, 665 (1961).
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in this way, with K, e represented as unit vectors, we
incorporate factors coming from the magnitude of these
vectors implicitly in the M, E, and I.. This form is use-
ful for calculating angular distributions and could be
directly used for calculating real as well as virtual pro-
cessed of the type p+.V ~ X+z-. The angular distribu-
tion of the "decay" 7t in the isobar center of mass can
now be written

= [a~'(j XXe)'+
~

b~'+[~ c~'+~d~'+(b*d+bd*)

+z(c*d+cd*)](j e)'+
(
e('+

( f('+s(e*f+ef*)
+[(b*f+bf*)+(c*e+ce*)+s(c*f+cf*)

+z(d*e+de*)+ (df*+df*)](j e) . (15)

Using this, we give the angular distributions for some
isobars of interest, including the effects of interference
between the three multipoles which contribute to each
isobar of definite spin and parity.

For a P3~~ isobar we can have M'1, E2, and L2
contributions:

dD//dn= ~M ~'[1+3(j A)']+9~E('[1—(j 6)2]
+4~L~'(1+3s')+3(M*E+ME*)[s'—(j e) ]
—6(M*L+ML*)s(j e)+6(E*L+EL*)s(j e),

n=—Kxe, s=j Z.
For a d3~~ isobar we can have E1, 1.4, and M2:

dD/dQ=
( E~'[1+3(j e)']+9

~
M ('[1—(j e) ]

+4
~

L
~

'(1+3z')+3 (M*E+ME*)[(j 6)'—s']
—6s(j e)[(E*L+EL*)+(M*L+ML*)].

And for a d5I2 isobar we can have M2, E3, and I.3:
dD/dD=9

~

M ~'[1+Ss'—Ss' —(Ss +1)(j e)']
+9~E~'[(1—10s'+25s')/4+ (10s'+2) (j e)']
+9~I.~2-;(Ss4—6'+ 1)+-;(M*E+ME*)
/[1 —7z2+10s4 —(5s2+1) (y e)2]

+9(M*L+ML*)3 (s—Ss')

+9(E*I+EI.*)(15/2) (—s+SH).

It should be remembered that generally E, M, and I
are functions of t, so that their relative proportions may
vary with production angle. The description may be
facilitated by the introduction of a special coordinate
system in the isobar c.m. (Fig. 6). Let the plane deter-
mined by q& and q2 be the x—s plane so that
X= (q,—q, )/~ q, —q,

~

is the s axis and the e, the direc-
tion of qi+q2 perpendicular to X, is then the X axis.
We then can make K x e/~ K x e

~

the 7 axis. If we
then refer the direction of the outgoing x, j, to the polar
coordinates in this sytem, we see that g is the Treiman-
Yang'4 angle (i.e., the angle between the plane con-

34 S. B. Treiman and C. N. Vang, Phys. Rev. Letters 8, 140
(1962).

taining qi aiid q&, and the plane containing K and q),
that s= cos8, and K x e/

~

K x e
~

= i1 is the nornial to the
production plane. We might remark that here the
Trieman-Yang criterion for spin-0 exchange simply
amounts to saying that when q and K are the only
available vectors, the distribution can only depend on

q K. For spin-1 exchange, e is also available, and general
invariance requirements or inspection of Eq. (15)
shows that we can have g dependence resulting from
(j.ti)', (q e)', and j e. Since generally in an arbitrary
process where spin-1 is exchange e=rre+Pi1, this means
that at constant j Z we can haven't dependence asgiven
by terms const, cos'p, cosp sing, cosp, and sing —the
last two indicating interference with a longitudinal
niultipole.

It should be noted that the terms in sing correspond
to a pseudoscalar (j 8) (i.e., more s's up than down)
and therefore are correlated with a pseudoscalar in-

volving the other particles in the reaction. Hence if
our "peripheral" particles are spinless, or if in the case
of particles with spin all we observe is their momentum,
then as stated in Ref. 13, spin-1 exchange limits the
distribution in dp at fixed j X to 2+8 cosP+C cos'p.

F&G. 6. Coordinate
system for describing
isobar decay in isobar
rest frame.

Furthermore, since the parity of the isobar corresponds
to the behavior of the matrix element under the replace-
ment q —+ —q, production of an isobar of definite parity
means that the distribution contains only terms even
under this replacement. Since the cosp comes from j e,
8 must be odd and therefore disappears in the average
over j k. Thus in the production of an isobar of definite
parity, when the coordinates of the other particles are
averaged over, and when we average over j.E, spin-1
exchange restricts us to A+C cos'-p. It should be noted
however, as Eberhard has emphasized to us," that in

the case of the production of a I'-wave isobar, the re-
striction on the P distribution follows automatically,
regardless of mechanism. This may be seen by going to
the S* rest frame. There, out of the five-momentum
vectors in the problem only three are independent,
momentum conservation and the center-of-mass con-
dition P2+q=0 removing two. If we now examine the
distribution in q after 0 has been averaged, we can
take it to depend on scalar products of qI, q&, and q2 or
alternatively on q, K, and e (K=qi —

q&, e=qt+q2).
Now we use the fact that we have a p-wave isobar by

"Ph. Eberhard (private communication).
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requiring that q appear linearly in the matrix elenient
and quadratically in the distribution. Since the most
complicated scalar objects we can form are scalar pro-
ducts and triple scalar products, we need only consider

(q K)', (q a)', (q.n)', and (q. e)(q K), terms linear
in q n are excluded since it is a pseudoscalar. Since

j C=sin8cosg and g A, =sin8 sing we obtain the re-
striction described above. For a general isobar, however,
the restriction follows from spin-1 exchange. In fact,
the restriction in general may be derived in a manner
completely parallel to the argument just given by using
the requirement characteristic of spin-1 exchange that
a appear linearly in the matrix element.

V. CONCLUSIONS

We have used the "p-photon" analogy in the context
of a one-vector meson exchange model of isobar
production.

The "p-photon" analogy is first used to select
the M1 —+P3~2 transition for the p+X —+E+m or
K*+1K—+ A+7r vertices involved (as opposed to com-
binations involving the possible E2 or L2 transitions).
This assumption implies that we describe the excitation
of the isobar in its center of mass by the matrix element
for M1 photoproduction (3q Kxs —e qe Kxe) with
the substitutions K —+ qq

—q2, e~ qq+q2, resulting in
a decay distribution for the isobar 1+3(j N)' in its
center of mass, a downshift in the location of the isobar
peak, an over-all production angular distribution for
the isobar (sin'8/(t —nz')') ~F(/) ~', where the ad boo
form factor F(t) is necessary at higher energies to give
sufhcient backward peaking for the isobar.

We have further used the quantitative aspect of the
p-photon analogy, which relates the magnitude of a
matrix element for p's to that for photons, to give an
estimate of the cross section for isobar production via
one-p exchange in terms of the cross section for ordinary
photoproduction j Eq. (7)j. If J„& and J„& are the cur-
rents to which the isovector photon and the p' couple,
respectively, then the quantitative statement used is
that

The decay distributions for the isobar predicted by
the model have been seen in m++P —+ V*++K+ at
2.2 BeV/c, in E +P —+ I'*++a at 2.2 BeV/c, and in
E++P —+%*+++K' at 910 MeV/c, 1.45 BeV/c, and
1.96 BeV/c. Although the qualitative shape of the pro-
duction angular distribution is as expected in these cases,
form factor dependence is needed to give sufhcient
backward peaking for the isobar, except in E++P—&

%*+++ED at 910 MeV/c where the detailed study by
Kehoe has shown agreement with all distributions
predicted by the model without form factor. Yet re-
maining to be examined experimentally are reactions
involving 1V* production by m (such as 7r++P ~
1V*+++m', 7r +P +Ã*+jm') at a few—BeV/c. In all
the reactions mentioned, except E++P —+iV*~+E',

there is evidence, from angular distributions and the
occurrence of "forbidden" reactions LEq. (11)$, of
isobar formation at low energies in ways other than
through the mechanism. It appears there may be a
trend towards predominance of the mechanism at high
energies, although more evidence is necessary to draw
a firm conclusion on this point.

The estimate of the size of the cross section is reason-
able so far as rough order of magnitude is concerned
and we have made a quantitative comparison with the
cross sections found at the three energies mentioned for
K++P ~Ã'"+++K'. The value of f'(p+K K') needed
here is found by using 2f'(p+K K')= f'(p~7r) which
follows from assuming universal coupling of the p to
the isotopic current, and f'(px.n.) is found from the ex-
perimental width for p ~ 2m. At 910 MeV/c for
E++P~X*~+K' the theoretical value for the total
cross section is too small by a factor of six, while at 1.45
and 1.96 BeV/c we can fit the experimental value (if
the effect of the form factor in reducing the theoretical
value of the cross section is taken into account) by
using f'(pnm)/4~=2. 0-2.5. This is in agreement with
other determinations of this coupling constant. A more
precise test of the calculation of the size of the cross
section would be possible using a large number of
experimental points at small angles so as to minimize
form factor effects.

More comparison with experiment is necessary to
test the model and investigate its fine points at various
energies and in different reactions. The fact that the
model works, however, in a variety of cases is encourag-
ing for grouping p and E*, and E* and F* in common
supermultiplets, and certainly lends credence to the
p-photon analogy and those viewpoints which would
assign an important role to conserved (or almost-
conserved) currents in strong interactions.
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APPENDIK I. PRODUCTION OF m' WITH N'

There are indications from the work of the Columbia-
Rutgers group" that the reaction 7r++P ~~'+P+~+
proceeds largely through n++P —+aP+N*++. Figure.
3 of Ref. 36, showing the angular distributions for q,
co and p production, exhibits the forward peaking for p
and co we might expect from peripheral production.

C. Al8, D. Berley, and D. Colley, Phys. Rev. Letters 9, 322
(1962).
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This peaking for the p production, which can proceed
via one-m exchange, is sharper than that for the ~
production, which cannot go this way if we assume
the reaction goes through E*++, and would, therefore,
be suggestive of exchange of a higher mass. (The
g angular distribution being Rat is compatible with
this reasoning since a m cannot interact with any of the
presently known mesons to give an p, hence forbidding
simple peripheral production. ) This situation for o&

production is then indicative of p exchange, which is the
SimpleSt pOSSibility far 2r++I' —r N*+++or' SO it iS

worth seeing what our treatment of the pEÃ* vertex
gives. The matrix element is still represented by I'ig. 1,
but g2 represents the four-momentum of the co' which
now also possesses a polarization c". The introduction
of the polarization of the co makes the problem con-
siderably less simple than when q2 represents a spinless
particle. In particular we are unable to And a simple
preferred axis (which does not vary with production
angle) for the decay of the isobar as we have in isobar
production by spinless bosons.

Something simple can be said, however, about the cv

decay. We take the effective form of the xpco vertex
to be ff(p7ror)/m ]e p„rrq "ep"E~r es' so that again the
E„E„/2&2,2 term in the propagator drops out and our
over-all matrix element is essentially (using E= qi —q2)

1/(t —
2&2 ') e p„sq (') epq, (')M(r, (A1)

where ep is the four-polarization vector of the co and
Mq is our four current operator for the pSE* vertex.

Observe that in the co rest frame, where q
('& —+ q4('),

the matrix element vanishes when the co polarization is
parallel to the direction of the incoming x regardless
of what Mq is or what it stands for. Now take the
Simple matriX element' fOr the deCay o) —+ 2r++rr +rrs,
6p pg 6p E,(')Ez('&E &'), which by going to the
rest frame, using q"=E&'&+E&"+E&'&, is essentially
e" (K&'& x K&'&). The absence of o&'s with polarization
parallel to &b (the momentum of the incoming 2r in the
or rest frame) then means that the decay plane of the
2r's in or —+2r++2rs+2r cannot be perpendicular to tli
and "prefers" to contain q&. Explicitly, if A'„ is the
normal to the decay plane, then we expect the orienta-
tion of the plane to be distributed as 1—(gt 8 )'. This
is only a consequence of cv production by p exchange,
and has to do with isobar production only insofar as
assuming an isobar is produced permits us to ignore
one-m exchange and applies in fact equally well to
2r+X —+N+or and similar processes via spin-1 (—)
exchange. The reason for this is quite general, and is
similar to the argument of Smith et al.3~ concerning E*
production and decay. Let us consider our peripheral
reaCtiOn rr+ p —+ or in the or Center Of maSS. SinCe bOth

p and co are 1 the intrinsic parity of the m forces us to
have l=1, and as in real scattering, the orbital wave

3~ G. A. Smith, J. Schwartz, and D. H. Miller, Phys. Rev.
Letters 10, 138 (19631.

function is I'~ 0 if we take the s axis in the direction of
the incoming rr. It can then be verif&ed that the combina-
tion of this with the s=1 of the p cannot lead to a
J=1 state with J,=O for the co, so the co can be in
J,=~1 states but not in a J,=O state. Now since the
T=O state of the m's in co —+3m requires the space
function of the x's to be completely antisymmetric, we
can represent the state of the x's by terms like
(K&'& x K('&); times a scalar function. Note, however,
that (K&'& x K&'&), „vanish when the plane of the 2r's

becomes perpendicular to z while (K('& x K&'&), cannot
be present since it corresponds to J,=O, i.e., its form is
unchanged by rotations about the s axis. This then
should offer a simple check for p exchange with E*
production.

To treat the decay of the isobar we go into the E*
rest frame, where as before, we assume Mq reduces to
M, the vector matrix element appropriate for M1 —+ P2J2.
We now construct polarization vectors for the ~ which
are orthonormal and satisfy the subsidiary condition
on

thecal

field q2 e"=O.Let e "& be the polarization vector
along the co momentum. In the co rest frame e&" should
reduce to a unit vector antiparallel to the 2 * mo-
mentum. Then the four-vector

e„(2)= fQ„—(q2 Q) (q2„/rr2 ')]/I Q(or) I, (A2)

where Q is the four-momentum of the Ã~ system and
Q(or) means the three-momentum of the E* as seen in
the co rest frame, manifestly obeys q2 c=0, and has the
desired property. This form is useful because the second
term in (A2) drops out by antisymmetry when placed
in (A1), and Q„~Q4 in the 1V* frame. Having now
constructed the correct polarization vector along q2

as seen in the isobar, we need only make &"~ and ~")
unit three-vectors (with no four component) which
are perpendicular to q2. In terms of the special co-
ordinate system discussed in Sec. IV, we make e"'
along B=Kxe/IKxeI, which means that e") lies in
the q~, q2 plane perpendicular to q2. To now evaluate

3

Q I
e&prlq )ep '&q &'&M'I'

we use
x(o —K x fe(o x (q4(2)q(1) q4(1)&I(2))]

Note x&" and x&" are along 8 and e, respectively. Thus
the distribution of the isobar decay (at fixed t) is

dD/dQ= Ix(') I'f1+3(q r(1)']+ Ix&'& I'f1+3(q e)']
+L(M*/I Q(~) I) IKI (&12 x&1 )]2f1+3(q')2], (A3)

where all quantities are to be evaluated in the E*
frame. This is obviously rather complicated, and de-
tailed experimental check would involve averaging
dD/do over some range of 3, which then brings in the
propagator and form factor weighting. However, there
are some less speci6c simple features. If we integrate
over P then, the distribution in 8 is (1—

s cos'8)d(cos8).
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If we average over t) (and the internal te coordinates)
the distribution in the Treiman —Yang angle g is re-
stricted to the form 1+a cos'p by the spin of the isobar
alone as mentioned in Sec. IV.

As for the total cross section, we take Eq. (6) and
observe that

— M*
(C.G.)=9/4, Ixt" I'+Ixt" I'+ —IKI(q] xqs)

—
I &(~) I

must replace (2q"& x q&'&)' and that f(p7r7r) is replaced
by f(prrce)/m

APPENDIX II. COVARIANT TREATMENT OF ¹

Although there is nothing noncovariant in what we
have done above, the matrix element we have used
for p+!V—+!V+n. looks somewhat specialized since
the explicit form we have always used refers only to
the S* rest frame. Furthermore, although in practice
we have confined ourselves to situations where the Anal
Ex system is resonant, we have not actually introduced
the isobar as a particle. Therefore it may be interesting
to treat the ~V* or V* as a spin- —,

' particle and see if we
can find a simple looking interaction which corresponds
to the Sf' transition we have used above. We, therefore,
envision our process as p+It/~Ã*~ E+rr and in-
troduce the Rarita —Schwinger" spin--,' field p„, a
"four-vector" whose "components" are ordinary Dirac
spinors. Since what follows can equally well apply to
photoproduction, we use A„ to represent the vector
field. The 2V* field has been studied elsewhere, " the
main point for us here being that in the rest frame of the
cV* the numerator of the E*propagator

(M —iv P)L8„—sv,v.+ (i/3M) O'.P —
& P.)

+2/(3M')P„P„]

reduces to L(1+y4)/2](38, ,—o,tr;) with no four-com-
ponents. This, when combined with the vertex&„P(&„$ )
for Q*—& .$ +~ leads to (q being the momentum of the
decay ~) (3q, —rr qo;)(1+y4)/2, the Ps» projection
operator, representing the propagation and decay of
the isobar. We then need only concern ourselves with
the p+.V~!V* vertex, where the index of p„at this
vertex will go with the free index on the projection
operator.

If we wish, we can construct a simple gauge-invariant
interaction which always (even off resonance) gives
pure M1 in photoproduction or for p+.V —+!7+~:

G G J'„
(r) A'~)4'e~~~P ~A p

= O'A'ei'~u
m.M* m~ 3f*

In the !Y* rest frame P„~P4 so we get 3q K x e

' W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941)."P. Federbush, M. Grisaru, and M. Tausner, Ann. Phys.(¹Y.) 18, 23 (1962); S. Mandelstam et at. , ibid 18, 198 (1962). .
Of particular usefulness were the class notes for a course given by
J. D. Jackson.

—o"q rr K x e, which is precisely the Mi matrix ele-
ment. Thus if we give G a form factor dependence to
properly reproduce the shape of the y+P —+!V"+~
P+rr' resonance, this interaction will give identically
the results obtained before using the multipole de-
composition for Mi in the isobar frame. 4'

On the other hand, Gourdin and Salin4' have studied
photoproduction in these terms, and have concluded
that experiment requires that the photoproduction
amplitude contain a small amount of 1&2. They therefore
suggest using what they call Hs (eCs/m——)Py„ps'
X(E„A„It.A„—), .which is predominantly M1 with
some roughly correct amount of L~'2. )If we wish to use
e„„,instead of y~ for pseudoness, we can get the same
result with Hs' (G/m.——)et'„y„ge„„„E,A, jNow . the E2
(and L2 for massive vector mesons) terms in the Hs's
arise as recoil effects due to the motion of the proton
from the small components of the spinors. This appears
logical since a stationary spin- —, particle cannot have
a quadrupole moment. For instance, the large term in
Hs' is simply (M1) while the small terms are

—E Es (L2)
1/2 (M1)—1/2 (L~'2)+ 1/2 (K e)

~+M~ E's' K'

where to conform to the usage of Sec. IV (except that
here q, K, e are not unit vectors), we have set

(M1) =3q K x e, —tr q 4r K x e,
(E2)=3i(q Err er+rr Kq e,),
(L2) = 2i (3q K tr K—tr q K'),

where er means the part of eJ to K.
Therefore if we were to elect to use couplings of the

JJ3 form, we would get small amounts of E2 and J.2
mixing. The recoil factor $Es/(E„+Mt') g (to be
evaluated in the isobar frame) which essentially gives
the relative size of the small terms can be evaluated
to give

Eo M~ —M~' —
I
t

I

& +M+ (M*+Mv)'+ ItI

In any case, if we use the pure 3f1 interaction or H3,
application of the p-photon analogy as described earlier,
Gourdin and Salin's esitmate for the y.ViV"' coupling
eCs ——e(0.37) leads to

Gp&t tt*+= Csj'p~(0. 37)L(2.2) (4')]'t'=2.

40 Interactions can be constructed for pure E2 or L2 transitions
also, but they must be concocted rather more artificially. The inter-
action for E2 and L2 can be written @„y~(y„+(y P/.V*')P,)PT'„„
or, as [by using the subsidiary condition on @„ for a real
!V*, (ty P+ItI*)g„=0$ P„yrgp. +i.(P„/M*) )AT„„. For I'2,
T„„=K„A„+E„A„(2E„E„/E4)(E'A), and for I2, T—„„=K„IC„
X (K'.A), where K' is a four-vector which reduces to the spatial
components of K without any four-component in the isobar rest
frame, K„'=K„+(KP/.V*)P„.

' M. Gourdin and Ph. Salin, Xuovo pimento 27, 191, 309
(1963).


