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can speculatively be associated with the various known
x—p phenomena. The conjectured total angular mo-
rnenta are stated in parentheses; the values given are
those possibly inferred from simple Regge-pole-tra-
jectory behavior. The two peaks discovered by Diddens
et al. ,2' at pion energies of 1950 Mev for sr

——p, and
2370 MeV for sr+ —p, are included in the table upon

this basis of conjecture. The resonance points on a
Regge plot are shown in Fig. 10, which illustrates the
basis for the values given in parentheses in Table III.
Diddens et at." have discussed other assignments also
to be considered for the two highest energy resonances.
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The analytic structure of two-particle to three-particle production amplitudes is examined within the
framework of analytic S-matrix theory, with particular emphasis on the structure of the physical sheet.
The basic principle used is maximal analyticity, which is both discussed and exemplified. The knowledge
of the structure of the physical sheet is used in deriving formulas for the discontinuities across the cuts
in the two-particle subenergies of the three-particle channel and across the cut in the total energy.

I. INTRODUCTION

HE determination of the precise content of the
principle of maximal analyticity is an important

problem in analytic S-matrix theory. This principle
asserts that scattering amplitudes, regarded as analytic
functions of appropriate variables, have only the singu-
larities required by general properties of the ampli-
tudes. ' Associated with the problem of determining the
locations of these singularities are many questions
regarding the sheet structure of the Riemann surface
and the discontinuities across branch cuts. It remains
to be shown on the basis of maximal analyticity that
one can construct a single "physical" sheet, which
contains all the physical points. Moreover, even with
the assurance of the existence of the physical sheet,
there are still questions regarding the structure of the
singularities on that sheet and how one analytically
continues from one physical region to another. Though
the situation is relatively simple for scattering proc-
esses involving two particles only, it is not at all well
understood when channels containing three or more
particles are taken into consideration. Complications
arise not only because of the increase in the number of
variables necessary to describe the processes, but also
because of the possibility of overlapping normal cuts
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and the inevitable emergence of complex and anomalous
cuts. In this paper we shall examine for the case of a
production amplitude some of the simple ways in
which these problems arise, and how they may be
resolved.

Our ultimate aim here is to derive the discontinuities
across unitarity cuts associated with all the energy and
subenergy channels of a production process. It is
ordinarily considered that the discontinuity equation
follows from unitarity and Hermitian analyticity.
Recently, Stapp has shown that the discontinuity
equation can be derived as a direct consequence of the
superposition principle and the in-out boundary con-
ditions for the S matrix, quite independent of unitarity
and time reversal invariance. ' In terms of the scattering
function M, defined by 5=I+M, this equation has the
form

M (o,+, s+, a +)—M (o,—,s—,a, ' —)
=M(o;—,s—,oe"—)M(ai"+, s+, o +), (&.&)

where s is the total energy squared and the 0- variables
represent the squares of the various subchannel ener-
gies. The & signs designate Hie, and the intermediate
variables tTI,

" are to be integrated over the ranges
allowed by the phase space of the intermediate state.
This is the basic, over-all discontinuity equation. It
does not, however, give the discontinuity for any one
variable alone, except in the simplest case of a two-

3 H. P. Stapp, Midwest Conference on Theoretical Physics,
Notre Dame University, June 1963 (to be published).
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particle intermediate channel. Our aim is to derive
from (1.1) all the single-variable discontinuity equa-
tions of a production amplitude. In the course of the
derivation we shall encounter and must solve some of
the problems mentioned in the preceding paragraph.

Consider the production process as pictured in Fig.
1(a) and let us use the scalar variables as indicated in
that figure. One may ask what the discontinuity across
the subenergy 0- is. If one assumes that the usual
two-particle discontinuity equation can be generalized
to this case, the result can be shown pictorially as in
Fig. 1(b). (An algebraic formulation will be given
later. ) Since ~q is an energy-like variable and must
have a value greater than its two-particle threshold if
the production process is physical, certain questions
immediately arise. Should coi be evaluated above or
below the two-particle unitarity cutP How does the
answer depend upon the external variables? Note that
these questions do not arise in model calculations, 4

where the interaction between only two of the three
particles in the final state is assumed to be dominant.

We propose to derive the discontinuity equation for
a subenergy variable by an analytic continuation from
a region where the same variable is the total energy of
the crossed process, for which the two-particle dis-
continuity equation is known by virtue of (1.1). In
other words we start with the process for which line
3 in Fig. 1 (b) is originally on the same side as lines
1 and 2; then keeping 0- fixed above its two-particle
threshold, we vary the other variables in such a way
that in the end line 3 is effectively swung over to the
other side. In effecting this continuation, the main
problem is to find all the singularities that may obstruct
the path and to determine the appropriate locations of
the associated branch cuts, so that one can avoid
continuing into unphysical sheets. The implication is,
therefore, that one must determine the boundaries of
the physical sheet, at least to a certain order in the
structure of the singuIarities. Since, by definition, the
physical sheet must contain all the physical points,
the boundaries will be so chosen that one can always
analytically continue from one physical point to another
along paths that stay within the sheet, and that this
property is preserved when the singularity structure
of higher order is considered. In fact, we shall adopt
a ru1e for the placement of the branch cuts of a dis-
continuity function by requiring that the form of the
discontinuity equation is the same at all points of the
"principal" sheet bounded by these cuts. The singu-
larity structure of the scattering function itself can
then be determined with the help of Cauchy's theorem.

In Sec. II we present the considerations needed for
the determination of the singularities of a scattering
function and the boundaries of the principal sheet of
the associated discontinuit, y functions. The considera-

4 L. F. Cook, Jr., and B. W. Lee, Phys. Rev. 127, 283, 29'7

(1962); J. S. Ball, W. R. Frazer, and M. Nauenberg, ibid. 128,
478 (1962); R. C. Hwa, ibid. 130, 2580 (1963).

(a)

Fxo. 1. Production
process, with s being
the total energy
variable.

(b)

tions are illustrated by the study of some of the 6rst-
order singularities of a production amplitude. Con-
tinuation of a two-particle discontinuity function is
studied in Sec. III; the discontinuity equation in a
subchannel energy variable is then obtained. The prob-
lem is later extended in Sec. IV to include singularities
of higher order. After the discontinuity equations in

subenergy variables are obtained, we then derive (in
Sec. IV) the discontinuity across the three-particle cut
in the total energy variable with the other variables
kept fixed. This is quite simple once we understand
the structure of the physical sheet and some properties
of the two-particle subenergy discontinuity equations.

II. THE PHYSICAL SHEET

In this section we consider, by means of a simple
example, a procedure for determining the boundaries
of the physical sheet io accordance with the principle
of maximal analyticity. It will be well to state at the
outset our interpretation of this principle. We first
assume that it is possible to derive from (1.1) single-
variable discontinuity equations. Equation (1.1) itself
is such an equation in the case of two-particle dis-
continuity in the s variable. Results of this work (and
generalization to more complicated processes to be dis-
cussed in a later paper) justify the assumption that
single-variable discontinuity equations can be derived
in any variable. In conjunction with Cauchy's theorem,
such a discontinuity equation allows one to express a
certain contribution to the scattering function M in
terms of other M functions. We interpret maximal
analyticity to mean that M can be built up as a sum
of such contributions, plus, perhaps, contributions from
contours at infinity. The general procedure for obtain-
ing the analytic structure is to start with contributions
coming from the Cauchy contours near the physical
region, first without regard to singularities of the M
functions on the right of the discontinuity equations,
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FIG. 2. Production

process, with o- being
the total energy
variable.

with real internal momenta, and that (2.1) is conse-
quently well defined. The external momenta are
guaranteed to be real if the thresholds of the external
channels are lower than the internal threshold. Thus,
if the masses of the external particles are sufficiently
small the Cauchy contour will give a contribution that
reduces to a line integral over the discontinuity func-
tion extending from 0-~ to infinity along the real axis.
The position of this contour, which defines a boundary
of the physical sheet, will, for large mass values, be
determined by continuation in the external masses.
The justification of this procedure will be discussed
later. Thus, neglecting contributions associated with
other possible singularities in the 0- plane, we have as
our starting point the formula

M (s,o.,a&) = M, (s,o',cv),
27''2 gg 0 0

(2.2)

and then to introduce the structure of these functions
by means of an iteration procedure. 2 The singularities
are thereby classified as to order. In this section we
examine in detail the singularities obtained by iterating
once the discontinuity equation in 0- with a pole in ar&

I see Fig. 1(b)$. There are many other possible singu-
larities of the same order obtainable by iterations with
poles (or normal thresholds) in other channels; their
properties can be studied in a similar manner.

A. The Starting Point

Let the process shown in Fig. 2(a) be represented
by the function' M(s, o,&o). The invariant . variables are
defined in terms of the momentum four-vectors as
follows:

s= (kg+k2)', 0 = (k4+kg)', co= (k4 —k3)'.

The two-particle discontinuity equation in the total
energy variable 0 has a form as given by (1.1). On the
right-hand side there is implied an integration over
the intermediate phase-space factor, which, for a two-
particle intermediate channel of masses m6 and m~, is

d4k;
2mb(k '—m ')0(k')

'=6, 7 (2~)'

X (2~)48'(k4+k5 —k6 —k7) . (2.1)

The diagram associated with this discontinuity is
shown in Fig. 2(b). The normal threshold singularity
in the a variable is located at the point where the
above phase-space factor vanishes, i.e., at 0-= 0-&

—= (m&+nz&) . The discontinuity is nonvanishing only
along the real axis for 0-&0.

&, provided the external
momenta are reaP; it is only in this case that the
energy-momentum conservation laws can be satisfied

5 4Ve shall not exhibit explicitly the dependence of M on the
other two variables r and t.

which is valid if the (effective) external masses' are
small enough. This is the normal or first-order con-
tribution to M associated with this two-particle inter-
mediate state. This contribution will always remain
for M, but it may, for larger values of the external
masses, be augmented by higher order contributions,
which come from possible added segments of the path
of integration that detour around cuts of 3f,. Although
the normal contributions are called the first-order con-
tributions they are much more comprehensive than
the first-order perturbation contributions, as they in
fact constitute the entire function for small values of
external eBective masses.

The discontinuity function M, appearing in (2.2) is

M. (s, o.'+, (a)—=M(s, 0'+, a)) —M(s, 0.'—,cu)

d&..p(~'+)2 (0.' —,~2)M(s, 0'+, ~~) ) (2.3)

where
p(0.') =p7(0')/327r'(0')" (2 4)

Here pq is the magnitude of the three-momentum of
particle 7 in the rest frame of the 0.' channel, and the
integration is to be taken over all possible directions of
this momentum. A (0',&u2) represents the left-hand
bubble in Fig. 2(b); M(s, o-', &u~) represents the right.

The first problem is to determine the locations of
the singularities of 3f in the a' plane. These are ob-
tained by substituting into the right-hand side of (2.3)
various contributions to A and 3f. One proceeds by
iteration, starting with contributions to A and 3SI

coming from poles and normal contributions. Contribu-
tions with singularities only at very large 0- have no

Taking the singularity structure shown in Fig. 3 as example,
the variable s is the effective mass of the channel consisting of
particles 1 and 2. To ensure real and undistorted Cauchy con-
tour, it is s, mp, m4', and mh2 that must be small; the values of
mP and m2' individually are unimportant.
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singularity structure in the region of small o.' and
therefore act in this region effectively as constants vrith
respect to the singularity structure. We shall consider
first the singularities of M, that are associated with
the constant part of 2 and the pole term

M ((og) = I'/(cot —ms') (2.5)

in M. The corresponding diagram is shown in Fig. 3.
We shall insert these contributions into (2.2) for small
external masses, then continue the masses to their
actual values, and finally study the function M as an
analytic function of s and 0-. Before so doing, however,
we discuss brieQy the procedure of continuation in
external mass.

B. Continuation in External Mass

The problem of justifying continuation in the masses
of external particles within the framework of analytic
S-matrix theory has been considered by Stapp. ' We
describe here the main idea.

Suppose we want to continue in m3 the M function
corresponding to the diagram given in Fig. 2(a). Then
first consider the M function of a larger process, in-
volving six external particles instead of five; let us call
it M'(s, o,r) where r is the effective mass squared of
the two particles as indicated in Fig. 4. The analytic
structure of M' can be determined in the same way as
that of 3f, and for every contribution to M there will

be an analogous contribution to M'. Now, general
properties of the analytic S-matrix theory require that
M' have a pole at r=m3'. Moreover, the residue at
any such pole must be factorizable. ' In particular,

Lim (r mss)M'(s, o—, r) =GM(s, o.),
T~m32

where G is a constant. It follows that M(s, o.) defined
in this way can have cuts and singularities only at the
limit points of the cuts and singularities of M (s,o,r)
as r —+ ms'. If M'(s, o,r) is analytic in r as r ~ ms', its
singularities in s and 0. must move continuously. Thus
one can determine the locations of singularities of M
by tracing thz corresponding singularities of M' as
z —+ m3'. It is in this sense that we shall discuss con-
tinuation in the external masses. Note that we have in
no way implied that the actual scattering functions are
defined for unphysical values of the masses.

FIG. 3. Diagram as-
sociated with iteration
of the two-particle dis-
continuity equation in
0-' with a pole.

' H. P. Stapp (unpublished).
s D. I. Olive (to be published).

Fxo. 4. A six-particle
amplitude.

C. Locations of Singularities

We now proceed with the problem of determining
the locations of the singularities of M(s, o.) correspond-

ing to the diagram in Fig. 3. Define 8 as the angle
between ks and k, in the rest frame of the o' channel.

Thus, we have

where
a) =m '+mP —2EsEp+2PsP7 cos8,

E,= (
'—s+m')/2 "~',

E7——(o' m'—+mP)/2a""

p =—Ik l=(E™')'"
p7 =—ik7i = (Ep—mp)"'.

(2.6)

(2.7)

Equation (2.3) may now be written in the form

where

M (s, ')=g(s )
, s—P(s,o')

(2.8)

s—=co 8, g(, )= arp( )/p (, )p, ( ), (2.9)

P(s,o') =a1. (2.12)

p(s,o)= /ms' ms' —m7s-
+2Es(s,o)E7(o)j/2ps(s, o)p7(o), (2.10)

or

P(»&)
= Po' o. (s+mss—+ms'+mP 2mss)—

+ (s—mss) (mes —m7s) $
x {L —("'+,)'gL —("'—,)'j

xE-—( + )'jL--( .— )'j&-'" (2»)
Since 2 (o.',&os) is a constant here, (2.8) has no depend-
ence on or. A discussion of the relaxation of this restric-
tion is given in Sec. IV.

The singularities of g(s,o') are located at (o "~'&ms)'
in the s plane and at (s'~'&ms)' in the o.' plane. The
integral in (2.8) also has square-root branch points at
these positions, which cancel the singular behavior of

g(s, o'), resulting in the fact that M, (s,o') is regular
there. This is, of course, true only in the principal
branch of the logarithm coming from the integration.
In addition, the integral has square-root branch points
o'= (ms&my)', which are in M, (s,o') also.

M, (s,o') has, furthermore, the end-point singulari-

ties, which occur when



~1090 RU DOLP H C. HKA

I
ss

Xg
t x

X2= t

X2

X~ -X,
I

X X =-(
2

(a) —
I & X~&+I

I

(b) X~(-I (c) X3&+(

FIG. 5. Real sections of the singularity surface for
three different ranges of values of x3.

Using (2.11), it can be shown that (2.12) can be
satisfied only by cr'=0, Oo and by the roots of

where
f(s,o') =0, (2 13)

f(s,a)
= soms'+s'mP+o'ms'+ms'ms'

sa (—»7'+ ms') sm—s'(ms'+ »7') am—s'(»6'+ ms')

+s(»7' ms') (—m2 »6 )+a(»8 »6 ) (»8 »7)
+m, '(ms' m, ') (—m, ' m, ') .—

It is straightforward to establish the equivalence of
(2.13) to the following equation,

xis+xss+xss+2xixsxs —1=0, (2.14)
where

xi (o' —ms' —»7 )/2»6»i,
as (s ms ms )/2»6»8 y

x 6
——(mss —»P —mss)/2»)ms.

This equation has been derived previously by examin-
ing the analytic property of the Feynman amplitude
for a triangle diagram in the perturbation theory. The
derivation here is based on the consideration of the
pole contribution to the discontinuity equation accord-
ing to the iteration procedure in the analytic 5-matrix
theory.

From (2.13) we see that there are two singularities
in the 0-' plane whose positions depend on s and m3,
let us denote them by o~(s,ms). They are given by

xi+———xsxs+ (xs' —1)' '(xs' —1)' '. (2.15)

If the value of xs is in the interval (—1, +1), the real
solutions of x~ as a function of real x2 form an ellipse
inside the square whose sides are x&= &1 and x&= & j. ;
this is shown in Fig. 5(a). If ~xs~ )1, then the inter-
section of the solution surface with the real x~-x2
plane is a hyperbola, as indicated in Figs. 5(b) and
(c). In all cases, the points of tangency with the lines
xi= &1 and xs= &1 are +xs or —xs.

The starting point of the study is at small values of
s and m3', thus, x2 and x3 may be taken to be less than
—1 initially. Ke increase ns3' to its physical value

9 R. J. Eden, I.ectzfres in Tlteoreticat Physics, Brcndeis SNmmer
Institute, lP6I (K. A. Benjamin, Inc. , New York, 1962), Vol. 1.

first, and then study the analytic structure of M, (s,o')
in the two variables s and o-'. We assume that the
physical value of m3' satisfies the stability constraints

~
»7 ms

~
& ms& m'I+ms. The corresponding value of

xs is therefore restricted to the interval (—1, +1). In
the continuation of x3 from a value less than —1 to a
value in the interval (—1, +1), the solution curve for
xi+(xs,xs) changes gradually from a hyperbola LFig.
5(b)j to a straight line (when xs ———1) and then to an
ellipse LFig. 5(a)j. The branch points xi+(xs,xs) in the
x& plane for x2( —1 are initially real and not greater
than —1; this means that in the 0-' plane the singulari-
ties are below the normal threshold o-~ while the cT'

integration contour lies undistorted along the real axis
from o, to + 0o. As the hyperbola becomes a straight
line xi+= xs, the branch points o~(s,ms) coincide at a
real point below a-~, still leaving the contour undistorted.
As the straight line develops into an ellipse, these
singularities go into the complex a-' plane taking con-
jugate positions.

This is the situation from which we start investi-
gating the analyticity of M(s, o) with all the external
masses having physical values. The value of s at this
point is small. Let us now increase s along a path just
above the real axis, as shown in Fig. 6(a). The tra-
jectories of the singularities o~(s) of M, (s,o ) in the
o' plane are as indicated in Fig. 6(b). Corresponding to
xg= —x3 is the point

2
Sl St ( mQ+ ms )

o- (s+)

/J
'I 2, c1 =(ms+m7)

(m6-m&}

o- (s+ )

(a) (b)
I

FK;. 6. (a) Path of continuation in s; (b) the corresponding trajec-
tories of the singularities in the o' plane.

s = si = ms'+ ms'+ msm7+ ms (».,' »ss)/—m,
& (m, +m, )';

at this point a (s) reaches the threshold o.
g which is the

lower limit of the integration in the dispersion formula
(2.2). However, M(s, o) has no end-point singularity at
s&, as can be verified by taking the two possible ways
of continuing s around s~ and showing that the differ-
ence is zero. Continuation past s~ with a small positive
imaginary part has the result that o (s+) goes around
o.

~ in the clockwise direction, dragging the dispersion
contour with it as it retreats. Corresponding to xs ——+1
is s=s,= (ms+ms)', where o~(s) meet and pinch the
contour; indeed, ss is a branch point of M(s, o.). Clock-
wise continuation in s around si leads a (s+) to the
lower half 0' plane, so the 0-' contour is distorted
downward. The trajectories of o~(s—) are complex
conjugate to those of o+(s+). For s)s&, the deforma-
tions of the dispersion contour are shown in Figs.
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I'IG. 7. Distortions of the contour of integration
of the dispersion formula.

'7(a) and (b) for the two cases of s+ie and s —ie We
remark that the distortion is forced by the movement
of the singularity o (s); the particular way in which
the contour in Fig. 7 is dramrn is not meant to imply
an appropriate position of the branch cut ending at
o (s), which is as yet undetermined.

When s is suKciently small, the dispersion contour
in the 0' plane is along the real axis undistorted. This
contour in o' corresponds to a branch cut in M(s,o)
along the real axis of o- plane for 0.&0-&, across which the
discontinuity M is nonvanishing. Physical region is
just above this cut. For the process indicated in Fig.
2 (b), this region is at values of o greater than
max((m4+ms)', (s'i'+ma)', oi). When s is suKciently
large, there is also another region above the cut on
the real axis, which is also physical, corresponding to
the process shown in Fig. 1(b). The bounds of this
region are max((m4+ms)', oi) on the lower end and
(s'l2 —iwa)' on the upper end. For the convenience of
discussion, we define two sheets, I and II, of M(s,o),
connected by the branch cut on the real r axis. Since
Og is a two-particle threshold, this cut connects only
two sheets and no more. Let sheet I contain the physical
points above the cut; hence, it must contain also the
physical sheet. Conversely, the unphysical sheets must
contain sheet II.

We can now give the locations of the moving singu-
larities of M(s, o) in sheets I and II of the o. plane for
fixed s. They are at those points where the pole in the
integrand of (2.2) pinches the contour of integration
with the singularities o+(s) of M. (s,o ). Since the pole
(o' —o) ' appears as a multiplicative factor in the
integrand, it is on all sheets of a-' de6ned by branch
cuts of M. (s,o'). We find therefore with the help of
Fig. 7 that, for s+ie, o (s+) is in the lower half of the
o plane in sheet I, while o+(s+) is in the upper half of
sheet II. For s—ie, o. (s—) I o+(s—)j is in the upper
(lower) half of sheet I (II).

Singularities of M(s, o) in the s plane for fixed o can
be found in a similar way. Let the solutions of (2.13)
for fixed o' be denoted by s+(o'). Then, because of the
symmetry of Fig. 5 under interchange of x~ and x2,
the trajectories of s+(o') are analogous to those shown
in Fig. 6 except that the roles of s and 0' are inter-
changed. Let us use the notation in which s~(0') is
associated with the solution of o.'=o+(s), and s (0')

('a )

Fin. 8. (a) An eight-
particle amplitude; (b) and
(c) a pole in r in two dif-
ferent physical regions. (b)

(c)

with a'=o. (s). Sheets I and II can be defined in a
similar way as before. They are connected by the
branch cut on the real axis of the s plane starting from
si= (me+ma)' to +~. The singularities of M(s,o) are
then located as follows: for o+ie where o) o.i, s (o+)
is in the lower half of sheet I, while s+(o+) is in the
upper half of II. For o ie, s —(o —) is in the upper
half of sheet I and s+(o.—) is in the lower half of sheet II.

D. P1acement of Branch Cuts

Having found the locations of the branch points, we
now proceed to investigate the appropriate choice of
the positions of the branch cuts connected to these
singularities. Consider the 0. plane for s fixed at a value
greater than s~ and just above the real axis. Aside from
the normal threshold the only singularity of M(s, o.)
on sheet I is o. (s+) in the lower half-plane. Since this
singularity enters into sheet I by emerging through the
branch cut on the real axis in a downward direction,
it is natural to take the branch cut attached to it to
connect to the lower side of the cut along the real axis.
A necessary condition that the position of any branch
cut must satisfy is that the resultant physical sheet
contains all the physical points. If the physical regions
corresponding to the two physical processes repre-
sented by Figs. 1 and 2 are analytically connected by
a path that runs on a straight line just above the real
axis of the 0. plane, then any branch cut connecting to
the bottom of the normal cut would be acceptable, at
least as far as these two regions are concerned. In
order to determine whether a straight path of continua-
tion just above the real axis, in fact, leads from one
physical region to another, one must have some criterion
for determining in general the analytic connection be-
tween various physical regions. We discuss this question
Ilow.

Consider the scattering process of four particles into
four particles, and denote its function by M(s, o.,r),
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js-JV)' o =(+s+

FIG. 9. A section of the physical region
of the eight-particle amplitude.

where r is as indicated in Fig. 8(a). For s large enough
and r positive, there are two physical regions in the
0- plane above the real axis. Let us call the lower region
8, which ranges from max f (m4+ms)', O.i} to (s'~' —r")',
and call the upper region A, w'hich extends from
(s'~'+ r'~')' to +~. When r is reduced, the gap separat-
ing the two regions narrows, and when r becomes
negative, A and 8 become connected. For fixed s+i»,
the physical region of M(s, o,r) as a function of 0. and r
is shown in Fig. 9. Now, it can be shown' ' that the
presence of a pole at r = ass of M(s, o,r) in the physical
region is the necessary and sufficient condition for the
existence of a physical particle of mass m3'. Moreover,
the residue of such a pole must factorize into two fac-
tors, which are scattering amplitudes. Poles in regions
A and 8 correspond to processes represented in Figs.
8(b) and (c), respectively.

In Fig. 9 a path of continuation staying in or very
near the physical region defines the connection be-
tween the physical regions A and B. Such a path is
shown by the solid line. A continuation of the eight-
particle amplitude from A to 8 with v staying at the
pole position at all times is indicated by the dashed
line in Fig. 9; it must necessarily pass through an
unphysical region. By virtue of the factorizability of
the residue, the analytic structure of the eight-particle
amplitude at the pole is composed of the analytic
structures of the two-component five-particle ampli-
tudes. The continuation along the dashed line in Fig. 9
is achieved by continuing the component amplitudes
in their own variables, along paths not yet determined.
The question is whether such a path exists. If it does,
then the existence of a pole at 7=ns3' in one of the
two regions, A or 8, must imply the existence of the
pole in the other region as well. This then implies the
existence of a second particle of mass m3', which may
be identified as the antiparticle. It is in this way that
the existence of the antiparticle follows from S-matrix
principles. Moreover, the path of continuation from
A to 8 that stays at r=m3' defines the continuation
from the original region to the cross-process region
for the five-particle scattering amplitudes appearing in
Figs. 8(b) and (c).

The above conclusions follow if one can find a path
from A to 8 that stays at ~= m3'. The problem, then,
is to construct such a path. The way to do this is to
take the path from A' to 8' in Fig. 9, which is at a
negative value of r and which lies in or very near the
physical region, and to gradually increase r. For the
singularities that will be present in the five-particle
amplitudes this continuation is just the continuation in
r that was already considered. Thus the connection
between the two physical regions of the five-particle
amplitude is defined by a path of continuation ob-
tained by distorting the straight line above the real 0-

axis at r(0 in such a way as to avoid singularities that
emerge when r is increased to m3'. The path defined in
this way will give a path in the eight-particle amplitude
that is (homotopically) equivalent to the original path
from A to 8 via A' and 8', as is required.

Consider the present specific example. When r is
negative, there is no unphysical gap separating physical
regions in the 0- plane, as we have already noted. Thus,
the path of continuation may be placed just above the
real axis, imbedded in the physical region. By con-
siderations similar to those given in the preceding sub-
section, the singularities 0.~(s+) can be found to be
located in sheet II just above the real axis. As r is
increased to a positive value, the physical region breaks
up into two disjointed sections A and B. The singu-
larities 0~(s+) become complex for r) (m7 —ms)';
0+(s+) goes to the upper half-plane of sheet II, while
0 (s+) goes through the real axis and enters into the
lower half-plane of sheet I. Neither of these singulari-
ties disturbs the path of continuation between A and
8 just above the real 0. axis in sheet I. There is no
need to consider the singularities associated with s—ie,
since the physical regions are for s+i». Hence, to the
extent of first-order iteration of the discontinuity equa-
tion in 0., no singularity of M(s, o) deforms the straight
path of continuation between A and B. These regions
will both be on the physical sheet if the branch cut
attached to 0 (s+) is taken connected to any point
on the lower side of the normal cuts along the real axis.

The above arguments do not specify the exact point
of the real axis at which the exit point should lie. In
Fig. 10(a) we show two possible positions of the
complex branch cut in the 0. plane. Clearly, the dis-
continuity across the real axis is the same in the two
cases except along the segment bounded by the two
alternative exit points. Neither choice is incorrect, but
one particular location is more convenient than the
other. We establish the following rule: The branch cuts
of the discontinuity function associated with singulari-
ties arising from iteration of the discontinuity equation
are to be placed along the images of the real interval

L
—1, +1] of cos8 under the appropriate mapping,

which in the present example is the inverse of cosg
=P(s,o'), as defined by (2.11). Let us refer to these
images as the "natural" positions of the branch cuts,
and the sheet of the discontinuity function defined by



ANAL YTI C STRUCTURE OF PRODUCTION AMPLITUDES 81093

these natural branch cuts as the "principal" sheet. The
generalization to more complicated problems is rather
clear: the natural positions of the boundaries of the
principal sheet are such that on this sheet the phase-
space integrations of a discontinuity equation are never
distorted by the singularities of the M functions in the
integrand, which of course move as one changes the
external parameters. Any distortions of the contour of
integration in (2.2) will be taken to run along these
cuts. The physical sheet defined by this representation
will therefore have, in addition to the normal cut,
possible added cuts that will run along positions of
these (natural) cuts that bound the principal sheet.

For our example the physical sheet defined in this
way certainly satisdes the homotopy condition. The
natural position of the complex branch cut of M (s+,o')
in the a' plane connects o. (s+) with o+(s+), as shown
approximately in Fig. 10(b). Since the dispersion con-
tour is distorted downward for s+i s Lcf. Fig. 7(a)g, the
resultant branch cut of M(s+, o) in the o plane is in
the lower half of sheet I, as indicated by the solid
curve in Fig. 10(a). That the homotopy requirement
will always be satisfied by this rule for placing cuts
remains to be established.

The rule has many advantages. Firstly, the second-
type singularities, "corresponding to internal momenta
being distorted to infinity, must be on an unphysical
sheet. This is because integrations over undistorted,
real internal momenta correspond to phase-space inte-
gration taken over physical angles, and a second-type
singularity occurs when some contour of this integra-
tion is distorted to inhnity, as we shall see in the next
section. Secondly, the natural position of the complex
cut of M, (s,o.') in our example intersects with the real
axis at a point between (s'~s —ms)' and (s'Is+ms)' fsee
Fig. 10(b)j; consequently, at least in the order con-
sidered, the discontinuity functions in the physical
regions A and 8 never have discontinuities themselves
in the same variable fr'. The position of this exit point
can be found by recognizing that the point of inter-
section corresponds to P(s,o')=0, whose solution, ac-
cording to (2.10), is

Es(o') = (mss+mrs —ms')/2Er (o.') .

Since E7 is greater than my if cr'&erg, and m3 is re-
stricted by stability constraints, E3 must be less than
m3, thus limiting the intersection point to be within
the unphysical gap between A and B. Thirdly, the
boundaries of the physical sheet determined by this
rule make possible an integral representation" of the
production amplitude involving real contours only. To
achieve this, conformal transformations on some of the
variables are clearly needed. Lastly, the discontinuity
equations in the physical regions are simple, as we
shall see in the following sections.

"D. B. Fairlie, P. V. LandshoG, J. Nuttall, and J. C. Polking-
horne, J. Math. Phys. 3, 594 (1962)."R.C. Hwa (unpublished).

0
8 (~s-m, )I/J////rr 2/I

~t'i

a-(s+)

a~a
(J5+mg) . 4Vriszir zzrir

0 {s+)

,Fro. Io. (a) Two alternative positions of the complex „'branch
cut of )lf' function in the o plane. (b) Distortion of the 0' contour
of integration by the natural position of the complex branch cut
of jII in the cr' plane.

In the immediately preceding section we have given
a rule for the placement of branch cuts of discontinuity
functions, compatible with the homotopy condition on
paths of continuation between physical points. These
natural positions of the branch cuts de6ne the prin-
cipal sheet. which has the property that at any point

Adopting this rule, we make several comments con-
cerning the natural positions of the branch cuts of
M(s,o). Because (2.11) can be put in the form of a
fourth-order algebraic equation in 0-' with real coefIi-
cients if s is real, the natural cuts of M, (s,o') in the o'

plane must have mirror symmetry about the real axis,
as we have indicated in Fig. 10(b). For M(s+, o), the
lower half of the cut joining o. (s+) with o+(s+) is
in sheet I, the upper half being in sheet II, and vice
versa for M(s —,o). In both cases there is another cut
in the unphysical sheet connecting a=0 with

along some path which may have complex parts. The
situation in the s plane is similar and will not be de-
scribed in detail here. We mention only that if 0. is
large enough, there are also two physical regions in the
s plane just above the real axis. The lower region is
bounded by max(s&, (mt+ms)'} on the lower end and

by (o'~' —m, )' on the upper end. It is physical for the
process of Fig. 2(b), and should therefore be labeled A.
The higher region is for s) (o'~'+m, )s; it is labeled B,
since it is the physical region of the process indicated
in Fig. 1(b). The normal position of the branch cut of
M, (s,o') for o.') o.

~ is also arched; it intersects the real
s axis in the gap between A and B.

III. THE DISCONTINUITY EQUATIONS
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FzG. 11. Diagram associ-
ated with iteration of M,
with a two-particle normal
cut in coI ~

on this sheet the normal, real integrations over phase
space in the discontinuity formulas are not distorted.
In this section we derive the discontinuity equation
for the production amplitude M (s,o,ro) in the sub-
channel energy cr by an analytic continuation in s, for
fixed o, from the region (A) where the crossed process
(o. being the total energy) is physical, and where we

know what the discontinuity in cr is. In particular, we
want to answer the questions raised in Sec. I, regarding
the sign of the small imaginary part of cor in M(s, o', roi)
in (2.3).

In the specific example considered in the preceding
section, where the discontinuity equation in 0- is i ter-
ated with a pole in the co~ channel, we find that the
complex branch cut has its natural position in between
the two physical regions A and B in the s plane. The
discontinuity equation in cr in region A where
o')max{ (s'~'+ms)', (m4+m&)', oi} is given by (2.3);
in this region the contribution to the dispersion formula
for M(s, o) is on the real a' axis and is undistorted be-
cause the external momenta are real. Since, by defini-

tion, the discontinuity func tion on the principal sheet
is given by the normal form of the discontinuity equa-
tion, we can continue M, (s,o') in s to region B where
s) (o "~'+m&)' along any path in the principal sheet
and obtain the result that (2.3) is also valid there.
The sign of Hie for roi in the integrand of (2.3) is irn-

material even for s in B, since the pole in co~ that is
considered is not near the (physical) region of inte-
gration. This will become evident later, as we consider
other singularities in the co~ variable.

We now consider the singularities that are associated
with the normal two-particle contribution to the func-
tion M appearing on the right-hand side of (2.3). That
is, instead of a pole, we take M(s,o.',&or) in (2.3) to have
the form

1

BMOC

M(s, o', roi) =— M„,(s,o.',ror'), (3.1)
7f' ~ ] CO] COy

Here F(s,o',s) has a square-root branch point at s
=P'(s,o'), where P'(s, o') is given by (2.11) with ma2

replaced by co & ~ The integral is therefore singular when
P'(s, o.')= +1. Let the moving singularities in the o.'

plane be called o+'(s); their positions may be found by
solving (2.14) where, again, m8' is to be replaced by co&.

If roi is less than (ms+mr)', which is the Mi threshold
of the external lines of M(s, o',roi), and if s is greater
than s, , then as before we have x2) +1, and —1&xs & 1,
so the singularities o+'(s) are at conjugate points in the

complex o-' plane. The natural position of the cut
joining them intersects the real axis in the unphysical

gap between A and B.
When coi becomes equal to (ms+mr)', xx becomes

—1, and (2.15) becomes simply xi+=x~. Thus, a+'(s)
coincidence for all values of s. For s greater than the
three-particle threshold s,'= (ms+me+mr)', cr+'(s) are
greater than o-, . The image of the point P'(s, o.')=0 in
the o' plane is on the real axis between (s'I' —ms)' and
(s'12+ ms)', as before. It can be verified that the natural
position of the branch cut connecting o.~'(s) is a closed
loop, as shown approximately in Fig. 12. If s is above
the cut on the real axis, then the contour of integra-
tion in the dispersion representation (2.2) is distorted
downward, also shown in the figure. Otherwise, for
s—i&, the contour is dis torted upward. It is easy to see
that no singularity of M(s, o.) can be in the physical
region, since the contour cannot be pinched there.

Let us now fix 0-' at a point 0-0' in region A and
determine the natural branch cuts of M, (s,o') in the
s plane. It is not difficult. to obtain the result; we sketch
it in Fig. 13. The natural complex cut in the s plane
also forms a closed loop, enclosing the threshold

(o "~'+m&)' of the physical region B. The singularity
s '(o.'), given by

s '(o') =o'(1+ms/mr)+m, (ms+mr —me /mr),

is located in region B. It divides the physical region
into two sections: Bi where s)s '(o'), and B2 where
(o'~'+ms)'&s&s '(o'). The section B2 is inside the loop
cut.

W'e are now in a position to examine the continua-
tion of the discontinuity formula from the region A,
where it is originally given, to the region B corre-
sponding to the crossed reaction. For the discontinuity

where co& is the lowest two-particle threshold and M„,
is the discontinuity across the associated two-particle
branch cut on the real axis of the co~ plane. The diagram
for this case is shown in Fig. 11.Putting (3.1) in (2.3),
and ignoring the singularity structure of A(o', ro2), as
before, we have

o-' /'

(~s-m, )

IZAMP A-AA'

(r,
'

~~s+ rn, )'

M (s,o.') = g (s,o ') dsF (s,o ',s) . (3.2) FIG. 12. Principal sheet of 3f, (s,o.'} in the 0-'

plane for fixed s+) (ms+mz+m7)'.
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function evaluated at o.o', a continuation in s from A
to 3 that stays on the principal sheet of the discon-
tinuity function, as shown in Fig. 13, will leave the
form of the discontinuity at 0.0 unchanged; this is how
the principal sheet of M. (s,o') was delned. One can
follow the corresponding motion of the cuts in the 0'
plane as they move to the right; these cuts must avoid
the fixed point a.o, since the path of continuation in s
detours around the natural branch cuts in the s plane.

Since the contour of integration in the Eq. (3.2) for
the discontinuity function is undistorted, it lies along
the real interval L

—1, +1j in the z plane. In this
plane there is a pole and a branch cut belonging to
F(s,o,z). Th. e positions of these singularities depend
on the values of s and 0' and are guaranteed not to
distort the real contour of integration, as long as s and
0' stay on the principal sheet. However, we shall need
to know the positions of these singularities and associ-
ated cuts relative to the contour of integration, in
order to determine the sign of ~i& of the argument ~i
appearing in the discontinuity equation (2.3).

Let us consider the movement of the branch point
P'(s, o') in the z plane. The value of o' is fixed at o.o',

so we have pr&0 and Er) pr. Initially, s is in region
A, and so we have Eo)Po)0. Substituting moo~coi
=—(ms+mr)' into (2.10), we 6nd that P'(s, o') is real,
positive and greater than +1, when s is in A. The cut
in the co~ plane starting at ~~——co& maps into a cut in
the z plane, running from that value of P'(s, o.') to + oo,
and hence never passes near the interval L

—1, +1).
Consequently, sign of +i& on co~ is immaterial in this
region. Now we continue in s to the region B~, taking
a path" as shown in Fig. 14(a). With the help of the
formula for P'(s, o.'), i.e., (2.11) with mo ——ms+mr, we
find that the image of this path in the s plane is as
shown by the dashed line in Fig. 14(b). The segment
along the straight line between $(oo)"' moj' a—nd
L(oo')"'+nro$' is mapped onto the negative imaginary
s axis. The part just above the loop cut corresponds
to the section just below L

—1, 0] in the z plane, as it

0
$

A Ba $q~ B~
9J'1//r/rrr irr J I// J'~
st P

'

s
~ ~Cr~- rn~)

~~|7'+ m, )
*

FIG. 13. Principal sheet of N, (s,o') in the'
s plane for Axed a'=F0'.

"Strictly, the proper path in the s plane should avoid the
"moon" cut of Fig. 13, which arises on account of the pole itera-
tion; however, so far as the movement of the branch point P' in
the s plane is concerned, this is an unnecessary and irrelevant
complication and can be ignored.

Fio. 14. (a) A path
of continuation in s
in the principal sheet.
(b) The correspond-
ing path of the
branch point P'(s,o')
in the s plane.
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is required. The region Bi is therefore mapped onto
the region just below the negative real s axis between
P'(oo, ao') and —1, where

P'(~, ~o') —=—(~o' —rico'+mr')

&& [Lo
'—(m +m )'jL ' —(m —tn )'$] '~'.

On account of (2.6), we see that cot =+~ goes
over to z=+ ~ for po&0, whether s is in region A or
B, but it corresponds to z= —ioo for $(oo')"'—mo]'
(s(L(oo')"'+mr, g'. Hence, when s is continued to
region B~, the branch cut in the s plane runs from
P'(s+, o o') to +~, passing the real interval $—1, +1]
on its lower side. The integration of z in (3.2) should,
therefore, be d'hote the branch cut of F(s,o',z) in z. See
Fig. 15(a). Transformation to the cot variable by (2.6)
yields the result that in (2.3) the integration is to be
performed over a range of values of cvi which should
be evaluated above the two-particle branch cut of
M(s+, o'j, rot). See Fig. 15(b). That is, ooi should
be specified by cot+is. It is to be emphasized that this
is true no matter which sign of ~i~ is associated with
co (the external variable), so long as we have s+ie.
Furthermore, it can be shown by the same method that
for s—ie we must use M(s —,o'+, cot —) in (2.3).
These properties turn out to be crucial to the deriva-
tion of the discontinuity across s, as we shall show in
the next section.

Consider now the continuation to region 82 in the
interior of the loop by passing through an infinitesimal

gap between s~'(o.') made possible by letting ~, be
(ms+mr —e)'. A path leading from Bi to Bo, as indi-
cated by the dotted line in Fig. 14(a), then maps into
a path in the s plane starting from just below the
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P (s, a'')

X

N~ /gal

(0} (b)

~' ~t x

FgG. 15. Ranges of integration of .M, relative to the branch cut
of the integrand for the various cases.

negative real axis; it leads up to —1—c and then
retreats to lower values above the real axis mtholt
going around s= —1 point. Hence, for s in B2 on the
principal sheet, Figs. 15(a) and (b) are still applicable.
Throughout the whole region B, therefore, the dis-
continuity equation in 0-' should read

Ms(sa, o.'+, a&) =h(s+, o.'+)

=h(s+, o'+) d(gtA (o.' —,(vs)M (s+, o.'+, &or&)

dMiA (o.' —,cps)M~, (s&, a.'+, Ml&), (3.4)

the s plane the contour of integration from —1 to +1
must be deformed upward. Thus, to reach B2' in the
s plane by collapsing the loop from above, the branch
point P' in the s plane must go to the negative real
axis —~ (s(—1 by dragging the integration contour
along with it. The resultant picture is as shown in
Fig. 15(c). The impact on the discontinuity equation
(2.3) is that ~i must be integrated along a path" "that
loops around its threshold co& as is indicated in Fig.
15(d).

In the case of Fig. 15(b), for which s is in Bi, ~i is

integrated over the physical region from x to y. In
fact, as 0-' is reduced to the threshold 0-&, x and y ap-
proach each other, corresponding to the fact that the
two-particle phase space of the 0' channel vanishes
and the normal threshold is reached. In the case of
Fig. 15(d), however, the integration between x and y
has an extra anomalous piece. Equation (2.3) should
then be written as

M, (s&, o.'+, s))

X da&rA (o.' —,(us)M(s+, o.'+, (g,~), (3.3)

where h(s, o.') =zp(a')/p, p, , and x and y are physical
minimum and maximum values of co~ for a fixed total
energy s) (a'"~'+ms)' and a fixed subenergy a')o, .
The simplicity of the equation is a consequence of the
choice of natural position for the branch cut. The
price to be paid is that the integral formula for M(s, o-)

has complex parts.
Suppose we do not take the contour of integration

in Fig. 12 to be distorted by the complex natural cut,
but collapse the branch cut and take the contour to
be straight, lying just above the real axis (ignoring the
moon cut due to pole iteration) but below the col-
lapsed cut. This collapsed cut runs from a~'(s+) to
[(s+)'"—m, ]', which is a singular point as will be-
come clear later. I.et the section beneath this cut and
above the real axis be denoted by 82'. The correspond-
ing region in the s plane is reached by approaching the
real axis between ((a'+)'is+ms]' and s '(a'+) from
above by collapsing the loop cut in Fig. 13. Now, it is
clear from Figs. 14(a) and (b) that the interior of the
loop cut in the s plane maps onto the upper half 2'

plane under the transformation s=P'(s, a') for fixed
0.'&0.~. A continuation that distorts the natural cut and
thereby leads to the region that is originally on the
inside of the cut has the result that P' goes through the
interval L

—1, +1] on the real axis from below and
enters into the upper half-plane. This means that in

where M„, is the discontinuity of M(s, a',a») across the
two-particle unitarity cut in the co& channel, de6ned in
a way analogous to (2.3). Evidently, the complex part
of the contour integration in Fig. 12 is eliminated at
the expense of complicating the discontinuity equation.

As s+ approaches I (a'+)'is+ms]s, the branch point
P' pushes the contour of integration in the s plane to
—~. Thus, a singularity occurs at s= [(a'+)"'+ms]s;
this is a singularity of the second type. " If we fix the
branch cut along its natural position, then this singu-

larity can be reached only by continuation across the
cut, and is therefore not on the principal sheet.

If the amplitude A (a,~s) in (3.3) is not regarded as a
constant but has, in fact, a two-particle unitarity cut
in the r channel, one may question whether the inte-

grand A(o —)M(o.+) can be written equivalently as
A (o.+)M(o —). To show that they are equivalent, we

use the convention 5(a—)5(a+) = 1 and find that, in
the abbreviated notation where phase-space in.tegra-
tions over products of amplitudes are implied,

F(o —)—=A (o+)M(o —)—A (a )M(a+)—
= LA (o+)—A (o —)]M (o —)—A (a—)

X LM(.+)-M(.—)]=A(.—)F(.—).
This being an integral equation with an 2' kernel except
at the poles of A (o.), F (o.) vanishes everywhere except

'SV. V. Anisovich, A.. A. Ansel'm, and V. N. Gribov, Zh.
Eksperim. i Teor. Fiz. 42, 224 (1962) LEnglish transl. : Soviet
Phys. —JETP 1S, 159 (1962)].

'4 C. Kacser, Phys. Rev. 132, 2712 (1963).
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at certain isolated points; analyticity then requires
that it be identically zero.

Finally, we make some remarks regarding the situa-
tion where o/& is greater than (ms+mr)'. In this case
x~ is less than —1, so the solution @2+ is a hyperbola,
shown in Fig. 5(b). The associated singularities s+" (&r')

in the s plane are real if 0'& r&. The natural branch cut
joining s~" (o.') is as shown in Fig. 16(a). The value of
P" at which the cut turns complex can be determined
by solving (2.10) for E&(s,o'), which gives

s//(g /)

zrz/1
// + p (g/) QI

g //(s+ )

Es(s,o') =
g Ms~ p p&&[M4 4m 2(g 2 p 2p«2)$1/2

2(g s p sp«s)

(0) (b)

Pro. 16. Natural positions of the branch cuts of
M, in s and 0' planes for a&~) (ma+mr)s.

where M'=o/~ —mss —m7s. Defining Ps to be the positive
value of P" for which the square root is zero, i.e.,

p0 (0 I) +[1—(M4 4m, sm &2/4mssp &2)]1/2

we see that for real 0-')tT& and a suKciently small
positive value of o/, —(ms+mr)', Pe is in the interval

(0,1); clearly, Es(s,o') (and therefore s itself) is com-
plex if —Pp&P &Pp but is real if Ps&~~P"

~

~&1. Similar
behavior can be found for the branch cut in the o'

plane. A sketch of it is shown in Fig. 16(b). It is in-
teresting to note that when x~ is reduced to a value
less than —xs but greater than +1, i.e.,

(ms+a/, "')'(s (co~+ms[ms+m7+ (o/~ ms')—/mr],

the singularity o. "(s) moves to the left, goes counter-
clockwise around the threshold 0.

&, and then retreats to
the right again, staying just below the real axis. At
this point this singularity of M, can produce a pinch
singularity for the M(s, o.) amplitude in the physical
region. "The branch cut attached to it is in the un-

physical sheet, as is required by the homotopy condition.

IV. DISCONTINUITY EQUATIONS FOR THE
THREE-PARTICLE CHANNEL

In this section we want to derive the discontinuity
across the three-particle unitarity cut in the s channel.
The two-particle a-channel discontinuity equation in
the principal sheet is given by (3.3), which we rewrite
here in terms of angular integration as

M. (s+, o-+, o/)

=p(rr+) dQ, A (o.—,(u,)M(s+, o+, o/t~). (4.1)

This equation has the following two properties:
(a) In the physical regions the M function in the

integrand is evaluated above (or below) the o/t umtarity
cut according as s is above (or below) its unitarity cut,
independent of which side of the real axis co is on.

(b) M, (s,o,o&) can have no singularities in the
physical region of the co variable when s and 0 are
physical.

"P.V. Landshoff, Phys. Letters 3, 116 (1962).

The first property above has already been established
by the analysis made in the last section. W'e now give
arguments to establish the second. Referring to Fig.
1(b), let us consider the three-momentum vectors of
particles 3, 4, and 7 in the rest frame of the 0- channel.
Denote the angles between 3 and 4 by f, between 3
and 7 by 8, and between 4 and 7 by y. Clearly, the
variables o/, cot, and tee depend on the angles P, 8, and

x, respectively. If the polar axis is placed along the
direction of vector 7, then P can be expressed in terms
of 8, x and the azimuthal angle Ps —g„. In (4.1), the
angles of integration can be either 8, P//, or x, @„.Now,
the integral can have a singularity in the ~ variable
only if both A(o,o/s) and M(s, o,tet) in the integrand
contribute terms that depend on the angle of integra-
tion; otherwise, the integrand can be made independ-
ent of P and the integral is then no longer a function ce.

Since co2 is a momentum transfer variable of a four-line
amplitude, singularities of A (o, o/s) in the o/s channel
are always located at unphysical angles of x, whereas
M(s, o,~t) can have singularities at physical values of 8.
These singularities must pinch the contour of integra-
tion in order to yield a singularity of M. (s,o.,te) in the
or variable. It is clear from the angular relationship
between 1l, 8, and x that it is impossible to obtain
physical values of P from a combination of 8 and x
where y is unphysical. Hence, we find that in general
M. (s,o,a&) does not have discontinuities atphysical values
of o/, i.e., M, (s,o.,o/+)=M, (s,o,o&

—) for o& physical.
This is true for a in both sections of region 3 (see
Fig. 12).

On the basis of properties (a) and (b), the derivation
of the discontinuity equation in the s variable in the
physical region of a three-particle state is extremely
simple. To specify the subenergies of the M function
more completely, we need also the variable v, defined
to be (ks+ks)'. Although it satisfies the constraint

3

p=p mP+s /T o/)

we must independently specify whether it is above or
below its own unitarity cut. Thus, in abbreviated nota-
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tion, we have

M(s+, (r+, ca+, v+) —M (s+, 0.—,(u+, v+)
=A(o.—)M(s+, 0+, cu'+, v'+),

M(s+, o.—,~+, v+) M—(s+, 0.—,(u —,v+)
=A ((u )M—(s+, 0'+, co+, v'+),

M(s+, o.—,cq —,v+) —M(s+, 0.—,~—,v —)
=2 (v —)M(s+, 0'+, (v'+, v+).

Adding the expressions yields

M(s+ o.~+)—M(s+ 0,—)
= Tri (0; )M(s—+, 0.~+), (4.2)

where 0-, designates 0., ~, and v collectively, and T& is
the sum of the disconnected parts of the three-particle
amplitude. The over-all discontinuity equation (1.1)
derived by Stapp' on general grounds without using
unita, rity or Hermitian analyticity states that

M(s+, 0.,+)—M(s —,0,—)
=T(s , 0-,—,0.——)M(s+, (r +), (4.3)

where T(s, 0.;, 0- ) is the general three-in, three-out
scattering amplitude. Subtracting (4.2) from (4.3), we
have 6nally

M(s+, ,—)—M(s —, ,—)
= T,(s—, ,—, .'—)M(s+, +), (4.4)

where T~(s,o.;,0. ) represents the connected part of the
three-particle scattering amplitude. In a similar way
we can derive

M(s+, 0;+)—M(s —,0.,+)
=Tc(s+, ~;+, ~ +)M(s —,~ —) . (4.5)

Equations (4.4) and (4.5) are the discontinuity equa-
tions in the s variable across the three-particle unitarity
cut with the subenergy variables kept 6xed.

VI. CONCLUSION

Maximal analyticity is interpreted to mean that a
representation of the M function on the physical

sheet can be developed by starting with contributions
from Cauchy contours associated with discontinuities
across the various normal cuts (poles included), and
then introducing these contr'butions iteratively into
the formulas expressing the discontinuities. The physi-
cal sheet is bounded by the normal cuts together with
additional cuts that emerge from these as one increases
the effective external masses from zero. These addi-
tional cuts come from extra parts of the contours,
which run along the cuts of the discontinuity functions.
The cuts of the discontinuity functions are determined
by defining the function everywhere (i.e., on its prin-
cipal sheet) by means of the original integral formula,
with fixed (undistorted) contours. The M functions are
expressed to a certain "order" by. using the exact M
functions in the discontinuity formulas across the
various cuts, but including contributions from only
those cuts obtained by carrying the iteration scheme
to a certain order.

The procedure has been applied to the case of a two-
particle to three-particle production amplitude in cer-
tain lowest nontrivial orders. It has been verified that
the physical sheet defined in this way contains the
physical regions corresponding to various crossed re-
actions, and that the cuts do not prevent continuation
between the physical regions. The knowledge of the
analytic structure is then used to determine from
original discontinuity formulas, which give the simul-
taneous- discontinuities across all cuts, the simple
formulas for the discontinuities across the individual
cuts in the two-particle subenergies of the three-
particle channel and across the cut in the total energy.
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