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A general, rigorous, and extremely simple method of analyzing nucleon-nucleon and nucleon-antinucleon
total cross sections is presented. The method is valid for all energies and provides a simple link between the
experimental quantities of fundamental physical interest. It is particularly appropriate in the high-energy
region and, as an example, is applied to the Regge model. The results are derived by using the concept of
crossing and a weak form of Mandelstam analyticity, and depend upon the observation that the NN and
Ng total cross sections can be expressed in terms of a single spin-triplet NX —+ NX transition amplitude.
A basic ingredient is the experimental knowledge of a„-„or,equivalently, o-„„.A primary aim of this work is to
encourage the experimental measurement of these cross sections.

I. INTRODUCTION

'HE use of the Mandelstam representation in
strong-interaction physics has focused attention

on the importance of the concept of crossing, i.e., of
the interrelation between the various channels reached
by analytic continuation from the region of a given
process. In fact, it is probably true to say that (with
the exception of those cases in which direct channel
resonances dominate) almost all calculations in strong-
interaction physics, and in particular in Regge-type
models, either contain or evaluate as primary quantities
the scattering amplitudes in the t channel.

At the same time it is well known that the study of
nucleon-nucleon or nucleon-antinucleon scattering is
greatly complicated by the spin--,' nature of the particles
involved. Thus the scattering amplitude in each isotopic
spin state is found to depend on five independent scalar
functions of the energy and the angle of scattering.

The purpose of this paper is to point out a genera1,
rigorous, and extremely simple method of analyzing
ÃA' and ltd total cross sections. In this method we
take advantage of the observation in the first paragraph
and introduce a set of four experimental quantities,
linear combinations of f7», cr„„, 0.~„, and o.„-„, which

play a fundamental role because they are directly
related to a single t-channel scattering amplitude.

The principal observa, tion is that the total (un-
polarized) 1V1V or 1V1V cross sections in the s channel
can be expressed in terms of only ouse of the five
Ã1V ~1VN spin-transition amplitudes (fr through fs
in the notation of Ref. 1) in the l channel. This tran-
sition can take place with parity 8=&i and isospin
I=0, 1. Each of the suitably chosen linear combinations
of the four independent experimental cross sections
then corresponds to a single t-channel transition with
given I' and I. A study of the energy dependence of
these combinations should then prove extremely useful
in the analysis and testing of any theoretical model of
ÃX or lVlV scattering.

It is perhaps worth emphasizing that although we
illustrate the method by applying it to the (t channel)
Regge model, the basic results LEqs. (24)] are com-

pletely general, are valid at all energies, and depend
only on the optical theorem and a rather weak form of
Mandelstam analyticity.

The analysis discussed here requires an experimental
knowledge of the prs (or equivalently re) total cross
section. It is hoped that the simplicity and usefulness
of the method of analysis will stimulate a vigorous
experimental attack on this important physical
quantity.

In Sec. II, we go through the algebra leading to our
results. The reader who is solely interested in using the
proposed method of analysis can safely proceed to
Eq. (24).

In Sec. III, we illustrate the method briefly by
applying it to the Regge model.

II. DERIVATION OF RESULTS

Consider EX scattering in the s channel. %'e shall
use the usual Mandelstam variables

s =4(m'+ p'),
1=—2P'(I —cos8),

I=—2p'(1+cos8),

where p is the momentum in the center of mass of the
two nucleons. In terms of the laboratory system kinetic
energy 1, we have

s =4m'+ 2mT
and

p= (mT/2)'l'. (2)

Following the notation of Ref. 1, we denote by
, Ps the 6ve helicity amplitudes in the s channel.

With the optical theorem we can relate the total
unpolarized cross section to the imaginary parts of the
forward, purely elastic amplitude. For a given isospin I,
we have

*Work done under the auspices of the V. S. Atomic Energy
Commission.

' M. I.. Goldberger, M. T. Grisaru, S. W. Mac Dowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).

a»'= (2~lp) ImLptr(1=0)+/sr(1=0)$, (3)

as only pt and ps pertain to transitions in which neither
nucleon flips its spin.
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The next step is to use the well-known crossing
matrices' to express the s channel p; in terms of singlet
and triplet 1' transition amplitudes fr through fs of
the t channel. (Note that, in the notation of Ref. 1,
these would be fr, , g~, we omit the bars for con-

venience. ) The simplest way to do this is to introduce
as auxiliary quantities the five scalar amplitudes

Gr, , G~. From Eqs. (4.23) of Ref. 1, we obtain

@,'=2;,6;», (4)
where
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Also from Eqs. (2.9) and (4.24) of Ref. 1, we obtain

G r(s,u, t) = (—1);+rG r(s, t,u) . .

(Note that we are using the notation u instead of t of Ref. 1.) And from Eq. (4.27) of Ref. 1,

Gr(s, u, t) = t1 .,Brr'Gr(u, s. ,t), ,

where
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and

1
1

4

3'I
'g1 1)

6 4 —4 —1
2 0 0 1
0 2 2 —1

0 2 2 1
—1.

(9)

Interchanging t and u in Eq. (7) and then using Eq. (6), we obtain

G'(s, u, t) = (—1)'+r6 B"'G"(t,s,u)". (10)

Equation (10) relates the G functions of the s channel to the G functions of the t channel. Combining Eqs.
(10), (4), and (5), we obtain

where
4"=L(—1)'/4( )"'3B"'C'G"(t,s,u),
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Equation (11) gives the relation between the helicity amplitudes of the s channel and the G functions of the t
channel. Using the relations similar to Eq. (4.33) of Ref. 1 (written for the t channel), we relate the G functions
of the t channel to the f functions of the t channel. The result is

where
G,I'(t, s,u) =Dp fii',

t(u —s)

(13)

0 0 0

t(s+u) 0 0

0 0 0

0 t 0
t (s u) t—(s u) (t+—4nP)

4''(s+ u)

Combining Eqs. (13) and (14) with (11) and (12), we finally obtain the desired relation between the helicity
amplitudes of the s channel and the f functions of the t channel. The result is

( 1)IBII'
.1— E;,f, ',

(s)'I'(t+u) (s+u)
where

L4m'u —2s (t+u) ] )4m'u (s+u) +2s't]
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It is important to realize that a crossing relation of
the type of Eq. (15) is completely meaningless, unless
one is given a prescription for analytic continuation of
the f; from the t-channel region in which they are
defined to the s-channel region in which they are
needed. In our particular case this is a trivial matter
because the matrix D given in Eq. (14), which relates
the f; to the G functions )see Eq. (13)], is free of
branch-point singularities, and therefore the f functions
have the same analytic properties as the scalar
Mandelstam functions G;.

We now combine Eqs. (15) and (3) to obtain

oIIIII(s) = (—1)IBII' Imf, r'(t=0; s). (1/)
P(s)"'

CP=PG( 1)I'=+1—(18)

Furthermore, the partial-wave amplitudes fiiI con-
tributing to fs all have'

so that
J=I.&1,

P(—1)I= P( 1)~=P'=+1.— —(19)

Equations (18) and (19) show that both C and G are

s I. J. Muzinich, Phys. Revs 130, 1571 (1963),

Thus the total s-channel cross section depends only on

fs, one of the spin-triplet FE—+ EE transition ampli-
tudes. Because f, is a spin-triplet transition, the
quantum numbers characterizing the transition must
satisfy'
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redundant in describing the transition and that the"I parity" or signature (—1)~ is equivalent to P.
Hence the transition is completely characterized by
the four distinct sets of quantum numbers given by
P= ~1 and I'=0 or 1. We shall therefore define a set
of four functions

g (P,I', s) = P Im—f, (P, I'; t =0, s),
(P= &, I'=0 or 1). (20)

(The factor P is m—erely for the sake of convenience. )
Substituting Eq. (20) in Eq. (17), we obtain

n~x'(s) = (—1)'+' 2 B"'Pg(P,I' s), (21)
p(s)'" I' =0,1

P =&1

from which we have explicitly

n, „(s)= Lg(+, 0; s) —
g (—,0; s)

(s)'" —g(—,1;s)+g(+, 1;s)] (22a)

2'
o „„(s)= I g (+, 0; s) —

g (—,0; s)
p(s)"'

+g( —,1; s) —g(+, 1;s)]. (22b)

lt is now a simple matter to obtain o-~„and O-„-„or,
equivalently, 0-„„-. For example, the contribution of a
transition determined by g(P,I', s) to o.»(s) is

L2~/p(s)"']Pg(P, I'; s) .

By application of the line-reversal argument of Sharp
and Wagner, ' the contribution of this transition to
O.„-„ is obtained by using the charge-conjugation
operator, so that the contribution to o-„-„is

I 2~/p(s)'t']g (P,I', s),

because here we have C=P. Ke get therefore

experimental quantities, namely,

g(+, 0; )=Lp()" /8 ]I -+ .-+ .—.+ .--],
g(—,o;s)=Lp(s)"/8~]L ~- ~.-+~a.+~a-]
g(—,1; )=Lp()"/8 ]L—-+ .-+;.—.--] (24)

g(+ 1's)=[p(s)"/8~PL~» n"+—n» ~p.].
Once the energy dependence of the functions g (P,I; s)

is known, these functions can be analyzed in terms of
any specific model under consideration. The contri-
bution of any model to g(P,I; s) can be obtained
directly if it is expressed in terms of the quantum
numbers of the t channel, or by an application of the
known crossing matrices.

III. AN EXAMPLE: APPLICATION
TO THE REGGE MODEL

We illustrate here the use of Eqs. (24) in the Regge
model. As we have already mentioned, the f functions
satisfy a Mandelstam representation, and therefore,
the Froissart and Gribov analytic continuation can be
de6ned on their partial waves. Here we shall, of course,
be interested only in fs From a.n equation similar to
(4.25b) of Ref. 1

I
written for the t channel and ab-

sorbing a factor like (P/2P) into frit], we obtain

fs(t; s) = 2 (2I+1)f»'(t)P~(z)
J=0

where z= —1—2s/(t —4m'). Because the signature is
determined by parity, here the sum over J runs over
even or odd values of J, depending on whether the
parity of the state under consideration is even or odd.
By application of the Sommerfeld-Watson transfor-
mation, one obtains for each Regge pole a contribution
of the form

f, (t,s)=P(t)(2n+1)P (—z)(1+Pe ' )/sin7rn. (26)

n.—.(s) = 2'
g(+, 0; s)+g( —,0; s)

p( )"'
+g(—,1;s)+g(+, 1;s)], (23a)

e'-P (—z) =P (z) (27)

We write P(t)=B(t)e', where B(t) is the modified
residue and —as usual —B(t) is real below the threshold
of the t channel. We have also, to a good approximation, '

o „„=n„,(s) =--I g(+, 0; s)+g( —,0; s)
p( )'"

—g(—,1; s) —g(+, 1;s)]. (23b)

It should be remembered that Eqs. (22) and (23) are
generally valid and are applicable at all energies. They
may be particularly useful, however, in the high-energy
region in which, as a rule, the theoretical emphasis is
on the t-channel amplitudes of definite isospin and
parity.

The inversion of Eqs. (22) and (23) provides a set
of four fundamental functions directly related to four

4 D. H. Sharp and W. G. Wagner, Phys. Rev. 128, 2899 (1962).

Further, at 5= 0, z=1+T/m. Thus Eq. (26) b.ecomes

fs(/=0, s)=B(2n+1)P (1+T/m)(1+Pe ' )/
sinzn, (28)

where e and 8 are evaluated at t=0. Combining Eq.
(28) with Eq. (20) of the previous section, we obtain
the contribution of a Regge pole belonging to a given
family of trajectories with quantum numbers P and
I' to g(P,I'), as

g(P,I'; s) =Bp,r. (2 p, ny1r)P p rr(1+T/m). (29)

4 J3atemurt 3lctuuscrt'pt Project, edited by H. Erdelyi (McGraw-
Hill Book Company, Inc. , New York, 1953), Vol. I, pp. 140 and
164.
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If several Regge poles with the same quantum numbers
are considered, and if cuts and background integrals
are included, then the g(P,I; s) represent the total
contribution of the Regge family with the given I' and
I. It is only in the high energy region that Eq. (29)
might be expected to be adequate with just the highest
ranking trajectory included.

1S

The correspondence with the usual trajectory families

g(+, 0) ~ Pomeranchuk family,

g(—,0) ~ Io family,

g(—,1)~ p family,

g(+, 1) ~ It.'family.

Note that of the twelve possible sets of trajectory
quantum numbers for the EX system, ' only the above
four contribute to fs and therefore to the total s-channel
cross sections. The E trajectory' has not usually been

included in Regge-pole analyses, as there is no knov n
resonance with its quantum number, I (J~G) = 1(J„,„+ ).
However, in a systematic analysis it should be included,
and Eqs. (24) would indicate whether its effect is
negligible or not.

IV. CONCLUSION

The use of Eqs. (24) offers a simple and systematic
scheme for analyzing theoretical models in terms of
experimental total cross sections. The functions

g (P,I; s), constructed from the experimental cross
sections, have a fundamental physical significance
because they are directly related to one of the
le ~SX spin-triplet amplitudes in a given state of
parity P and isospin I.

It is hoped that the above-mentioned results will

act as a spur toward the measurement of the pe or,
equivalently, rtp total cross sections.
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Elastic Scattering of Positive Pions by Protons in the
Energy Range SOO—1600 MeV*
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Differential cross sections for the elastic scattering of positive pi mesons by protons were measured at the
Berkeley Bevatron at pion laboratory kinetic energies between 500 and 1600 MeV. Fifty scintillation
counters and a matrix coincidence system were used to identify incoming pions and detect the recoil proton
and pion companions. Results were fitted with a power series in the cosine of the center-of-mass scattering
angle, and total elastic cross sections were obtained by integrating under the Q.tted curves. The coe%cients
of the cosine series are displayed, plotted versus the laboratory kinetic energy of the pion. The most striking
features of these curves are the large positive value of the coeKcient of cos'0*, and the large negative value of
the coeScient of cos'0*, both of which maximize in the vicinity of the 1350-MeV peak in the total cross
section. These results indicate that the most predominant state contributing to the scattering at the 1350-
MeV peak has total angular momentum J=-,', since the coefficients for terms above cos'0* are negligible

at this energy. One possible explanation is that the 1350-MeV peak is the result of an P7/2 resonance lying
on the same Regge-pole trajectory as the ($,~) resonance near 195 MeV.

I. INTRODUCTION

'HIS experiment constitutes a portion of an ex-
tensive study of the phenomenology of the m —S

interaction in the energy region above the well-known

(z, z) resonance occurring at the pion kinetic energy of

*Work done under the auspices of the U. S. Atomic Energy
Commission.

t Present address: Princeton University, Princeton, New Jersey.
f Present address: University of Michigan, Ann Arbor

Michigan.
)Present address: University oi Utah, Salt Lake City, Utah.

195 MeV (= 1236-MeV total c.m. energy for the Ir —X
system). The features of outstanding interest are indi-

cated by the cross-section variations displayed in Fig. 1,
based on measurements by several experimental groups. '

' See for example: H. C. Burrowes, D. O. Caldwell, D. H.
Frisch, D. A. Hill, D. M. Ritson, R. A. Schulter, and M. A.
Wahlig, Phys. Rev. Letters 2, 119 (1959); T. J. Devlin, B. J.
Moyer, and V. Perez-Mendez, Phys. Rev. 125, 690 (1962);
J. C. Brisson, J. F. Detoeuf, P. Falk-Vairant, L Van Rossum,
and G. Valladas, Nuovo Cimento 19, 210 (1961};M. J. Longo,
J. A. Helland, W. N. Hess, B. J. Mover, and V. Perez-Mendez,
Phys. Rev. Letters 5, 568 (1959).


