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Low-Energy Neutron-Neutron Scattering Parameters*
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A precise evaluation of the spectrum in the reaction w +D —& 2n+y, including Gnal-state interactions
is presented with a view of determining the neutron-neutron scattering length. Approximations of previous
calculations are examined and avoided where their eBect is found to be signihcant. SuKciently accurate
experiments should be capable of distinguishing this parameter to an error of 2 F.

I. INTRODUCTION

HE determination of the low-energy neutron-
neutron scattering parameters is of interest for

two reasons. First, it has been suggested that the differ-
ence between these parameters for rt —rt, n —p, and p —p
scattering may be due to a breakdown of charge inde-
pendence of nuclear forces caused by the m+ —m mass
difference, ' and a future theory of the two-nucleon
potential should account for these diRerences. Second,
in any process where two neutrons appear in the final
state these parameters are needed to evaluate final- or
initial-state interactions.

In this article we shall elaborate on a method for
determining these parameters, specifically the n —m

scattering length and effective range, discussed by
McVoy. ' The method involves the study of the energy
and angle distribution in the process:

sr=+D —+ rt+n+p,

where the x is captured from an S state of the deuteron.
The shape of the energy-angle spectrum of the two final
neutrons shows a marked sensitivity to the assumed
scattering length.

The reason for re-examining the calculation of Ref. 2
is to check the effect of certain approximations made
therein. This has relevance as current experimental
techniques permit the determination of the scattering
length to an accuracy of 1 F.'

The difference between this work and that of Ref. 2
may be summarized by the following points:

(1) The validity of the impulse approximation for
process (1) is checked by evaluating the next-order
corrections as given by Chew and Goldberger. 4

(2) instead of using a Hulthen S-state and an asymp-
totic D-state wave function for the deuteron, a wave
function obtained by a numerical solution of the deu-
teron problem was used. '

(3) The final-state interaction between the two
neutrons was put in via the Jacob-Omnes-Mahoux
method, ' where no recourse had to be made to a zero-
range approximation. Likewise no model was needed for
the scattering-state wave function of the two neutrons.

(4) A check on the magnitude of the enhancement
due to I'-wave neutron-neutron scattering was made.

The other approximations used in Ref. 2 were shown
to give negligible corrections and were not further
examined.

Sections II, III, and the Appendix are devoted to the
mathematical formulation of the problem, and the
results are presented and discussed in Sec. IV.

A word should be added about a more general question
of the validity of the impulse approximation for this
problem. In our approximation we have considered
multiple scatterings of the pion from either proton or
neutron, as well as proton-neutron scattering inside the
deuteron. However, we have not taken into account
interactions of the pion or photon with virtual pion
currents inside the deuteron. The only motivation we
give for the neglect of these terms is our ignorance of
reliable methods of calculating them. As shall be shown,
the eRect of the 6rst-order corrections to the impulse
approximation turn out to have negligible eRect on the
shape of the spectra studied; it may be hoped that like-
wise these incalculable terms will not contribute size-
ably. It should be kept in mind that although some of
these corrections, both the ones discussed above and
those not calculated, may make small diRerences in the
total rates, as we are interested only in spectral
shapes, and normalize all our curves to have a de6nite
value at certain points, many of these corrections
become totally insigni6cant. This point shall be dis-
cussed again in Sec. IV.

II. THE IMPULSE APPROXIMATION AND
FIRST-ORDER CORRECTIONS

For convenience we shall write down the formulas of
Ref. 4 for the impulse approximation. If we consider a
scatterer composed of X particles, interacting through a
potential U; and an incident particle which interacts
with the kth particle of the scatterer by a potential VI„

~ Work supported by the U. S. Atomic Energy Commission.
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4 G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (2952).
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the total Hamiltonian has the form:

with

H=Hp+V,

Bp= K+U,
'

(2a)

(2b)

FIG. 2. Multiple scat-
tering correction.

where k is the total kinetic energy and

N

V=+ Ve. (3)
position space wave functions.

Let cvk'+& be a two-particle wave operator involving
the incident and kth particle of the scatterer, co+ satisfies
the equation:

to, &+'=1+(E—K—Vp+irt) 'Ve,

top' '=1+Vs(E K—Vg,—ir—t) '.

N(q) = N(q) jp(qr)rdr,

w(r)j &(qr)rdr,

We may define the two-particle scattering operator

~, ~+i —y,„,(+&

4' '=~k' '~k.

with the normalization

(I'(r)+w'(r))dr= 1.

With the aid of the tk's and cok's we may express the
total scattering operator as

2 (+)=P 4(+)y g („„,(-l 1)PU „„(+)j
k k, k'

The above wave function is used in the first-order
evaluation with st (r) and w(r) taken from Ref. 5. As the
corrections are expected to be small compared to the
first-order terms, a simpler wave function was used to
evaluate them, namely, the Hulthen' function for the

+ p 4(—l (to„(+) 1) (6) S-state, and the D-state contribution was neglected. The
krak' Hulthen function in position space is

w(q)(3e, qtr, q
v, -'"'(q) = N(q)+

Q8 4 q'
Xm1 V 7

The first term of (6) represents the usual impulse
approximation; the second term gives the correction due
to the diminution of the incident wave as it crosses the
scatterer and of the inhuence of the binding potential U
on the individual two-body scatterings. The last term
represents the multiple scattering corrections.

Before proceeding with the examination of each of the
terms of (6) for process (1) let us establish the notation
used. Units are such that A=c=1. The deuteron wave
function in momentum space is written as:

with

st(r) = (2nP(n+P)) t (e ' e tt") (—P—n) (10)

n=0.3274m and P=1.54m .

The two-body scattering amplitudes used were for the
processes:

7r +P~ st+a,
w++E ~~++X.

(11a)

(11b)

As in Ref. 2 the amplitude for (11a) for a relative
proton-pion momentum q going to a neutron of momen-
tum qf is taken as the low-energy limit of the amplitude
due to Chew, Goldberger, Low, and Nambu, '

e T e(tl's, tlf) -i(n e) s (12)
where X~ is the product of two Pauli spinors in a total
spin-one state, with magnetic quantum number m. U(q)
and w(q) are the Bessel transforms of the S and D

(In the corrections we have neglected processes going
via sp+I ~ st+a which go to zero for zero-incident
momentum and are negligible at the energies due to the
motion of the particles inside the deuteron. )

For (11b) we take the effective range approximation
for x —X scattering. ' The scattering matrix for a rela-

FIG. 1. First-order
impulse approxima-
tion. -n& -n=

I

' L. Hulthdn and M. Sugawara, in Hundbuch de Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39, p. 5.

~ G. F. Cheer, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).' See, for example, J.Hamilton, The Theory of Elemerttary Partt'
ctes (Oxford University Press, New York, 1959).
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FiG. g impulse assumption
corrections.

(c) (0')

of momentum y and polarizentum and final- respectively, and photon of momtive nucleon-pion relative momentum q an na - re
nucleon momentum qf is

m~+m. a
T,j(q.;,qi) = 8.;j,

nz~m 4X2

a, = —0.11/m, u, =0.17/m .

(13)

y, p&"&(—n~)T; &(—n2, ni).

A. First-Order Impulse Approximation

This term is represented in ig.i. 1 and may be
written as

(14)
The kinematics of the problem are suc..th that we have

two independent variables. We shall use either Q, rela-
d 8 the angle between Q andtive e—e momentum, an

entum of one o t ethe photon direction, or y, the momentum
d & its angle with the photon direction. We

shall also use Eo=Q'/2m~, Ji=P'/ m&, an

I th bsequent discussion it will be useful to ma en esu
rse to a diagramatic presentation o. the erecourse o a

dicates eitherE . (6). In these diagrams a sohd line indicq. ~

an external nucleon on nucleon-ene gyr denominator; a
dashed line indicates an external pion or pion-energy

operator, and an open circle the e—p binding potential
U. We shall evaluate the transition element for process

for a zero relative x —D momentum, wi

neutrons of momenta n~, n2, with spin indices n, P,

(The Pauli principle for the two neutrotrons shall be taken
later b projecting out even angular

momentum waves for singlet states, an o wav
the triplet case.)

B. Multiple Scattering Term

Neglecting n'+m ~ x +y the y0 onl contribution
comes from Fig. 2 and is

T; *(—q; ni)T, p(q; n )
~, , (m) ( q)

( '—q')/2 —(q — )/2 -+ ~

C. Impulse Assumption Errors

These contributions come from th
~ ~

he second term in
d d to the commutators each contri ution gives

rise to two diagrams. We take the diGerence o ig .
and 3(b) and of 3(c) and 3(d). From Fig. 3(a) we have

T "*(—I—n, n, )(—1—n„m;n2, P~U~ —q—,—1 e;q, j)ma 2y
dqdl q;,'"'&(—q)

n 2/2m +~+ (I+ ) /n2q2~ mP/2m, m— —

T'-(—q; —q —1)

(q+ 1)'/2mN+ P/2m q'/2m~+iq—
(16)
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From 3(b) we have

dqdl (p;, '"' (—«) (—nl, n; nl, p I
U

I q, i; —q, j)

T &*(—I—n&, ni)T„(—nl, —I—nl)

I (I+n&)'/2m&+ P/2m. —n2/2m& —ic5I ni'/2m~+ ~—(I+nl) '/2m~ P/—2m +ig m—5

Figure 3(c) contributes

T„.~*(—I—n, ; n, )
dqdlq "c"'(—q)

nil/2m~+ co P/2m— (I+n—,) '/2 m~ m— ic—

T;.(q, « —I)
X(—I—nl, m;nl, ply/I q i;q —l,n), (»)

(q —I) '/2m~+ P/2m. —q'/2m ~+in
and from 3(d)

T &*(—I—nl, ni)T s(1+nl,.nl)
dqdlq "c"'(—q)

/nil/2m~+co (I+n—)'l/2 ~m+P/2 „m—m ic5—gn&'/2m~ (I+—nl)'/2m~+V/2m +i&5

X(—I—nl, m; I+n, , nI UI qii—; qij), (19)

where (qi,ni, ql,nl
I
U

I ql, col,' q,cc„) denotes the matrix
element of the potential between nucleons on momenta

q&, q2 and spin indices 0,&, o,2, ~ respectively.
Ke shall make one further approximation. ln the

evaluation of the correction terms, which are small corn-
pared to the first-order amplitude (as shall be verified by
the subsequent calculation), we shall neglect terins of
order m /m~. This simplification permits an evaluation
of these corrections without a recourse to an explicit
model for the potential. Then, as shall be shown in the
Appendix, Eqs. (16) and (17) cancel and (18) minus
(19) are of order m /mN and may consistently be
dropped. The only correction left is (15).

Using the above expressions and some of the evalua-
tions presented in the Appendix the transition amplitude

may be written as

( W(nl) 3lri'nlcll'nl
0!I EFI E I S2

+8 nl'
cl&'ll&

I I
xi")

(2~P(~+0))"' 1—~l(~&
I
~i'I & ")

( )

e2 m2
arc tan ——arc tan —. (20)

Q

Expression (20) is further decomposed into its partial
waves (even for triplet n —n, odd for singlet) and into
the two-photon polarization directions. Suppressing
spinor and polarization indices

T(Qi cos8q) =P(2l+1)Tc(Q; cd)Pc(coseo), (21)

where we have put in the redundant variable co in the
expression for the partial-wave amplitudes for future
convenience. The summation ranges over odd or even l.

Tc(Q'; ~) expL —gc(Q') sinbc(Q')5
X dQ', (22)

where

1
ac(Q) =—&

~(Q)
dQ1

I
(23)

In (22) the Tc(Q'; cv) are evaluated keeping &o fixed.
As in the process considered the pion is captured at rest,
thus co and Q are related; keeping ~ and varying Q
corresponds to evaluating the matrix element for inci-
dent pions of 6nite momenta, or in the x —D center-of-
mass system this corresponds to letting the initial
energy vary.

For /=0, 1 it turns out that Tc(Q; &o) has a slow
variation as a function of Q and we may take it out of

III. FINAL-STATE INTERACTIONS

The enhancement of process (1) due to the strong
low-energy scattering of the two neutrons in the final
state will be inserted into the matrix element by a
method discussed in Ref. 6. If 8c(Q) is the scattering
phase shift for two neutrons of relative momentum Q,
the enhanced amplitude becomes

-pI g (Q)+'~ (Q)5
Tc,-h(Q; ~) = Tc(Q; ~)+
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small Q and grows to 1%—2% for Q= 50 MeV/c. Thus
in the subsequent calculations P-wave enhancements
were not considered.

The expression for the spectrum becomes

&= (I Ts "(Q) I'+
I Ts ' (Q) I')e'go&&&Q, (28)

where the superscripts indicate the two-photon polari-
zations. 0 is the phase space which is proportional to
either

I5 20
Q (MeV/c )

I"zo. 4. ¹utron-neutron relative energy spectrum.

40

or

dEod(coseo)
(1+co/2rrr~)

(29)

the integrand and approximate (22) by'

2'r (Q) g
—Z"r

(Q)egg�

(o)++g (o) (24)

dEd(cosf) .
(1+P/rm~+P cosP/rm~)

IV. DISCUSSION OF RESULTS

Q cotbp(Q) = 1/a+ ,'Q'r. - (25)

A generalized form due to Noyes, "derived from a dis-
persion calculation taking into account the one-pion
exchange cut, was also examined.

Q cotb (Q) = 1/a+Q'r/2+ cQ4/(1+dQ') . (26)

As we shall not be interested in absolute rates but
only in spectrum shapes normalized to a definite value
at some point, the calculation using the phase shifts (25)
and (26) diGered absolutely insignificantly. Thus, for
simplicity we employed (25) in most of the numerical
work. From (25) we find

( ((1+2r/a) ' +rs1)')
!exp(2gs(Q)) =

I
Q'+

r' )

( ((1+2r/a)'" —1)')
xI Q'+ (27)

r2

where we have dropped the photon-energy variable.
The error caused by this assumption is less than 0.5% in
the range of Q values considered.

We now discuss the forms of br(Q) investigated. For
the 5-state scattering we are interested in the scattering
length and effective range parameters. The effective
range expansion is

Restricting ourselves to photon energies near the
maximum we have seen that this process goes almost
entirely to an S state of the two final neutrons. Thus
dX/dEodQ@ is independent of eo. The results for several
values of the parameters are presented in Figs. 4 and 5.
From Fig. 4 we see that the determination of the energy
of the maximum value of the spectrum may serve to
indicate the scattering length. However, from Fig. 5 we
see that this determination is not unambiguous as
increasing the effective range may bring the spectrum
to coincide with one for a higher scattering length and
smaller effective range. If we restrict ourselves to
effective ranges less than 3.5 F this method would yield
the scattering length to an accuracy of 1 F. To deter-
mine both parameters one would have to go to larger Q
values where effects would make this calculation
unreliable.

For comparison with Ref. 2, we have plotted the rates
as a function of E and P (Figs. 6 and 7). Using the
results of Ref. 2 would give a scattering length 1—2 F
smaller than those obtained using this calculation. Al-

though the multiple scattering corrections discussed

I.O

Although we expect the S wave to dominate the
scattering for small energies, in connection with point 4
of the Introduction, the P-wave triplet enhancement
was computed. The P-wave phase shifts were taken
from a semiphenomenological fit to the p —p date, with
the electromagnetic correction lef t out. "

The ratio of P to S-wave enhancement is-0.2% for

0.9

Cr
IJJ"a

Ol

0.8

0.7 . .

l8F; r=l.5
I8Fi r~5.0
l9F& r~L5

'0 J. Jackson, in Dispersion Relations, edited by G. R. Screaton
(Oliver and Boyd, Ltd. , Edinburgh, 1961)."H. P. Noyes, Phys. Rev. 130, 2025 {1963).

"H. P. Noyes (private communication).

f

5 6 7 8 9 IO I I

Q (MeV/c)

I I I

l2 l5 l4 l5

Fz(;. 5. Neutron-neutron relative energy spectrum near maximum.
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1'l

—P/2m, 7 (l'/2m )LM ter
(A3)

r2) is the

the

e — otential andl (") ~

. The contri u-
l.

T

u(q)

22 —')/2m ii
—(q —n&) '/2m —ie(B2 gm—~— —Il 2 he differe

""e"' " "l'(ri)f(r2)dqdldridr~e ' i'"e" '~
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