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Difkrential cross sections are calculated for the elastic scattering of heavy nuclei by heavy nuclei and the
results are compared with experiment. The long-range part of the nucleus-nucleus interaction is assumed
to be representable by a two-body potential, and the attempt is made to calculate the latter in terms of the
experimentally determined nucleon-nucleus optical-model potential extrapolated to negative energies and an
adjustable reduced width parameter which determines the probability of Qnding individual nucleons at the
surface of each nucleus. The short-range part of the nucleus-nucleus interaction is represented schematically
by a complex potential or an ingoing wave boundary condition, the justi6cation for which as a representation
of the optical-model potential is given below. Reasonable agreement with experiment is obtained for the
experimental data considered, i.e., those for C'~0', N'~N', and C"—N" if the average-reduced-width
parameter equal to about one-fifth the corresponding single-particle value is employed.

I. INTRODUCTION

'HE inherent complexities in the interaction of one
heavy nucleus with another due to the many

particles involved, as well as lack of precise knowledge
of the interparticle forces present formidable obstacles
to the complete theoretical investigation of the elastic
scattering.

Various simplified models have been employed in the
literature. In the 6rst attempt, Reynolds and Zucker'
analyzed their N"—N" data in terms of the so-called
"sharp cuto6 model" which had been developed by
Blair' for the analysis of O.-particle scattering. This
procedure, recognizing that a major part of the scatter-
ing arises from the "shadow scattering" caused by
strong absorption for close approach of the heavy
nuclei, assumes that in the partial-wave expansion of
the Coulomb amplitude, all partial waves from L=O
up to a critical value L,„are completely absorbed and
those partial waves corresponding to larger L are un-
modified. The distance of closest approach for a classical
particle of angular momentum L, fi is then assumed
to determine the nuclear radius. Reynolds and Zucker's
analysis resulted in a good representation of experi-
mental data employing a nuclear radius of 1.66&(A'~' F,
somewhat larger than might have been expected.
Porter' analyzed the N"—N" scattering by means of
an optical potential with the shape suggested by Woods
and Saxon for nucleon-nucleus scattering, the param-
eters being adjusted to fit experiment. A similar analysis
of their extensive C"—N" scattering data has recently
been carried Out by Kuehner and Almqvist. '
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Conference on Reactions Between Complex cVnclei, edited by A.

In the work quoted above as well as in other available
treatments the nucleus-nucleus interaction is considered
almost entirely phenomenologically. The elastic scatter-
ing data combined with other evidence concerning the
approximate magnitude of nuclear radii form the only
guides in arriving at the phenomenological models. In
the work reported below an attempt is made to correlate
the nucleus-nucleus elastic scattering data with nucleon-
nucleus elastic scattering information by deriving from
the latter an effective long-range nucleus-nucleus
interaction potential and to employ this potential as a
guide in the nucleus-nucleus scattering analysis. The
short-range nucleus-nucleus interaction is, on the other
hand, treated phenomenologically. In view of the
desirability of comparing any theoretical estimate of
long-range nucleus-nucleus interactions as directly as
possible with corresponding elastic scattering data one
of the main objectives of the present work was to
investigate how much information on the long-range
part of the nucleus-nucleus interaction can be obtained
from the elastic scattering and to what extent the
unknown short-range part has to be brought in.

A long-range two-body interaction potential is de-
rived making use of the experimental nucleon-nucleus
separation energies and the nucleon-nucleus elastic
scattering optical-model potential determined from the
elastic scattering experiments of protons on various
nuclei. ' For each nucleus there is introduced into the
calculation a free parameter which is related to the
average value of one of the bound protons' or neutrons'
wave functions at the nuclear surface. The parameter
is adjusted to give the best fit to the experimental
nucleus-nucleus elastic scattering angular distribution.
This adjustment amounts to a determination of the
average reduced width of the transferred particles in
the emitting and receiving nuclei. It would be un-
realistic to suppose that a two-body potential could
really be taken seriously for separation distances corre-

Ghiorso, R. M. Diamond, and H. E. Conzett (University of Cali-
fornia Press, Berkeley, California, 1963).

~The authors wish to thank Professor G. Breit for suggesting
the approach outlined below.
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nucleus-nucleus radial wave functions, as
defined in Eq. (16).

/, L nucleon orbital angular momenta relative to
emitter and receiver nuclei, respectively.

R center-to-center distance of the two complex
nuclei.

&E(R) change in the energy eigenvalue of the two

complex nuclei which vanishes as R —+ ~.
undistorted and distorted many-body wave
functions describing the two-nucleus system.
undistorted and distorted single-nucleon
wave functions.

c, ( ),c„( ) nucleon wave function normalization param-
eters, de6ned in Eq. (3); having dimensions
of (length) 'ts. Subscripts s and p denote
angular momenta 0 and 1 with respect to the
emitter nucleus.

& = (2m ~z, „«&(t'I')»
the mass of a nucleon, reduced mass of the
nucleus-nucleus system, respectively.

AL, ',Al." parameters describing distortion of nucleon
wave functions introduced in Eq. (5).

V, 'U, V nucleon-nucleus, nucleus-nucleus, and aux-
iliary shell-Inodel potentials as defined in
Eqs. (Sa), (15), and (19).

Vo,Ro,a nucleon-nucleus optical parameters obtained
from experimental elastic scattering data.

'JJt, ' homogeneous logarithmic derivative of radial
wave function defined below Eq. (9).
single nucleon energy shifts of individual s
and p nucleons in presence of second nucleus.

EI. at, +ibt, nuclear part of co——mplex nucleus-nucleus
phase shift.

r,r' nucleon radial coordinate relative to the
center of the emitter and receiver nuclei.
reduced width and single-body reduced-width
parameters defined in Eq. (18). Their units
are (length)'.

g(o) +

lt, (o) it

(0) n (0
Is

m)p,

P)P~b

sponding to overlap of the nuclear matter. For such

distances, however, the interaction of the two nuclei is
dominated by the strong absorption and if it is assumed
that this part of the interaction can be represented
schematically by complex two-body potentials or
boundary conditions, then it can be shown under
certain conditions that the resulting cross section is
very insensitive to the assumed form of that part of
the interaction.

In Sec. II are outlined the theory and assumptions
involved in the calculation of the potential tails for the
N"—N'4 N'4 —C" and C"—0" systems; in Sec. III
a comparison is made with experiment.

A list of the most frequently used symbols is given
below.

II. CALCULATIONS

The basic ideas for the calculation of tile loilg-%ange
potential tail, suggested to the authors by Professor
G. Breit, are as follows. In an adiabatic description of
the process, when two complex nuclei are so far apart
that the tails of the individual nucleon wave functions
from one nucleus penetrate the other only slightly, a
small cha~ge in the total energy of the system takes
place, which according to Born and Oppenheimer may
be considered as a contribution to the potential energy
between the two nuclei. The change dE, in the total
internal energy of the system, from that at infinite
nuclear separation is then given by'

t3E= (@&"H'+)/(@«' +)
where II' is the many-body interaction energy between
the two nuclei and 0' and +("are the exact many-body
distorted and undistorted wave functions of the system
respectively. This total change in the energy is a func-
tion of the internuclear separation R. In the adiabatic
approximation the motions of the individual nucleons
are supposed to be fast compared to the motion of the
centers of the two nuclei, and the problem is thereby
reduced to the consideration of the motion of the
nucleons about two fixed-force centers. For each inter-
nuclear separation R, hE is calculated by means of
Eq. (1) and the resulting function of R is taken as a
nucleus-nucleus potential energy function in a two-body
Schrodinger equation in much the same spirit as that
of the Born-Oppenheimer approximation. Since H is
the interaction between the nucleons of one nucleus
with those of the other, the integral in the numerator
of Eq. (1) involves the tail of the nuclear wave function
of the first nucleus in the region where it overlaps the
second, and vice versa. For large internuclear separa-
tions and large distances from the center of a given
nucleus, the density of nuclear matter is small and
consequently the nuclear wave function in this part of
space is approximated by the product of the tails of the
individual nucleon wave functions, the coupling be-
tween them being considered to be negligibly small. On
account of the general connection between phase shifts
and energy' the contribution of the many body H' to
AE arising from each nucleon tail is then equal to that
produced by an equivalent nucleon-nucleus optical
potential provided the latter may be suitably extra-
polated to negative energies. For positive nucleon
energies the nucleon nucleus opti-cal potential V (r)
produces the same phase shifts as H', and this (energy-
dependent) potential has been determined from the

eProceedengs of the Second Conference on Reactions Between
Complex nuclei, Gutlinburg, Tennessee, D'60, edited by A. Zucker,
F. T. Howard, and E. C. Halbert (John Wiley R Sons, Inc., New
York, 1960},p. 12'7; Proceedengs of the Therd Conference on Reac
tions Between Complex Xuclei, edited by A. Ghiorso, R. M.
Diamond, and H. E. Conzett (University of California Press,
Berkeley, California, 1963); Bull. Am. Phys. Soc. 8, 61 (1963).' G. Breit, Rev. Mod. Phys. 23, 238 (1951}.
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scattering data by various authors' with varying degrees
of sophistication, the more variable parameters em-

ployed the better the reproduction of the data. All of
them "mock up" the removal of particles from the
elastic scattering beam (inelastic scattering, reactions)
by a complex part to the optical potential which goes
to zero as the energy goes to zero. In the present work
the nucleon tails correspond to bound (negati2/e energy)
nucleons and the energy-dependent parameters of the
optical potential are extrapolated to negative energies
linearly. There is of course some question of the validity
of this linear extrapolation.

Under the assumptions of the preceding paragraph,
if the many-body wave function were normalized such
that

(@(P)P iP)) = 1

then with the neglect of the second order changes in
the wave function tail of one nucleon in the vicinity of
the receiver nucleus due to the presence of another
nucleon wave function tail, the total AE splits up into

outside the parent nucleus by

)Pp p&P) =c,&P)(1/n, &P)r) exp( —n, & )r) Vp p(8, &p),

n, «) = (22&t [ E, tP)
(
/@')"2,

lt, -"'= ."'2(1/ ."' )+ (1/ .'" )'3
)&exp( n—„& )r) Y1 '(8, q),

no&" = (22&t (
Eot') (/Its)'" (3)

where E,&P) and Eo«) denote the unperturbed s and P
state nucleon binding energies and the real constants
c,&'~ and t,.„&'& are determined by the values of the
respective lt tP)'s at the nuclear surface. Higher angular
mornenta are not needed for the p-shell nuclei under
consideration.

The s-wave function, /= 0 for one nucleus, when
expanded in terms of spherical harmonics centered on
the nucleus is given by'

p(p) = c (p) Q g ~(n (p)g)
L=O

AE=P )Pto)*(r,)V(~R—r, j)&P(r~)dr, —=P BE; (2) with
&&~I~+:(n "")/(n "'r )'"3I',o(8', v') (4a)

$r, '(x) —= (2L+ 1)'"Kl+t (x)/x'/

since the V is nonzero only in this vicinity and the
denominator of Eq. (1) is approximately unity, i.e.,

(WP),%') = 1. (2a)

In Eq. (2) )Pto)(r;) and)P(re) are, respectively, the un-

distorted and distorted nucleon wave functions from
one of the nuclei and R is the vector from the center of
that nucleus to the center of the other nucleus, whose
effect on each nucleon tail is replaced by the optical
potential. Equation (2a) represents a further assurnp-
tion in that this calculation is to be applied for inter-
nuclear distances large enough so that the difference
between the quantity which should have been in the
denominator of Eq. (2),

(0'",ll ).»
and the normalization integral

(n) 2/2(B/—Bx'ai 8/By' )

(42r)1/2(nrI) 1/2

Xf(r') '/2I~l(nr')Pl, (cos8'))=
2L+1

(L+2) (L+1)-'/'

2L+3
F~1~1(8', p')I ~a (nr')

L (L 1)—
Yr, 1,~1(8', p')Iz l(nr')

. 2L,—1

where the primed quantities refer to a frame of reference
centered at the right nucleus and l„and E„are Bessel
functions of imaginary argument where the notation
agrees with that employed by Watson. ' A similar
expression may be derived for the p-wave functions
using the relations'

(4'" lt'").p 8 (42r) '"(nr') —'/'
—3/2 / I

X I'r+r, p (8')Ir.+s (nr')
(2L+3)'/'

' G. N. Watson, Theory of Besset Functions (Cambridge Univer-
sity Press, Cambridge, England, 1952).' The authors are indebted to G. Breit for having pointed out
to them the derivation which leads to Eqs. (4b).

The parameters used were those of Bjorklund (nucleon-nucleus
optical-model potential) referred to in footnote 13.

n L(r ) I~+.(nr )I,(cos8 )]
gives rise to a contribution in AE which is of higher 2L+1
order and can be neglected. The symbol 1P is used for
the single-body wave function without spin, in contra- (L+1)
distinction to the many-body 4 of Eq. (1).

At large distances from one of the nuclei, the un-

distorted individual nucleon wave functions of nucleons L
emanating from that nucleus are denoted by )Pt

Here Al denotes the angular momenta about that
nucleus, and Ar/2 is the projection along the polar axis
chosen to be in the R direction. For /=0 and 1, respec- t y t s re a'PP 'e "o (4a)~ "

tively, the corresponding wave functions are given
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following expressions result:

0 = 31 2C &01 Q p y'm(D (0)g)
L=O

where

I~//(o/, ' r')-
Yr. (0' v") (4b)

(&s (s)r')i/s

fs e
——c, P $r,'(n, & /E)/n, "ir'] '/'

L=O

&(/I~i(o/, &s'r')+AIBK~f(o/. &"r')]Yr„s(0'y'),

&~"'(*)—=L(2L+1)*0 '"
&&$LKz 1(x)+(L+1)Kr,+, (x)$,

$1i,+i (z) —~LL (L+1)/ (2L+1)&)1/2.

&&3K:(*)-K";(*)j
The distorted-wave functions Pr, , are calculated on the
assumption that under the physical conditions of large
nuclear separation here considered, a region surrounding
both nuclei exists within the nucleon-nucleus potentials
are negligible. This region is denoted by III. The region
surrounding the nucleus from which the tails of the
single nucleon wave functions protrude is denoted by
I and the region surrounding the "receiver" nucleus,
outside of which the optical-model potential is negligible
is denoted by II. The distorted-wave functions of
nucleons extending from the surface of region I into
region III are obtained subject to the conditions: (A)
that in region II they satisfy the Schrodinger equation
with optical potential V and energy approximated by
the unperturbed energy Es, and (B) that in region III
they be given by

energy rises and that the resulting "shadow" scattering
predominates, at least for the larger scattering angles.
The success of the Blair procedure as employed by
Reynolds and Zucker to give fair agreement with their
N'4 —N" scattering data bears out this contention. The
nucleus-nucleus elastic channel absorption may be
simulated in several ways, one of which consists in the
introduction of an imaginary part to the potential
energy, as is done in the nucleon-nucleus problem. An
alternative to the use of imaginary potentials consists
in imposing an ingoing wave boundary condition on
each partial wave. "For certain complex optical-model
potentials use of an ingoing wave boundary condition
gives close agreement" with the optical-model phase
shifts for the important range of I values. Both proce-
dures will be employed. Even for forward angle scatter-
ing the cross section is not completely insensitive to this
phenomenologically added absorption. Nevertheless it
is possible to obtain information concerning the size of
the nucleon wave function at the nuclear surface from
the calculated tail of the potential.

Equation (5) differs from Eq. (4) in that to each
partial wave with radial function I I+ f(n, &s'r') /( &,i&sr/')'"

is added a small amount of the other solution,
Kr+1(o/, & lr')/(o/ &'&r')'/' irregular at the origin of the
"receiver" nucleus, but finite elsewhere. Condition (8)
ensures that logarithmic derivatives of the undistorted
and distorted nucleon wave functions become nearly
equal at the surface of the parent nucleus for large
enough nuclear separation distances. A knowledge of
the logarithmic derivatives of the nucleons' wave func-
tions at this surface, determinable from their boundary
energies, is all that is required and no specific nuclear
model need be assumed. In region II the distorted wave
functions for s and p waves are given by

31/2c Q $ p s(&s &Oig)L&r &0)r~] 1/2

L~O

lt/, ——P 1Vr, ' "Nr, '(r')Yr„(8', V').
L

(6)

*( ."'")+~ "K~;( ."'")3Y,-(t)',
&
'), (5)

where the coefficients AL are calculated by matching
the logarithmic derivatives of the distorted-wave func-
tions in region II to those in region III.

The potential producing the distortion is that
described in connection with Eq. (2). As described
above the many-body interaction energy in region II
is replaced by an (energy-dependent) complex optical-
model potential for each nucleon defined so as to
reproduce the observed nucleon-nucleus scattering for
positive energies. The real part of this is linearly
extrapolated to negative energies. The imaginary part
of the nucleon-nucleus optical potential goes to zero at
zero energy, but of course this does not mean that there
is no absorption for the nucleus-nucleus system. Indeed
it is expected that in the collision of two complex nuclei
an increasingly large number of inelastic scattering and
reaction channels are opened up as the bombardment

In the above l stands for angular momentum with
respect to the "parent" nucleus while I. stands for
angular momentum with respect to the "receiver"
nucleus. The functions NL' are solutions of the radial
equation,

('/ ")(' ')

2m L(L+1)
+ LE/(o1 Yg+ (r'el, ') =0, (7)

A2

obtained by numerical integrations performed with the
aid of an IBM-709 computer. The EL' are normaliza-

"An ingoing wave boundary condition has been used pre-
viously in heavy-ion calculations by R. L. Becker (unpublished)
following the procedure used by H. Feshbach and V. Weisskopf,
Phys. Rev. 76, 1550 (1949) for the case of neutron-nucleus
interaction.

"G. H. Rawitscher (to be published).
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Despite the large size of the Al, ', for values of R for
which AE'; is calculated the ratios of 100XAI.XK~f/
Ir+1 are always less than 6%. Values of the A&" are
given in Table I for the cases of 0'" scattering on C"
and of N'4 on N". As noted previously, b is a distance
from the center of the right nucleus beyond which the
nucleon-nucleus potential is negligible. An example of
a radial nucleon wave function uo' which is a solution
of Eq. (7) for the C"—0" case with /=1, L=O, is
shown in Fig. 1. For comparison the unperturbed wave
function is also shown. Nuclear matter densities'4 and
the opticai potential are shown in the same figure to
illustrate the liInitation on the region of applicability
to this approach.

To facilitate the evaluation of the integrals in Eq. (2),
Green's theorem and the Schrodinger equations for P
and g tel are used to transform the volume integral into
surface integrals. This leads to the following expression
for 8E;:

—(&'/2~) (0 "'*&0 4&4 "'*—) ds

(10)
FIG. 1.Distortion of the radial wave function of a nucleon bound

to C" by an optical potential representing the nucleus of 0'6. The
distance from the center of C" is measured by r; r' is the distance
from the center of 0".For comparison the nuclear matter densities
of the nuclei are also shown by the curves labeled M.D. in order
to illustrate the very small matter overlap at a nucleus-nucleus
distance of 9 F. The optical potential responsible for the distortion
is shown in the lower half of the figures.

tion constants. The optical potential used has the form"

I'= I'./(1+e p[(r —&o)/j) (ga)

with extrapolated value Vo lying between —50 and
—60 MeV, and with

lt i&)*1f«,
+III

where the integral in the numerator extends over the
surface of region II which is taken as a sphere of radius

a, while the volume integral in the denominator excludes
region II. Hence setting the latter equal to 1 is a some-
what diGerent approximation from the one originally
stated in connection with Eq. (2b). The latter requires
that

4 "'(4 4"')«+ if—"'V—4'l"1)«-0, (11)

Z, = &.25ya»3 F
a=0.65 F.

Sb)
while in the former

Matching the logarithmic derivative of the wave func-
tion in region II to that in region III fixes the value of
the coefficient AL, as follows:

[I,+, (g,)/K„;—(1,)]
X [%g'—(d/df ~) 1n(Ii+.i f'i"') j/

['9 ' (d/di )—l % +.!i'")], (9)
where

4 "'"(4 0'"')« 4'"—'"4 "'«-—o (12)

If (11) is a good approximation (12) will be also since
the identical first terms in the two expressions are small

TABLE I. CoeScients AL,& for the C' —0' interaction, calcu-
lated using a (real) Woods-Saxon potential LEq. (8a)g with
parameters V0 ———50 MeV, a=0.650 F, 8=1.25A'i3 F.

QL'= [1/«"'$( d«/')»~( ')rj" s Al,&

(15.6-MeV neutron)
A L,&

(18.7-MeV neutron)"F. Bjorklund, in Proceedings of the International Conference on
the Nuclear Optical Model, edited by A. E. S. Green, C. E. Porter
and D. S. Saxon (Florida State University, Tallahassee, 1959),
p. 1, slide 2. The imaginary part 8'0 extrapolates to zero at zero
nucleon energy and below. This of course implies in no way that
there is no absorptive part of the nucleus-nucleus interaction. The
spin orbit part of the potential is neglected in the calculation BE
since its peak value at the nuclear surface is at most 15% of the
value of the central potential. Hence its contributon to BE is nearly
linear in (l s) and become very small when averaged over the spins
of the nucleons.

473.7
623.3
150.9
31.19

7.19
1.09

204.78
310.94
57.28
12.17
2.03
0.26

~ H. F. Ehrenberg and R. Hofstadter, Phys. Rev. 113, 666
(1959), Eq. (A).
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if f—f'o' is small in regions I and III, i.e., everywhere
but in the second nucleus; while the smallness of the
nonidentical second terms depends on the same circum-
stance, namely, the smallness of P&o& in region II.
Substitution of Eq. (5) into Eq. (10) leads to the
following expression for the s-state nucleons:

8E.= —(A'j2ts)/C, C, &"/, &"$P AJ„'tP '(,"'R)$', (13)
L=O

& -10
X

~ 0—C

0 C~N

where c, and c,&o~ are as in Eqs. (3) and (5), respectively.
The corresponding expressions for three p-state
nucleons, summed over the three values of m lead to

3&& = (e—/2~)53c, c~(o)(~ (o)j

a
c
Cl

O
Q.

X QAJ." Q t b,' (a "'R)J', (14)
1=0 m=1

where c„and c„&'& are the quantities which occur in
Eqs. (3) and (5). To obtain the long-distance part of
the elclels-nlclels potential energy function the con-
tributions from Eqs. (13) and (14) are summed over
the nucleons whose wave function tails originate in
region I.To this is added a similar contribution obtained
by interchanging the roles of two nuclei, the one which
formerly had served as a potential field for the nucleon
wave function tails (region II) now assuming the role
of a nucleus from which the tails of the wave functions
of individual nucleons are pictured as protruding
(region I). The other nucleus which had formerly
served as the source of the nucleon wave function tails
now assumes the role of an optical potential field.
Higher order corrections in which, for example, the
optical potential is modified by the distance of the
nucleus in region II caused by the "tails" from region I,
are neglected.

Strictly speaking the above procedure applies only
to neutrons. However, as an approximation, in the
summation over nucleons the proton contributions are
taken equal to those of the corresponding neutrons
because for the nuclei here considered, C", 0",and X",
the reduction of the size of the proton wave function
in region II due to the added repulsion of the 2-MeV
Coulomb barriers is compensated to some extent by
enhancement of this wave function in region II due to
the decrease of about 2 MeV in the binding energy of
protons compared to the corresponding binding energy
of neutrons for these nuclei. However as discussed in
Breit and EbeP' for N'4 —N'4 tunneIing, the enhance-
ment appears to overcompensate the reduction.

The resulting expression for hE(R) is used in the
next section as a two-body potential-energy function to
approximate the nucleus-nucleus interaction for suK-
ciently large values of R. It still contains the undeter-
mined constants c~&", c„for each of the two nuclei which

'~ G. Breit and M. E. Ebel, Phys. Rev. 108, 700 (1956).

f l f r f i f I f

6 . 7 8 9 IO
Internuclear Distance, R (ferrnis)

FIG. 2. Calculated nucleus-nucleus hE potentials using the
single-particle reduced-width parameters p, f, given in Table III.
These curves must be multiplied by factors of 0.16, 0.14, and 0.17
for the 0—C, C—N, and N —N systems, respectively, so as to
obtain near agreement with experiment, as described in the text.

are proportional to the single particle reduced widths
described in Sec. III. The value of this constant is
adjusted to fit experiment and the reduced width is
thereby determined. Examples of the potentials so
determined for the systems C"—0" C"—X" and
Ni4 —Ni4 are illustrated in Fig. 2.

For small internuclear separation distances E the
method of calculation of the interaction between the
two nuclei cannot be expected to be valid since the
nuclei are significantly deformed by one another' s
presence, each nucleus may become excited either
actually or virtually, etc. Fortunately the elastic
scattering cross section is not very sensitive to the
exact E dependence of the real part of the potential for
small values of E, e.g., for values of E. less than that at
which the real part of the Coulomb plus nuclear poten-
tial vanishes, so long as there is sufficient absorption.
By absorption is meant any process which removes
particles from the elastic scattering beam. These
processes cause the nuclear phase shifts Kl, to become
complex,

+I &L+&~L

with ul, and bl. both real. An attempt at a full solution
of the problem with the allowance for the opening of
many channels is of course not practical; so the eBects
of the inelastic and reactions processes may be simulated
in the usual ways, either by the addition of a complex
part to the potential energy or by the imposition of a
boundary condition. "" Both methods have been
employed in this work. The eQect of either procedure,
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when compared to the results obtained in the absence
of absorption, is to shift the angular positions of the
maxima and minima of the ratios of the cross section
to the Coulomb cross section and in addition to reduce
great]y the amplitudes of the peaks and valleys in the
angular distribution curve.

For convenience in calculation, the AE potential has
been arbitrarily rounded off for internuclear separation
of less than about 6 F and the resulting potential is
denoted by 'U(R). For amounts of absorption necessary
to give fits to the experiment under consideration large
modifications in the real part of the potential inside
this distance produce little change in phase shifts.
Although it is dificult to formulate the effect precisely
an example may serve to illustrate the point. Figure 3
shows a plot of a typical dE plus Coulomb potential
for N"—N" scattering, but not the one with the
properly adjusted c„.The R dependence of 'U is either
the one suggested by Woods-Saxon

(15a)

with a determined by the calculated value of AE(R)
and (R so adjusted that the rounding off of the potential
is negligible beyond 6 F, or else

'U(R) ='Us' exp( —R/a) (15b)

is also used in connection with the ingoing wave
boundary (IWB) procedure. Curve (1) exhibits a typical

6 8 lo
Internuclear Oistonce, R tfermis)

FrG. 3. Arbitrary modifications of a real nuclear plus Coulomb
potential U~+ U~ introduced in order to investigate the sensitivity
of the cross sections to the value of the potentials in the region
where the modi6cations were made. To the potential curve {1)
Gaussian-shaped "bumps" of magnitudes 5 and 10 MeV have
been added as shown in curves 2 and 3, respectively. For com-
parison the imaginary part of the potential, 5', is also shown.
Results for phase shifts are shown in Table III.

rounding off and in curves (2) and (3) modifications
have been arbitrarily added to this potential inside 6 F.
The modifications are "bumps" with Gaussian shapes,
of width 2 F and magnitudes 5 and 10 MeV, respec-
tively. On the same figure is plotted the empirical
imaginary part of the potential 8'. In Table II are
shown the effects of the added potential "bumps" on
exp( —2br, ), exp( —2br.) sin2az„combinations of the
real and imaginary parts of the phase shift used directly
in the cross-section calculation at 12 MeV. The agree-
ment between the three sets of values is typical of those
for N'4 —N'4 and C"—N'4 scattering at the energy
under consideration, and the differential cross sections
computed from the three are almost indistinguishable.
This is understandable for the case in which the absorp-
tion is strong and takes place mostly inside the Coulomb
+centrifugal+nuclear barrier. For the smaller I.waves,
the real phase shifts ul, are modified by a change in the
potential, but these waves are in any case strongly
absorbed and the cross section is little changed. For the
higher partial waves the values of Fr, (R), where Sr, (R)
is a solution finite at the origin of the radial equation

d Fl, 2p
+ —LE—'U (R)i—

dR'

I.(I.+1)
&r, (R) =0, (16)

are small because of the centrifugal barrier in the region
of the added hump. Thus the phase shifts are little
modified. Likewise, changes in the shape of 8", so long
as (a) W is large at distances smaller than the barrier
region and (b) the tail of W does not extend significantly
into this region, have been found to produce little
change in the cross section. Typical examples of various
H/"s are shown in Fig. 4 and the resulting ratios of the
cross sections to Rutherford in Fig. 5.

exp ( —2bL,)
IWB (1) (2) (3) IWB

exp ( —2bL,) si112al,

(1) (2) (3)

0 0.087 0.090 0.098
1 0.093 0.070 0.078
2 0.106 0.106 0.115
3 0.128 0.102 0.111
4 0.164 0.156 0.169
5 0.220 0.192 0.201
6 0.307 0.295 0.307
7 0.440 0.427 0.430
8 0.626 0.630 0.630
9 0.826 0.822 0.818

10 0.95 1 0.938 0.938
11 0.991 0.982 0.981
12 0.999 0.995 0.994
13 1.000 0.998 0.998

0.109
0.093
0.129
0.126
0.184
0.214
0.320
0.431
0.627
0.811
0.937
0.982
0.994
0.998

—0.079
—0.080
-0.080
—0.074
—0.055
—0.015

0.049
0.138
0.223
0.235
0.153
0.072
0.030
0.012

—0.090
—0.070
—0.096
—0.083
—0.071
—0.045

0.043
0.114
0.216
0.204
0.136
0.066
0.029
0.012

—0.098
—0.076
—0.104
—0.084
-0.077
—0.044

0.037
0.107
0.208
0.202
0.136
0.066
0,029
0.012

—0.108
—0.087
—0.114
—0.090
—0.088
—0.047

0.025
0.098
0.197
0.201
0.173
0.067
0.029
0.012

TABLE II. EfFect of potential changes on phase shifts. The
nuclear phase shifts are denoted by Kr, =az, +ibr, . The numbers
in parentheses refer to the potential curves shown in Fig. 3. The
results labeled IWB are obtained from the potential curve (2) and
the imposition of the ingoing wave boundary condition on the
wave function at I'=4 F, as described in the text. The table
illustrates that the introduction of potential "bumps" at distances
less than 6 F does not appreciably afFect the phase shifts and or
cross sections.
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As an alternative to the addition of a complex part
to the potential, absorption inside a given value of R,
say E& 1.2 F (A &'~'+A 2'~'), may be obtained by using
for each L a one-dimensional boundary condition
imposed at R&. If it is assumed that a two-body nuclear
potential is valid at least down to R~ and if R~ is far
enough inside of the barrier formed by the nuclear,
Coulomb and centrifugal potentials —henceforth called
simply barrier —so that the JWKB approximation be-
comes valid for the significant values of L and if the
outgoing branch of the JWKB expression for the wave
function is set equal to zero, " then the radial wave
functions are given by

-40 + I I

0 3 5 7 '9
Internuclear Distance, R (fermis)

FIG. 4. Plots of various imaginary potentials 8' used to demon-
strate the insensitivity of the cross section to O'. The explanation
for the parametrization of 8' as a function of r is given in Fig. 5,
which also shows the resulting cross sections.

parameters introduced into 5' and in rounding oG V are
superQuous and that in reality the only empirically
added parameter to which the results are sensitive is
one of the reduced width type, p, dered below. This
of course implies the validity of the hE potential in the
barrier region. The value of R& is chosen sufficiently
small to be well inside the barrier so that the JWKB
approximation is valid. The largest values of R~ where
this is true were found to be between 1.20 F and 1.25 F
times Aq'"+A2'~3 at which point some many-body
features probably still persist and the calculated two-
body potential is therefore probably not valid. Since
the high L contributiorls to the cross section do not
depend strongly on the close-in interaction and the low
L contributions are small on account of the large eGect
of absorption, it is the 3 or 4 intermediate L contribu-
tions whose validity is most questionable in the calcula-
tions reported on in this paper. Strictly speaking either
the procedure of using a complex potential or of
describing its eGect by the IWB method may be looked
on as calculational methods of obtaining values of the
quantities exp( —2bz, ), exp( —2bz, ) sin2az, which vary
smoothly with L in such a way as to describe the
experimental facts.

The considerations following Eq. (12) of Sec. II show
that the nucleus-nucleus potential is formed from a sum
of terms each of which is proportional to the product of
the constants c~('& and c„which furnish the unknown
values of the nuclear wave functions at the nuclear sur-

I.o

eo
r —R)/b

.5

&z, (R) = kl, (R) 'I' exp i—kl, (r)dr

2p I.(I+1) +~ &2

k, (r) —= —fZ —V(r) $—
A2 r2

O
IL

.O

x
I

K

ermis

In this case the resulting phase shifts are uniquely
determined and are independent of the value of the
nuclear potential for r(RI5,. The nuclear wave functions
are then obtained by imposing at R& the IWB boundary
condition

(dFI/dE)/Pg= t
—~(dkl/dE)/kl, —ikl]„s,

and the resulting phase shifts lead to essentially the
same scattering cross sections" as a certain class of
potentials the real parts of which vary widely inside Ro.
Use of the IWB has the advantage of exhibiting the
fact that for strong enough absorption several arbitrary

bg

I l } I
'll

30 60 90 I 20
Scattering Angle (8&M)

\ ~

FIG. 5. Sensitivity of the cross section
to the imaginary potential 8'.
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face. In principle each p-wave nucleon has a separate
c„&') and c„. In view of the crudeness of some of the
aspects of the theory it was not felt warranted to treat
the p&/2 nucleons differently from the p3/2 nucleons in all

cases even though appreciable differences exist occa-
sionally. However in 0", for example, the binding en-

ergy of a pa/& nucleon as determined from the p —p' in-

elastic scattering experiments" is approximately 23
MeV which is considerably larger than the separation
energy of the p, /& nucleon which is 15.6 MeV. In order
to evaluate the effect on AE due to this relatively large
difference in separation energies a sample calculation
was done in which it was found that the contribution
to AE of three p neutrons bound at 23 MeV is roughly
half of the corresponding quantity for neutrons bound
at 15.6 MeV for E between 7 and 8 F. Therefore, it was
felt that eight p nucleons bound with 15.6 MeV would
be reasonably equivalent to the four p~/2 nucleons
+eight p3/2 nucleons, and the calculations have been
so carried out. In the cases of C" and N", the contribu-
tion to hE of four s nucleons were neglected because of
their large separation energy and the rest of the
nucleons were treated as having the same separation
energy of 18.7 and 10.54 MeV, respectively.

The contribution of the s nucleons was neglected
altogether since their number is less than half of the
number of p nucleons for all the nuclei here considered
and, from the above p3/2 pJ/2 comparison, their contri-
bution to hE should be less than a 20% of the total
value. Consequently two unknown parameters remain,
one for each of the two heavy nuclei. These are denoted
by p and p' and are given by

p= c„&"c„,
p'= c„(0)'c„'.

The value of 'Uo of Eq. (15a) is first determined so as
to give the best fit between the experimental'~ and
theoretical nucleus-nucleus scattering cross sections,
and then, from the knowledge of the E. dependence of
the 5E„'s, a relation involving p and p' is. obtained. By
considering the system N"—N", p=p'=p(N'4) can be
determined. From this value and the knowledge of 'Uo

for the N'4 —C" system, p(C") can in turn be obtained,
and the results are contained in Table III.

The parameter p is directly proportional to the
average reduced widths of the bound nucleons. It is
convenient to express it in terms of a fictitious "single-
particle" quantity p, b, which is obtained by considering
the wave function of a single-particle bound to a real

H. Tyren, P. Hillman, and Th. A. J. Maris, Nucl. Phys. 7, 10
(1958).

' J. A. Kuehner and E. Almqvist, Bull. Am. Phys. Soc. 6, 48
(1961).The authors are very grateful to Dr. Almqvist for provid-
ing supplementary unpublished data for N'4 —C" and 0"—C"
scattering. Their results differ somewhat from the earlier data
reported by M. I. Halbert, C. E. Hunting, and A. Zucker, Phys.
Rev. 117, 1545 (1960), also shown in Fig. 6.

TAsLE III. Ratio of reduced width parameter p to single-body
parameter p,,f,. The latter is calculated from the potential given
i» Kq. (19).

Nucleus

C12
N14
016

Psb

48.0 F '
6.9

41.0

P/Psb

0.15
0.17
0.16

potential well of a Woods-Saxon type

V = Vo {1+expL(r—1.2(A —1)'"F)/0. 50 Fj) '. (19)

The value of Uo is determined by demanding that the

p nucleon be bound at the experimentally observed
separation energy, and from the knowledge of the
normalized wave function, c,b&" can be determined. The
square of the absolute values of the s and p wave
functions bound by this well can then be used to deter-
mine a nuclear density, and comparison with the charge
densities determined from electron scattering'4 shows
reasonable agreement, as illustrated in Fig. 6.

In Table III the values of p as well as of p/p, b, as
determined by the procedure described above, are
shown for C' N', and O' The choice of c, b& ) and
hence the value of p/p, b is dependent upon the model
assumed for the undistorted nuclei. For the N'4 nucleus,
a square well of radius 3.22 F and depth 35 MeV binds
a p nucleon at —10 MeV, and the value of c,q"& is
2.35 F '~', which is to be compared with a value of
2.63 F 'l" obtained when the square well is replaced by
a Woods-Saxon well. These potential wells are chosen
so that the resulting charge distributions approximate
those obtained from electron scattering experiments"
as shown on Fig. 6, in whose figure caption the explicit
form of the charge density obtained from electron
scattering is given, and are not the same as the nucleon-
nucleus optical potentials used above. The matter
distribution derived from the s and P nucleons bound
by the square well fit the experimental charge distribu-
tion reasonably well. If the radius of the square well is
changed to 3.5 F, and the depth chosen so that a p
nucleon is bound at the same —10 MeV, then the
corresponding value of c, b& ' is 2.97 F '" but the matter
distribution no longer approximates the experimental
one as well, as is also illustrated in Fig. 6. The three
potentials mentioned in the examples above lead to
values of p, b which differ from each other by about 50%
or less. The value of (p/p, g)o is not well determined
since the procedure used in this paper does not repro-
duce the wiggle in the cross sections, although giving a
good over-all fit. It may be noted that p/p, & appears to
vary less with atomic weight 3 than does p itself. If the
value of c„ is assumed equal to c„"', then c„&" can be
obtained as the square root of p given in the table, and
the corresponding value of the nucleon wave function
beyond the nuclear "surface" is given by Eq. (3). A
value for the usual reduced width parameter y' can
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thus be obtained. For N", if the nuclear radius b is
taken equal to 3.22 F, then's &'= P'/(2m/its') 1.15
MeV F. This quantity, when expressed in units of
3ks/(2 mb), is equal to 0.12, which of course depends
on the choice of b. A source of error in the determination
of the value of p is due to the uncertainty in the theoret-
ical value of AE. This uncertainty increases with
decreasing internuclear separation, as the distortion and
matter overlap between the two nuclei increases. At 8 F,
which is the distance for which the sum of nuclear plus
Coulomb potentials, as used in the fits to experiments,
reaches a broad maximum, the overlap integral of the
distorted and undistorted nucleon wave function,
Q tel, lt), differs approximately by 20% from unity for
the three nucleus-nucleus systems investigated. For this
estimate the value of p is assumed identical to p, b, and
P&'& is assumed equal to the expression given in Eq. (3)
for all values of r. Since p(p, b, this overlap estimate is
considerably too large perhaps by a factor of =2 but it
nevertheless serves as an indication for the theoretical
uncertainty in b,E due to wave function distortion
effects not taken into account. At that distance the
overlap of the matter density of the two nuclei, if
assumed undistorted, is less than 1%. In order to
investigate the sensitivity of p to the uncertainty in ~E,
various arbitrary modifications of the nuclear potential
in the barrier region were performed. For example,
various smooth changes in dE which produce 10%
modifications in hE at distances of 2 F, 1.4 F, and 0.6 F
to the left of the top of the barrier, which in this
example is at 8.6 F, result in changes of 3, 8, and 33%,

IO

0

0
c
Cl

0
Q

C -lO
0

0
O
+
0
4l
o-20

.I

20 40 60 80
Scottering Angle (ec&)

90

FIG. 7. Sensitivity of cross section to modi6cations of the
potential in the "barrier region. " The curves b, c, and d join
curve a smoothly at 7 F, 7.5 F, and 8 F, respectively. The potential
marked a is the same as potential (1) in Fig. 3. The corresponding
cross sections are shown in the insert. The IWB condition was
used in all the calculations at approximately 5 F. The difference
between cross sections a and b is apparently due to difference of
the steepness of the two potentials. The similarity of the cross
sections at angles less than 60' is presumably connected to the
fact that all potentials have the same maximum at about 8.5 F.
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Fio. 6. Matter densities for N' for various choices of the
auxiliary potential U'~, Eq. (19). Curve a represents the charge
density obtained from electron scattering experiments, ' given by
p = [(1+r /aos) exp ( r /ao ) j/[s. uo (—2+3m) 5 with ap = 1.8 F and
nrr =3/3. Matter densities computed from s and p nucleon wave
functions corresponding to the Woods-Saxon potential, Eq. (19),
and to square-well potentials with radii 3.22 and 3.50 F are given
by curves b, c, and d, respectively. The depths of all potentials are
chosen so that a p nucleon is bound with an energy of —10 MeV.
The densities of two s-wave nucleons are averaged with those of
seven p-wave nucleons. The values of p, f, corresponding to curves
b, c, and d are 6.9, 5.5, and 8.8 F 8, respectively.

G. Breit, in Handbuclz der I'hysik, edited by S. Flugge
(Springer-Verlag; Berlin, 1959), Vol. 41, Part 1, Sec. 33.

respectively, of the cross section at an angle where the
cross section is nearly 4 of the Coulomb cross-section
value. These results are illustrated in Fig. 7. These
changes would lead, respectively, to changes in p by
factors of roughly 1.2, 1.5, and 3. It is therefore believed
that an uncertainty estimate in p of a factor 2 is
conservative.

Comparison between theoretical and experimental"
cross sections is shown in Fig. 8. The over-all fit to
experiment is reasonable, although small oscillations
are not reproduced in detail. These may well be due to
features in the interactions not accounted for by the
somewhat rough assumptions made in this work. For
example, if resonances for particular 1. waves should
occur, "phase shifts derived from two-body potentials
may prove insufficient for the description of experi-
ments. Indeed as mentioned above reasonable fits to
experimental data" for C"—0"scattering at 8-, 9-, and
10-MeV center-of-mass energies are obtainable with the
procedure outlined above employing the same potential
in all three cases. At 11.57 and 13.67 MeV, fits are not
possible indicating that some ~nore complicated feature
has entered.

' D. A. Bromley, J. A. Kuehner, and E. Almqvist, Phys. Rev.
123, 878 (1961).
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Fzo. 8. Comparison of theoretical with experimental angular
distributions. The 6ts are obtained by varying the parameter 00
given in Eq. (15a), as explained in the text. 61 in Eq. (15a) is not
a "signihcant" parameter and a is obtained from theoretical
considerations. The values listed in Table III are obtained from
the best 6ts, shown here. The numbers indicated for the two 9.92
MeV N'4 —C" curves indicate the factors by which the AE
potential shown in Fig. 2 must be multiplied so as to obtain the
corresponding cross sections.
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matter density of the first nucleus at a point displaced

by vector r~ from the center of nucleus 1. The displace-
ment vector from the center of the second nucleus to
the center of the first is denoted by R and the vector
from the center of the second nucleus to a point I' by I'.

The optical-model potential of a nucleon at point P
exposed to the field of the second nucleus is designated

by Vs(r).
On the most naive interpretation of the nucleon-

nucleus optical-model potential the integrand of Eq.
(20) is the potential energy of the nucleons belonging to
the first nucleus caused by their interaction with the
second nucleus. It is realized that both pi(r —R) and

Vs(r) are affected by the proximity of the nuclei to each
other, that Vs(r) has not been shown to have the simple
meaning given to it in Eq. (20) and that the velocity
dependence of U2 is neglected. In addition to the neglect
of these and other effects having their origin in the
mathematical difficulties of the many body problem
and the incompleteness of information regarding
nucleon-nucleon interactions the value of p~ for large
values of ~r—R~, i.e., in the "tail" of the matter-
density distribution curve, is not believed to be known
with certainty, the main emphasis in the Stanford fits"
to electron-nucleus scattering data being in obtaining
the general shape of the p~ versus distance curve. The
precise values obtained from Eq. (20) may thus be

Finally, it may be noted that even at the high
energies, where the assumptions made in the theoretical
treatment outlined above are not expected to be valid,
a reasonable agreement with experimental 0"—C"
and C"—N" cross sections"" is obtained, as shown in

Fig. 9. The reduced width parameters employed in these
comparisons are the same as those used for the low-

energy fits, and are given in Table III.
In Fig. 10 the absolute value of the potentials used is

plotted against the nucleus-nucleus distance E. The
curve labeled AE corresponds to an average of the
potentials shown in Fig. 2, calculated employing single-

particle reduced widths. The curve marked "DE)5"
represents an average of the potentials used in fitting
the experimental cross sections, as shown in Figs. 8
and 9. The ratio of potentials at the same R for the two
curves is approximately 5. The exact value of this ratio
is p/p, s of Table III. The curve labeled Ov represents
the overlap integral

CI
IL
O
L, ~ I
IL

.06
I

.6

0 —C

Eel 65.4

b)el

.06

6—
V).

+
R

2

0 4
Sca t ter ing An 9 I e (~+)

Theory

8 Steigert—

Theory

20

p, (r—R) V, (r)dr= V„(R) (20)

evaluated for the N"—N" collision. Here pi(ri) is the

"D. J. Williams and F. E. Steigert, Nucl. Phys. 30, 3/3 (1962).
"A. M. Smith and F. E, Steigert, Phys, Rev. 125, 988 (1962).

8 9 IO
Internuclear Die tonne ( f errnis j

FiG. 9. Comparison of theoretical cross sections with experiment,
The parameters employed in the theory are the same as those
used for the low-energy results shown in Fig. 8 and listed in
Table III. The experiments for O' —C" and C"—N'4 are those of
Refs. 20 and 21, respectively. The lower part of the 6gure illus-
trates the sum of nuclear and Coulomb potent&als employed jlI
the calculatjon of the cross sectjong,
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is an alternative form of the potential energy between
nuclei 1 and 2. On account of the identity of the two
nuclei involved there is no difference between (20) and
(20') in this case.

CONCLUSIONS

From this study of the scattering of heavy nuclei by
heavy nuclei the following conclusions may be drawn:

(1) That although the forward-angle elastic scatter-
ing is not completely determined by the tail of the
potential calculated from nucleon-nucleus data, if
sufhcient absorption from the incident beam is allowed
for, then the tail of the potential strongly affects the
angular distribution and agreement with the over-all
shape of the experimental angular distribution curve is
obtained, even though the wiggles may not be repro-
duced in detail.

(2) That the tail of the potential calculated from the
binding-energy consideration outlined in Sec. II is well

enough determined by the experimental data on elastic
scattering to lead to a rough value of the reduced width
which is of the order of one- or two-tenths the single-
particle value.

FIG. 10. Summary of nucleus-nucleus potentials. The top curve
labeled d,E is an average of the theoretical potential for the
C'2 —Q" C"—N" and N"—+1' systems, for which single-particle
reduced-widths are employed. The individual potentials are shown
in Fig. 2. The curve labeled Ov represents an overlap integral of
matter density and nucleon-nucleus optical potential, as described
in the text, and the lower curve is an approximate representation
of the nuclear potentials calculated for the reduced widths as
required from the comparison with the experimental scattering
cross sections.

subject to question. It is nevertheless striking that the
curve Ov obtained in this manner is not in very decided
disagreement with the curve marked dE/5 in Fig. 10,
the agreement being good at 7 F and a discrepancy by
a factor of only about 2 developing at 9.5 F. It may be
remarked that within the approximations used here

(20')

The above outlined procedure would appear to be a
reasonable starting point for further, more detailed,
calculations taking into account spins, nuclear deforma-
tion, Coulomb excitation, nuclear excitation, etc.
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