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Lattice Dynamics and Phase Transitions of Strontium Titanate
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The crystal dynamics of strontium titanate has been studied both experimentally and theoretically. The
frequency versus wave-vector dispersion curves for some of the normal modes propagating along the $0,0,1$
direction have been measured by neutron spectrometry at 90 and 296'K. The experiments were performed
at the Chalk River Laboratories of Atomic Energy of Canada Ltd. , using a triple-axis crystal spectrometer.
The temperature dependence of the transverse optic mode of the lowest frequency has been found to be in
agreement with the temperature dependence of the dielectric constant, as predicted by Cochran. The ex-
perimental results have been used to obtain the parameters of several models, more than one of which gives
reasonable agreement with the experimental results. It is suggested that the anomalous behavior of the
elastic properties and the phase transition at 110'K are associated with an accidental degeneracy of two
branches of the dispersion curves; the longitudinal acoustic branch and the transverse optic branch of
lowest frequency. The origin of the temperature dependence of this transverse optic mode and the relevance
of lattice dynamics to the phase transitions in other perovskites are discussed.

I. INTRODUCTION

HE lattice dynamics of strontium titanate has
been studied both theoretically and experimen-

tally, in an attempt to understand the lattice dynamics
of a ferroelectric material. Anderson' and Cochran' have
independently suggested that the anomalous tempera-
ture dependence of the static dielectric constant of
ferroelectrics is associated with the temperature depend-
ence of a transverse optic mode of vibration. Recently,
this low-frequency mode of vibration has been observed
experimentally in barium and strontium titanates, by
using infrared spectrometry' and in strontium titanate
by using neutron spectrometry. '

In this paper experimental measurements are pre-
sented of some of the frequency versus wave-vector
dispersion curves for normal modes propagating in the
$0,0,1jdirection of strontium titanate. These dispersion
curves were determined by neutron spectrometry using
the triple-axis crystal spectrometer' at the N.R.U.
reactor at the Chalk River Laboratories of Atomic
Energy of Canada Limited.

The simplest model which is used to describe the
lattice dynamics of ionic crystals is the rigid-ion
model. ' 'In this model the ions interact with one another
through both long-range electrostatic forces and short-

iodide' "and potassium bromide. "These experimental
results showed that a more satisfactory model was the
shell model, ' which takes account of the polarizability of
the ions in both electrostatic and short-range forces.

The experimental measurements on strontium titan-
ate have been used to obtain the parameters of both
rigid-ion models and shell models. These parameters
show that it is possible to obtain the large changes in the
frequency of the lowest transverse optic mode by
changing the values of the parameters only slightly.

Recently, it has been found that the ultrasonic atten-
uation in strontium titanate increases dramatically
below 110'K, while the elastic constants show an
anomalous temperature dependence. ""A possible ex-
planation for these observations is put forward in terms
of an instability of the crystal arising from the acci-
dental degeneracy of two branches of the dispersion
curves. Finally the results are discussed with particular
reference to the origin of ferroelectricity in the perovskite
structure.

II. THEORY OF THE LATTICE DYNAMICS
OF STRONTIUM TITANATE

1. Symmetry

range repulsive forces between neighboring ions. This Some of the properties of the normal modes of vibra-
rnodel has been shown to be inadequate to describe the tion of a crystal are a direct consequence of its sym-
measured dispersion curves of two alkali halides, sodium metry. The degeneracies between the different branches

of the dispersion curves, and the separation of the
*Visitor at Atomic Energy of Canada Limited, 1961-62, where normal modes into longitudinal and transverse vibra-

some of the work described below was done. t~ons for some wave vectors are examples of these' P. W. Anderson, Izd.AN. SSR., Moscow (1960).
properties. For simple crystals these relations can be

'A. S. Barker and M. Tinkham, Phys. Rev. 125, 1527 (1962), obtained by inspection, but for more complicated crys-
4W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E.

Howarth, Phys. Rev. 126, 1710 (1960).' R. A. Cowley, Phys. Rev. Letters 9, 159 (1962). 9 A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Phys.' B.N. Brockhouse, Inelastic Scattering of IIentrons in Solids and Rev ]19 980 (l 960)
Iignids (International Atomic Energy Agency, Vienna, 1961), ioA D B Woods B N Brockhouse R A Co~icy snd
p. 113. Cochran, Phys. Rev. 131, 1025 (1963).' E. W. Kellermann, Phil. Trans. Roy. Soc. A238, 513 (1940). "R.O. Bell and G. Rupprecht, Phys. Rev. 129, 90 (1963).' M. Born and K. Huang, Dynarnicat Theory of Crystal Lattces "K.S. Ktogstad and R, W, Moss, Bull, Am. Phys. Soc. 7, 192
(Oxford University Press, London, 1954). (1962).
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will be lifted for those normal modes which transform
like an ordinary vector. Since an ordinary vector trans-
forms like 1 ~5, the degeneracies associated with three of
the four irreducible representations I'j5 are split. The
fourth irreducible representation corresponds to a uni-
form translation of the whole crystal. There are, there-
fore, the three acoustic modes, co=0, a triply degenerate
normal mode I'», and three longitudinal and doubly
degenerate transverse optical modes.

Fio. 1.The crysta1 structure of strontium titanate.

tais a more systematic procedure is given by using
group theory. "

The normal modes of vibration are classified by as-
signing them to an irreducible representation of the
space group of the crystal. A representation for the
normal modes is obtained by choosing as a set of basis
vectors the displacement of each ion in turn along a
coordinate axis. If the character of a symmetry opera-
tion S is )c(S) in this representation, and its character in
the X irreducible representation is x"(S), then

The little group is 4mm, and the irreducible repre-
sentations are

4i) r+As+Shs.

The normal modes 6& and 62 are longitudinally polar-
ized modes, while those represented by 65 are doubly
degenerate transverse modes.

At the zone boundary the little group is 4/mmm, and
the irreducible representations are

2Mr+2Ms'+Ms+3Ms+2Ms'.

3f& and M5' correspond to doubly degenerate transverse
modes, while the other modes are longitudinally
polarized.

where C) is the number of times the X irreducible
representation occurs in the original representation.

When the normal modes of the crystal are described
by Bloch waves, the irreducible representations of the
symmorphic space groups can be obtained from the
irreducible representations of the little group, which is
that point group which leaves the wave vector un-
changed. The irreducible representations are then ob-
tained from Eq. (1) and from the characters of the
irreducible representations of the point groups. "'

The structure of strontium titanate is cubic perov-
skite, and the space group is Em3m. The ions are
situated on Ave interpenetrating simple cubic lattices as
shown and labeled in Fig. 1. The characters of the
different symmetry elements in the original representa-
tion are listed in Appendix I.

(a) q= (o,o,o)

The little group is m3m, and the irreducible repre-
sentations are

4rrs+rss

This result is, however, incorrect because the effect of
the macroscopic electric 6eld has been neglected. This
electric field splits the degeneracy of some of the normal
modes because the boundary conditions for the longi-
tudinal and transverse modes differ. ' The degeneracies

"V. Heine, Grottp Theory in Qttontttrn Mechanics (Pergamon
Press, inc. , New York, 1960).

'4 G. F. Koster, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1957), Vol. V.

The little group is mm except at the zone boundary,
where it is 4/mmm. The irreducible representations are

~&r+&s+5&4+4&4,
and

Mr+ Ms+ Ms'+Ms+ 2Ms'+ M4+ Ms+ 3Ms'.

There are no degeneracies at general points, but at the
zone boundary there are four doubly degenerate normal
modes.

The little group at a general point is 3m and its
irreducible representations are

4Ar+As+SAs.

At the zone boundary the little group symmetry is in-
creased to m3m and the irreducible representations are

r,'+r„'+r„+r„'+2r„.
The irreducible representation A.3 corresponds to doubly
degenerate normal modes, while at the zone boundary
there are four triply degenerate normal modes, one
doubly degenerate pair and a single normal mode.

2. Models

In the last section we found the properties of the
normal modes which can be deduced from the symmetry
of the crystal. In order to evaluate the frequencies of
any of the normal modes, a particular model must be
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where the notation is the same as that of Woods et ul. '
This model does not satisfactorily account for the

dispersion curves of the alkali halides, '" because it
neglects the polarizabilities of the ions. These polar-
izabilities can be introduced by using the shell model. ' '
The equations of motion of the shell model in the
harmonic approximation' are

~z~'&(I ) =Q(Rxz +Zz&xz Zz )U(&')

+Q (TKK'+Zzcxz'VK')+(+ ) y

o=g(Tz x+ &z&zz Zz )&(&')
(3)

+Q (SKK'+ Vzczz'VK')+(+ ) ~

The matrices Tzz and Szz give the short-range
interactions between the displacements and the elec-
tronic dipole moments, and between the electronic
dipole moments, respectively. In general, the elements
Rzz, Txz. and Szx are all different and must be
specified by different short-range force constants. How-
ever the shell charges Fx can be chosen so that Rxz.
=Txx. when the wave vector is zero, " and it was
further assumed that they are then equal for all wave
vectors. The validity of this approximation and the
further approximation that Szz =Rzz+Irz8xz are
discussed by Cowley, Cochran, Woods, and Brock-
house. "The model then corresponds to a shell model in
which all the short-range forces act through the shells.

In actual calculations the short-range forces were as-
sumed to be axially symmetric. If the equilibrium con-
dition is imposed then these forces become central
forces and the elastic constants obey Cauchy's relation,
C»= C44. In practice, this relation is nearly satisfied, but
the equilibrium condition was not imposed on the
models described below.

For each type of short-range interaction two parame-
ters are needed to specify axially symmetric forces.
These parameters were chosen to be the derivatives of a
potential function parallel and perpendicular to the line
joining the interacting ions. These were defined in a
similar way to those used for the alkali halides. ' "'

The forces were specified by

(r)s V) e'A;
t c)'V) e'B;

t ar'&&& 2e Ear'), 2s

employed for the interactions between the ions. The
simplest model which has been used for ionic crystals is
the rigid-ion model. ~' The equation of motion for this
model is then written in the harmonic approximation as

JrIzes'U(E) =g(Rzz. +ZzCzz'Zgp)U(&'), (2)

where the sufFix i is one for strontium-oxygen, two for
titanium-oxygen, and three for oxygen-oxygen forces.
Each type of force was assumed to act only between
nearest neighbors. The short-range contributions to the
dynamical matrix were then evaluated by the usual
procedure, and the elements are listed in Appendix II.

The ionic charges were specified by two charges; that
on the strontium ion was Z~e and on the titanium ion
Z2e. The charge on the oxygen ion is then Z&e
= —-,'(Zr+Zs) e.

The polarizabilities of the ions were specified in a
similar way to that used for the alkali halides. ' "These
polarizability parameters were chosen so that they were
independent of the choice of the shell charges. The
electrical polarizability was defined as

n;= I',s/D:;+ (T,~)sg,

and the short-range polarizability as

where the suSx i has values 1 for the strontium ion, 2
for the titanium and 3 for the oxygen, and (T»)s= 2Ar
+4Br, (Tss) o=As+2Bs. The oxygen. -ion polariza-
bilities are not isotropic, so that the polarizability was
de6ned in terms of a mean (Tss) s given by,

(Tss) s——-', (2A r+4Br+A s+2Bs+4A s+ SBs) .

The most complicated rigid-ion model of the crystal,
then, has eight adjustable parameters, six for the short-
range forces and two for the ionic charges, while for a
shell model there are fourteen parameters, the same
eight and six polarizability parameters.

3. Calculation of Dielectric and
Elastic Constants

The frequencies of the normal modes of vibration can
be obtained by solving Eq. (2) for a rigid-ion model, or
Eqs. (3) for a shell model. Once a particular set of
parameters has been chosen, their solution is quite
straightforward when the electrostatic coupling coeK-
cients are known. These coefficients were calculated
using the KDSAC II computer at the Cambridge Uni-
versity Mathematical Laboratory, and their values for
the (0,0,1) direction have already been reported. "These
and the coeKcients for the (1,1,0) and (1,1,1) directions
are listed in Appendix III.

The dielectric constants can be evaluated in terms of
the parameters introduced above. ' "The high-frequency
dielectric constant is given by Eq. (2.44) of Ref. 17 and
the static dielectric constant by Eq. (2.34). In practice
the high-frequency dielectric constant was evaluated
explicitly and the static dielectric constant obtained
from the Lyddane-Sachs-Teller relation as extended by
Cochran 2

"R. A. Cowley, W. Cochran, A. D. B. Woods, and B. N.
Brockhouse, Phys. Rev. 131, 1030 (1963).

's R. A. Cowley, Acta Cryst. 18, 687 (1962).
'r R. A. Cowley, Proc. Roy. Soc. (London) A268, 121 (1962).
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The elastic constants were evaluated explicitly using
the method of long waves as developed by Born and
Huang' and Cowley. "Since every ion is situated at a
center of symmetry, the polarizabilities do not affect the
elastic constants. The electrostatic contributions were
evaluated numerically. "The elastic constants are given
by:

022
L

021

02

012 002 012 022

H

020
H

Cii=

C44=

(2e'/tr) L-'s (2A t+28t+As+2A s+28s)
+0.16485 (Zts+Zss) —0.78348Zss
—1.0721ZtZs+2. 67981ZsZs —1.27803ZtZs j,

(2e'/t r) [x(A t —58t—8s+A s
—58,)

—0.55532 (Zt'+Zs') —1.60946Zs'
' +0.26873ZtZs —1.43585ZsZs+0. 05648ZtZs j,

(2e'/vr) Lx (A t+38t+8s+A s+38s)
—0.08242 (Zt'+Zs')+0. 39174Zs'

+0.53605ZtZs —1.33991ZsZs+0.63902ZtZs].

This last equation when substituted into the equation
for C~2 gives C~2= C44. r is half the lattice parameter and
v the volume of the unit cell, e=sr'.

III. THE EXPERIMENTS

1. Experimental Methods

The excellent single crystal of strontium titanate was
a 150-carat boule provided by the Titanium Division of
the National Lead Company. The mosaic spread was
measured against that of a silicon crystal and was 0.25
deg. The crystal, which had L1,0,0j aligned along the
length of the boule, was mounted in a metal cryostat,
and could be either cooled or heated from above. It was
aligned ie situ by using neutrons.

The experiments were carried out by using a triple-
axis crystal spectrometer. '

The integrated intensity of a neutron group, obtained
using the "constant Q" technique, s is given in the
harmonic approximation by'

)
ir'I B(qj)' X(qj)

8s' 1ksI co(qj) &(qj)+1

H(q j) is the structure factor for the mode and is given

by

H(qg) =
I P exp(2~i~. R(OE))Q e(E,q j)b&~Ic 'Is

&&exp( —W(E))1.

The electrostatic cohesive energy is (e'/r)asr, where crsr,
the Madelung constant, is given by

1.25950 (Zts+Zss)+4. 57109Zs'+0.79260ZtZs
—0.667170ZsZs+0. 48362ZtZs.

The equilibrium condition is then

4crsr+12(8t+8s)+38s= o

021 21

022 012 002
G

012 022

Fro. 2. The (1,0,0) plane of the reciprocal lattice of strontium
titanate. The Brillouin zone is labeled ABCD and the area in
which the reduced structure factor repeats is enclosed by (0,1,1),
(0,1,1), (0,1,1) and (0,1,1). OLM and OL'M demonstrate the
"constant-Q" technique in which the spectrometer is controlled so
as to keep the momentum transfer constant while varying the
energy transfer, while OGH and OG'H' shows the constant-energy
technique in which the momentum is kept along the desired
direction.

If a normal mode is propagating along the L0,0,1$
direction then the motion of all the ions is either
transverse or longitudinal. The dependence of the
structure factor on the wave-vector transfer can then be
separated out if we assume the Debye-Wailer factors for
the different atoms to be equal. We can then introduce a
reduced structure factor for the normal mode

h(qj)= ~P exp(2vri~ R(OE))e(Eqj)Mz. '~'bx~.

This reduced structure factor is periodic in reciprocal
space. Figure 2 shows the (1,0,0) plane of the reciprocal
lattice of strontium titanate. The Brillouin zone is
labeled as ABCD, while the reduced-structure factor
repeats over a larger unit in reciprocal space, enclosed on
Fig. 2 by the reciprocal lattice points (0,1,1), (0,1,1),
(0,1,1), and (0,1,1).Because the structure factor repeats
over a larger volume in reciprocal space than the fre-
quencies, there are several different points in reciprocal
space at which phonons of the same wave vector have
different reduced-structure factors. In the (1,0,0) plane
there are four corresponding to reciprocal-lattice vec-
tors, ~: (0,0,0), (0,1,0), (0,0,1) and (0,1,1).

The reduced-structure factor squared has been calcu-
lated for each of these different positions for normal
modes propagating in the (0,0,1) direction, by using
model IV of Sec. IV. The results are shown in Fig. 3.

2. Measurements of the Dispersion Curves

Measurements have been made at 90'K of four of the
transverse branches and of most of three of the longi-
tudinal branches. The measured branches are those with
the lower frequencies. The results are illustrated in
Figs. 7 and 9, where they are compared with several of
the models described in the next section. The highest
frequency transverse optic branch and the two highest
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frequency longitudinal optic branches were not meas-
ured because of the extra difhculty in measuring these
high frequencies. Unfortunately it was not possible to
complete the measurements on the longitudinal acoustic
branch with the crystal in the (1,0,0) plane.

Less complete measurements were made of three of
the transverse branches and the longitudinal acoustic
branch at 296'K. The results are shown in Figs. 7 and 9,
where they are compared with calculations using several
of the models described in the next section.

The frequencies of the normal modes with long wave-
length, q=0, can also be obtained by using infrared
spectroscopy. Strontium titanate has been studied by
Last ' Barker and Tinkham' and by Spitzer et al.4 The
frequencies of the transverse modes can be obtained
directly from these measurements, and those of the
longitudinal modes by using a result due to Kurosawa, "
as explained by Cochran and Cowley. "In Table I the
results of the infrared and neutron techniques are
listed, for the g=0 modes.

Since in strontium titanate each ion is situated at a
center of symmetry, its Raman spectrum is a second-
order spectrum and depends upon the joint density of
states for the phonons. Narayanan and Vedam" have
erroneously interpreted their results as a first-order
spectrum.

TAsz.E I.The frequencies of the q= 0 optical modes in strontium
titanate (units; 10"c/sec) as determined by neutron and infrared
spectrometry. The measurements with an asterisk are at 90'K and
the others at 296'K.

Neutron
spectroscopy

Normal mode measurements
Infrared measurements

(3) (4)

Transverse
V1

V2

V3

V4

Longitudinal
V1

V2

V3

V4

1.27*
2.73
5.10*
7.95'

5 10'
7.95*

1.20*
3.00

~ ~ ~

16.5

~ ~

14.5
24.5

~ ~ ~

2.63
5.34
~ ~ ~

16.3

5.25
~ ~ ~

13.8
24.9

3. The Temperature Dependence of the Lowest
Frequency Transverse Optic Mode

Cochran' has shown that, if the static dielectric con-
stant of a crystal follows a Curie law temperature
dependence,

c'= C/(T T)—
LONC l TUD I NAL ------TRANSVERSE

the temperature dependence of the q=0 transverse
optic mode with lowest frequency is expected to be

ter' K(T—T,) . =

nO
'c

oZ g

z

o Q——

t- g

~ 0
o 6a/
IX

~HI

0 &~ 05 +—g 00 ~. g OI5 '4—' g
'0

%zeal, Q) 4+0,t,o) i ~ (I,IP) '

NAVE VECTOR

Fro. 3.The reduced structure factor for normal modes propagat-
ing along the (0,0,0) direction calculated using model IV of Sec. IV.
The solid lines show longitudinal modes and the transverse modes
are polarized along the y direction and shown by dotted lines. The
modes are labeled in order of increasing frequency.

zz J. T. Last, Phys. Rev. 105, 1740 (1957).
zz T. Kurosawa, J. Phys. Soc. Japan 16, 1298 (1961).
"W. Cochran and R. A. Cowley, Inelastic Scatterizzg of Stow

1|Iezztrozzs (International Atomic Energy Agency, Vienna, 1963),
Vol. I."P. S. Narayanan and K. Vedam, Z. Physik 163, 158 (1961).

Mitsui and WestphaP' and Weaver" have shown that
the static dielectric constant above 20'K follows a
Curie Law with a Curie temperature of about 35'K.

The q=0 mode of the transverse optic branch with
lowest frequency has been studied at five different tem-
peratures, and the neutron groups obtained at three of
these temperatures are shown in Fig. 4. The increase in
intensity on the low-frequency side of the 90'K group
is due to the elastic and acoustic mode scattering as-
sociated with the (0,2,0) reciprocal lattice point. The
asymmetry of some of the groups and the change in the
width of the neutron groups with temperature are
probably largely due to effects associated with the finite
resolution of the spectrometer.

Figure 5 shows a plot of the frequencies squared
against temperature for this normal mode. The excellent
straight line gives ample evidence for Eq. (5), and the
validity of discussing ferroelectrics as a problem in
lattice dynamics, as suggested by Cochran. ' The Curie
temperature is given by the intercept of the straight line
with the temperature axis, which yields a Curie temper-
ature of 32%5'K, which is in excellent agreement with
the dielectric constant measurements. ""

"T. ]gitsui and W. B. Westphal, Phys. Rev. 124, 354 (1961).
2' H. E. Weaver, Phys. Chem. Solids 11, 274 (1959).
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FIG. 6. A plot of the
frequency (10'~ c/sec)
against temperature ('K)
for the (= (0.2,0,0) trans-
verse acoustic mode.
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TEMPERATURE

400

The ultrasonic measurements also showed anomalous
attenuation below 110'K, but no anomalous broadening
of the neutron groups at 90'K was detected for either
the longitudinal or transverse acoustic branches.

aOO 4 ooo0I I I les Io ~ wv0 I
0 .5 LO ).5 2 2.5 3.0 3.5 4 4 5

F REQUE N C Y '(lo sec )

FIG. 4. Neutron groups for the q=o lowest frequency transverse
optic mode at three diferent temperatures.

4. The Temperature Dependence of the
Transverse Acoustic Branch

IV. MODELS

The theory of the lattice dynamics of strontium
titanate was described in Sec. II. In this section we
discuss the results obtained when the parameters of
these models are fitted to the experimentally measured
elastic" and dielectric constants, """and to the fre-

Recent measurements of the elastic constants of
strontium titanate" "have shown that on cooling from
room temperature, C44 at first increases, but near 110'K
it decreases quite dramatically. "

Neutron measurements have been made of the
(= (0,0,0.2) transverse acoustic mode to see if a similar
temperature dependence is found at these higher fre-
quencies. The results are shown in Fig. 6 and there is
clearly no evidence for any discontinuity at 110'K,
within the limits of experimental error.

g4
'

LONGITUDINAI.

90 K

MODEL?........MODELIK

1'

TRAN SVERSE, ,
' LONGITUDINAL

90 K 290 K

~ ~ ~

TRANSVERSE
2954 K

~ .003

Oo
o
CLt- .002-'o
UJ

UJ

C)

t2

- IO

8 cI40

l2
X

CS

Ik

I~ ~ P

~ ~ 1

O

o .OOI-
O
K
CL

o
UJ

IOO 200 300
TEMPERATURE ('K )

400

6 o
Z
UJ

-4 UJ

U

500

o g aso s og o c. ohio c oy
1IIIAVE VECTOR

Fro. 7. The dispersion curves for model I (solid line) and model
III (dotted line) for the normal modes propagating along the
(f',0,0) direction. The experimental measurements are taken from
both neutron and infrared results. (See Refs. 3 and 4.) The irre-
ducible representations at the zone boundary are for the longi-
tudinal modes M2', M~, M3, M~, M2' in order of increasing fre-
quency, while for the transverse modes they are 3I5, M&', M5, N5',
M'q (model I) and Ms', 3fs, Ale, 3f'~', 355 (model III).

FIG. 5. A plot of the frequency squared against temperature for
the q=0 lowest frequency transverse optic mode. The dotted line
shows the reciprocal of the static dielectric constant (Refs. 22
and 23).

24K. Poindexter and A. A. Giardini, Phys. Rev. 110, 1069
(1958).

s' S. B.Levin, N. J. Field, F. M. Plock, and L. Merker, J. Opt.
Soc. Am. 45, 73'7 (1955).
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TABLE II. The parameters of the models described in Sec. IV. Those parameters which were varied in each model are given w'ith the
errors of the parameters, while for those which were kept Axed there are not any errors.

Model
Strontium-Oxygen

~1

Short-range forces e'/2z
Titanium-Oxygen

A2 J32

Oxygen--Oxygen

Aa 83

Ionic charge (e)
Strontium Titanium

~l Z2

90'K
I

II
III
IV
V

VI

296'K
I

II
III
IV
V

9.0+4.7
26.5+2.1
26.9&2.5
12.9&7.4
6.9&1.5
6.5w0.7

2.9&2.3
27.6a2.8
28.7+3.2
16.5+7.0
8.6+2.1

2.5&2.1—2.0&1.3—3.8&1.3
0.3~1.5
2.6*0.9
2.8&0.4

6.7~4.6—2.8&1.7—4.2&2.0—1.4&2.3
2.1&1.3

110.4%18.7
288.5m 10.3
292.2&10.7
313.7m 19.7
321.4& 9.8
317.7& 2.4

112.1%20.9
289.6&12.9
293.3a12.0
300.5&36.2
315.0m 12.5

—36.6~ 5.7—42.7& 2.4—41.4& 5.4—64.0~18.0—70.1~ 4.8—68.8~ 0.7

—36.3% 6.5—39.2& 4.2—40.8& 9.2—46.1~14.8—70.2& 5.3

24.8&6.9—3.7&4.3—6.8~5.0
5.3&8.8
8.8&2.9
9.8+0.6

28.3a7.7—2.9+5.4—5.5&6.2
5.5&8.6
9.1&3.9

1.0ai.5—0.1&0.9
0.8&1.2
0.4&3.9—2.1a0.7—2.5&0.3

Oai.8—1.1&1.4
0.1~1.4—1.6&2.8—2.3&0.9

1.40&0.21
2
2

1.26&0.47
0.83&0.07

0.82625

1.20+0.16
2
2

1.34+0.50
0.83&0.07

2.20&0.36

4.64~0.16
4.94&0.08

4.9123

2.32&0.35

4.39&0.50
4.91~0.09

Model
Strontium ion

0!I d1

Poiarizability (10 ") cms or (e)
Titanium ion

d2

Oxygen ion

Expected
error of an
observable/
exptl. error

90'K
I

II
III
IV
V

VI

296'K
I

II
III
IV
V

0
0.025
0.025
0.025
0.025
0.025

0
0.025
0.025
0.025
0.025

0
0—0.35%0.29—0.29+0.59
0
0

0
0—0.48%0.23—0.18&0.53
0

0
0.003
0.003
0.003

0.068&0.011
0.79441

0
0.003
0.003
0.003

0.079+0.011

0
0—0.08%0.15

0.01+0.06—2.13&0.46—2.596

0
0—0.05%0.16

0.03a0.09—2.60&0.41

0
0.028~0.002
0.030&0.002
0.027+0.004
0.018&0.003

0.01535

0
0.028&0.004
0.029&0.003
0.027&0.003
0.015%0.005

0
0.69&0.11
0.68&0.13
0.82~0.11
0.51&0.14

0.42162

0
0.68+0.15
0.69%0.15
0.78w0. 16
0.42&0.17

4.1
2.6
2.5
2.3
1.7
1.6

4.4
3.3
2.8
2.7
1.9

quencies of the normal modes as measured by infrared' 4

and neutron spectrometry, as described in the last
section. The fitting was performed by a nonlinear least-
squares analysis and the numerical work was done using
the EDSAC II computer.

Results have been obtained for several models at
both 90 and 296'K. The parameters of these models are
listed in Table II, while their agreement with the ex-
perimental elastic and dielectric constants is shown in
Table III. The agreement with the measured dispersion
relations is shown for models I and III in Fig. 7 and for
models IV and V in Fig. 9. The dispersion relations in
the (1,1,0) and (1,1,1) directions have also been calcu-
lated for some of the models and are shown in Figs. 8
and 10.

A particularly interesting feature of the models is
that the large charges in the frequencies of the trans-
verse optic mode with lowest frequency have been ob-
tained with comparatively small changes in the parame-
ters of the models. Model VI, for example, has the ionic
charges and polarizabilities of model V at 296'K but 6ts
the 90'K measurements with only small changes in the
short-range forcy constants,

Model

Elastic constants
10"dynes cm '

C11 C12 C44

Dielectric
constants

e0

90'K
Exptl.

I
II

III
IV
V

VI

296'K
Exptl.

I
II

III
IV
V

3.35.
2.95
3.26
3.19
3.40
3.48
3.49

3.30&
2.98
3.30
3.31
3.45
3.46

1.05.
1.00
1.07
1.07
1.05
1.02
1.05

1.01~
1.12
1.25
1.27
1.24
1.19

1.27'
1.01
1.80
1.71
1.57
1.33
1.33

1.24~
1.02
1.80
1.71
1.65
1.28

1305"
193.1

1161.3
1171.8
889.9

1227.4
1150.7

301 Ob

37.9
300.9
292.9
215.1
244.2

5 5c
1
3.88
3.83
3.64
5.66
6.30

55c
1
3.8
3.8
3.73
5.78

a These have been obtained from Eq, |,'8) neglecting the effects of the
110'K transition.

b See Refs. 22 and 23,
& See Ref. 25.
d See Ref. 11

TABLE III. The agreement between the experimental elastic and
dielectric constants and those calculated using the models.
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Fxo. 8. The dispersion
curves in the (f,f,O) and
(I',1'g) directions for models
III and V at 90'K. The
irreducible representations
in order of increasing fre-
quency are at the point (A);
Mq', Mii', Mq, Mii' (model
III), and M3', M2', M5, M3'
(model V). At the point (B)
they are M2, M5', M3, M5',
M1, M5', M4 for model III
and M3, M, ', M2, M5', M, ',
M1, M4 for model V, while
at the zone boundary (C)
they are F12', r, F25, F16,
I'2&', I' s' (model III), and
r„,'r„, r„', r„', r,'„r,'
(model V).

~ ~ 0« ~)

V. THE 110'K PHASE TRANSITION

1. The Temperature Dependence of the
Elastic Constants

The temperature dependence of the elastic constants
of crystals has been discussed by several authors. ' '6 The

potential energy of the crystal is expanded in a double

power series of the deformation parameters and of the
phonon coordinates, Eq. (40.4) of Ref. 8.

If this expansion is taken about the equilibrium con-

6guration of the lattice at each temperature, then the
isothermal elastic constants can be obtained from' "

(~&v&) c,»( )+2 2 4», ( qj «j)P~/2(qj))(2~(qj)+0+2~2 c,( «j «j

A |' 2e(q j)+1
XC'.s(—, «j«j ) —.I, , , I

—2 2 c'-s(—,«j—«j)c'.s(—,«j—«j)
2oi(q j)E~o'(qj)—oi'(q j') &

A A2

. ,(»(qj)+~)+ . , ~(qj) (~(qj)+1) (6)
-4 («j)' 2'�(qj)'k2'

The notation is similar to that of Born and Huang. ' The
elastic constants are then given by

~-f vs'-= (~/4~)I:(~P,v~)+(~P, &v)+(P~,v&)+ (P~,&v)j
The adiabatic and isothermal elastic constants are

related by macroscopic relations, which in Voigt's
notation are

C11ad C11 Iso
—C12ad C12 8

= (TP'rr /C &) (gt&iso+ 2C&&iso)s

C44'd —C44'" =0

The third term in the expression (6) for the elastic

26 G. Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1961),
Vol. 12.

constants is particularly of interest. The summation is
over all the different pairs of normal modes with a
particular wave vector and belonging to different
branches of the dispersion relations. Figure 11 shows the
longitudinal-acoustic and transverse-optic dispersion
curves at 296'K and at 90'K. At the higher temperature
the curves are well separated, but at 90'K they appear
to be almost degenerate over a considerable region of
wave-vector space. Since at zero wave vector the tem-
perature dependence of the transverse optic Inode is
given by Eq. (5), it might be expected that the tempera-
ture dependence of the denominator in the third term of
Eq. (6) for these two normal modes is given by

c0'(q j)—tos («j') u T T&, —
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where Tz is the temperature at which they become
degenerate. The above temperature dependence can
also be obtained by using a lowest order anharmonic
theory of the temperature dependence of the normal
modes.

The other factors in the expression for the elastic
constants are either independent of temperature or as a
6rst approximation can be written as proportional to
temperature in a limited temperature range. The elastic
constant is then given by an expression of the type

s ~ r r r r

& k LONOlf'~aL

20
MODEL I
MODEL 2

l6

0v

I2-

r r ~ r ~ e ~ ~ r

TN~g&ggg . l L LONI~~~ .
OO'K 204 K

C

TRANSV ARSE

294 K

C p, ~s=A+BT+C/(T T~). —

The coefficients A, 8, C can, in principle, be obtained
from the matrix elements and summations over the
normal modes. The coefficient C would be particularly
difBcult to evaluate, because it depends on the detailed
shape of the dispersion curves near the degeneracy.

The temperature dependence of the elastic constants
has been measured above 110'Kby Bell and Rupprecht, "
who obtained

z
0
LII
CL

8i

00 g~ . 0.5 0 g~ 0.5 0 g~ 0.5 0 g~ 05
WAV E VECTOR

Cii ——3.341X10"$1—2.62

X 10 4(T—T~) —0.0992/(T —T~)],
Cts ——1.049X 10"L1—1.23

X 10—4 (T—T~)+0.1064/(T —T„)),
C44= 1.267 X10"t1—1.30

X10 4(T—Tg) —0.1242/(T —T~)j,

Pro. 9. The dispersion curves for model IV (sohd line) and
model V (dotted line) for normal modes propagating along the
(f,0,0) direction. The experimental measurements are taken from
both neutron and infrared spectrometry. (See Refs. 3 and 4.) The
irreducible representations at the zone boundaries are for the
longitudinal modes Mg', M1, M3, Afar, Jff/J~' except for model V at

(8) 90'K which gives Ms', M3, Mq, Mq, Mr' while for the transverse
modes they are 3fe, 3fe', Me, 3Ie', Me. The irreducible repre-
sentations are listed in order of increasing frequency.

If the transverse optic mode is almost degenerate with
the longitudinal acoustic mode in this temperature
region over a considerable region of q space, as suggested
by Fig. j.i, then there will be many normal modes for
which Eq. (9) can be satisfied and the ultrasonic
attenuation will be large.

with T~ =108'K.
These results are clearly in agreement with the tem-

perature dependence predicted by Eq. (7). Bell and
Rupprecht" also found that the ultrasonic attenuation
increases dramatically near 110'K. The ultrasonic
attenuation can be calculated in an exactly similar way
to the elastic constant2~ and arises when the frequency
0 of the ultrasonic wave is such that

2. The Transition

The elastic constants of the crystal will become nega-
(9) tive just above Tz, Eqs. (8). When the elastic constants
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FIG. 10.The dispersion curves of
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directions. In order of increasing
frequency the irreducible represen-
tations are for the zone boundary
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for the zone boundary (C) they are
P25 I Plr P r, F25 Ps (90 K)
and r„', r,.-', r,', ', r'», r»', r,'
(296'K).
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'o L. Rimai and G. A. deMars, Phys. Rev. 123, 702 (1962).

become zero the crystal will undergo a spontaneous
deformation to a new structure, the extent of the de-
formation depending upon the third- and fourth-order
elastic constants. Since the elastic constant C44 becomes
negative at the highest temperature, a tetragonal low-
temperature structure can result by combining three
shear distortions along different axes in the crystal. A
tetragonal structure of strontium titanate below 110'K
has been found by Rimai and deMars. "In this transi-
tion the volume of the crystal does not change, and it is
extremely likely that the crystal splits up into small
domains, with the major tetrad axis, the z direction in
the domain, along different cube axes.

The elastic constants and the free energy of the
crystal depend not only on, the frequencies co(qj) and
oo(qj') which are nearly degenerate, but also on the
number of these normal modes which are nearly de-
generate. The temperature dependence of the distortion
can then be estimated if we assume that its magnitude
is proportional to the difference in the number of normal
modes just above the degenerate frequency to those
just below this. The frequencies squared of the trans-
verse optic modes are linearly temperature-dependent,
while the deformation is limited by the third-order
elastic constants which are assumed to be independent
of temperature. The temperature dependence of the
distortion is then proportional to (T~—T)'I' as found
experimentally by Rimai and deMars. "

The discussion given above is very crude and cannot
be expected to give satisfactory results at temperatures
far away from the transition temperature. In particular
the temperature dependence will depend on the effect of
the distortion on the other normal modes, particularly
near the degeneracy in the longitudinal acoustic and
transverse optical branches, the temperature depend-
ence of the population factors of the normal modes, and
the effect of the domain structure on the free energy.

Below the transition the behavior of the elastic con-
stants and ultrasonic attenuation will be very complex.
The elastic constants will be an average over the
different orientations of the domains, as well as being
strongly affected by the exact details of the degeneracies
of the normal modes and their behavior in the distorted
crystal. The ultrasonic attenuation will also be anoma-

ious because of reRection of the ultrasonic waves at the
surfaces of the domains, as suggested by Bell and
Rupprecht. &'

3. The Dielectric Properties

Below 110'K the frequencies of the normal modes of
vibration will be altered by the distortion of the
crystal. It is likely that the frequency of the transverse
optic mode will be particularly sensitive because of the
large changes which occurred when small changes were
made in the parameters of the models of Sec. IV. If the
lattice spacing decreases by 5a along the x and y
directions and increases by 28a along the unique z axis,
the frequency of a transverse optical mode depends upon
whether it is polarized along or perpendicular to the z
axis.

The changes in the frequencies due to the distortion
can be estimated from the volume dependence of the
frequencies in the cubic structure. Equation (5) for the
frequency will be modified to

oo,'=E(T—T,)+28aB,
ro,'= E(T—T,)—8aB,

where co, is the normal mode polarized along the z axis
and B=da&'/da

The distortion of the crystal then changes the Curie
temperature by —28aB/E for displacements along the
s axis, and by 8aB/E for those perpendicular to it.

The dielectric constant of a large crystal can then be
estimated by assuming that there are an equal number
of domains orientated with the z axis along each of the
three original cube axes. The average dielectric constant
is then

1 1 /T T,+ (28aB/E)— T T, (oaB/E—) I—
!+2

eo c )'
and therefore,

e'= C/(T —T.) .
The dielectric constant of a bulk sample of the

distorted crystal is then identical with that of the
crystal if there was no distortion. This result explains
the rather surprising experimental result""" that the
reciprocal of the dielectric constant does not even
change slope through the 110'K transition.

The distortion does however inQuence the low-tem-
perature dielectric properties. Since the Curie tempera-
ture is raised in one direction, some of the domains can
become polarized above T,. This spontaneous polariza-
tion will occur along different directions in the crystal,
corresponding to the different orientations of the do-
mains, and will be frozen in to a particular configuration
by the domain pattern produced by the 110'K transition.

The dielectric behavior at low temperatures will
therefore be extremely complicated. Deviations from
the Curie law will be caused by the spontaneous
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polarization of some of the domains. Further and
probably larger deviations will be caused by quantum
effects. Barrett" demonstrated how these occur by using
a Slater model of a ferroelectric, and very similar con-
clusions can be obtained by using a lattice dynamical
approach. These two effects can probably account for
the deviations from a Curie law found experi-
mentally. ""

When an electric 6eld is applied the crystal shows a
remanence polarization" at temperatures above 50'K.,
the size of this remanence polarization increasing as the
temperature decreases. This polarization may be pro-
duced by the electric field aligning the spontaneous
polarization of some of the domains, which is then frozen
in by the domain structure when the 6eld is released.
The increase in magnitude with decreasing temperature
arises because more and more domains become spon-
taneously polarized. The distortion required to shift the
Curie temperature to 50'K, an increase of about 15'K,
can be estimated from the measurements of the pressure
dependence of the Curie temperature, "while the sign
of the distortion is given by the change in free energy of
the crystal. The change in the vibrational part of the
free energy due to the changes in the frequency of the
transverse optic mode show that the domains are
probably elongated along the unique s axis. The de-
pendence of the Curie temperature on lattice spacing is

dTc 1.2X10'

For an increase in Curie temperature of 15'K, the
increase in length along the tetragonal axis is 0.005 A,
while the contraction perpendicular to the axis is
0.0025 A. These distortions are very small, and could
easily have been Inissed in the x-ray diffraction work
quoted by Bell and Rupprecht. "

VI. DISCUSSION

1. The Parameters of the Models

The parameters for the rigid-ion model (I) show that
both the short-range forces between the titanium and
oxygen ions and the titanium and oxygen ionic charges
are considerably smaller than for the shell models. This
decrease in magnitude must in some way compensate
for the neglect of the polarizabilities of the ions.

The parameters of all of the shell models are far more
similar to one another than they are to the rigid-ion
models. The parameters specifying the short-range
forces in models II and III, in which the ionic charges
were kept Axed, are very similar, but when the ionic
charges were allowed to vary in models IV and V there
was a decrease in the strontium-oxygen forces and a
slight increase in the titanium-oxygen forces. These
changes are accompanied by a decrease in the ionic

29 J. H. Barrett, Phys. Rev. 86, 118 (1952).
~W. J. Merz, Phys. Rev. 77, 52 (1950).

charge of the strontium ions and an increase of the
charge on the titanium ions.

It is of interest to compare the parameters of the
short-range forces with those obtained by the method
suggested by Fowler. " Devonshire, 32 Kinase, 33 and
Dvorak and Janovec'4 have used these forces to describe
the forces in perovskite ferroelectrics. In the notation of
Sec. II.2, the parameters of their forces are:

A g
——30.1 32=429.1 A 3=63,5

8j ———2.74 82———41.53 83———6.16.

Although these force constants are signi6cantly different
from those of any of the models of Sec. IV, they do
exhibit some of the principal features; for example, A2
is by far the largest. Nevertheless, the frequencies of the
normal modes of vibration are so sensitive to small
changes in the parameters that these short-range force
constants do not give an adequate description of the
interactions.

When the ionic charges were allowed to vary in the
shell models (IV, V), the charge on. the titanium ion
becomes larger than four, and on the strontium ion
about one electronic charge. The charge on the oxygen
ions remains at nearly two. These results suggest that
the bonding in strontium titanate is more nearly ionic
than covalent in character.

There is a considerable reduction in the error of the
models when the short-range polarizabilities of the posi-
tive ions are allowed to vary (III, IV). These polariza-
bilities of the positive ions come out either very small or
negative, and cannot be readily understood in terms of
the shell model. These results are exactly similar to
those found for the alkali halides, potassium bromide
and sodium iodide. "In an exactly analogous way to the
alkali halides, when the titanium ion s electrical polar-
izability was allowed to vary (V) the polarizability of
the positive ion was larger than the crystal polariza-
bility, "while the polarizability of the oxygen ions was
reduced. It was shown" that these surprising polariza-
bility parameters could arise in the alkali halides from
the neglect of the quadrupole moments produced on the
negative ions. A similar explanation can be advanced
here in terms of the quadrupole moments of the oxygen
lons.

A surprising feature of the polarizabilities of the
oxygen ions is their anisotropy. For example, the elec-
trical polarizability of the oxygen ions for the 90'K
model V is 2—,

' times as large in the strontium-oxygen
plane as in the titanium-oxygen direction. The short-
range polarizability in the titanium-oxygen direction is
—1.41, while it is 0.615 in the strontium-oxygen plane.

+ R. H. Fowler, Statistical 3lechattics (Cambridge University
Press, Cambridge, 1936), 2nd ed.

"A. F. Devonshire, Phil. Mag. 40, 1040 (1949).I W. Kinase, Progr. Theoret. Phys. (Kyoto) &&, 529 (1955).
e4 V. Dvorak and V. Janovec, Czech. J. Phys. 812, 461 (1962)."J.R. Tessmann, A. H. Kahn, and W. Shockley, Phys. Rev.

92, 890 (1953).
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These polarizability parameters suggest that the elec-
tronic wave functions of the oxygen ions may be con-
siderably distorted from spherical, and that the shell
parameters V3 and k3, which were assumed to be
isotropic, should be diferent for different directions.

3. The Temperature Dependence of the
Transverse Optic Modes

One of the most interesting features of strontium
titanate is the temperature dependence of the transverse

TAsI.E IV. The displacements of the ions in the q=O modes of
model IV at 90'K, polarized along the s direction, and expressed
so that the eigenvectors of the dynamical matrix are normalized
and orthogonal. The numbering of the modes is in order of in-
creasing frequency.

Model IV

Transverse

Sr OIIl Or OEI

(1)
(2)
(3)
(4)

Longitudinal

(1)
(2)
(3)
(4)

0.077 0.022 —0.093 —0.129 —0.129
0.097 —0.074 0.035 0.040 0.040

0 0 0 —0.177 0.177
0.007 0.004 —0.217 0.087 0.087

0.080 —0.077 0.050 0.065 0.065
0 0 0 —0.177 0.177

0.057 0.001 0.107 —0.143 —0.143
0.075 0.008 —0.207 —0.032 —0.032

Displacements of 0.053
ions in BaTi03
transition' (A)

0.003 —0.051 —0.047 —0.047

a See Ref. 36.

"B.C. I'razer, H. R. Danner, and R. Pepinsky, Phys. Rev. 100,
745 (1955).

2. The Motion of the Tons in the
Normal Modes

There has been considerable discussion as to the
nature of the ionic displacements in the transverse optic
modes of strontium titanate. The polarization vectors
for these normal modes have been obtained for several
of the models described earlier, and are listed in
Table IV for model IV. The lowest frequency transverse
optic mode is found to be predominantly a vibration of
the titanium ion against the rest of the structure.

If the crystal becomes unstable against the lowest
frequency transverse optic mode of vibration, it might
be expected that the displacements of the ions would
resemble the pattern of the displacements in the trans-
verse optic mode of vibration. ' It is therefore of interest
to compare the displacements of the ions with the meas-
ured displacements of the ions in tetragonal barium
titanate, "and these are also shown in Table IV. Con-
sidering the difference in the masses, sizes and polariza-
bilities of strontium and barium ions, the displacements
of the ions in barium titanate are fairly similar to those
in the lowest transverse optic mode of strontium
titanate.

optic mode of lowest frequency. The difference between
the parameters of the models which were fitted to the
measurements at 90'K and those fitted to the 296'K
measurements are not large, and model VI shows that
it is possible to obtain the temperature dependence by
changing the parameters of the short-range interactions
by quite small amounts. These results show that only
quite small changes in the parameters of the interactions
can give rise to the observed temperature dependence.

The temperature dependence of the normal modes in
potassium bromide has been investigated both experi-
mentally' and theoretically. ' The changes in the
parameters of the models, which are needed to reproduce
the changes in the frequencies of the normal modes from
90 to 400'K, are fractionally very similar to those re-
quired for strontium titanate. We can therefore con-
clude that, broadly speaking, it is not necessary to
invoke any mechanism to explain the temperature de-
pendence in strontium titanate, other than what is
present in the alkali halides.

The temperature dependence of the normal modes in
sodium iodide and potassium bromide has recently been
shown to arise largely from the anharmonic interactions
between the normal modes. '~ Quantitative calculations
of the anharmonic effects in strontium titanate, which
will be reported elsewhere, suggest that a similar
mechanism is responsible for the temperature depend-
ence of its normal modes.

The anomalous behavior of the normal modes in
strontium titanate compared with the alkali halides is
associated with the difference in the dynamical matrices
of the two crystals. In the alkali halides, the frequencies
of the normal modes are all fairly similar in magnitude
(apart from the elastic constants region of the acoustic
branches). For strontium titanate, on. the other hand,
there is a very large difference between the frequencies
of the optical modes. At 90'K the ratio of the highest to
lowest eigenvalue (frequency squared) of the dynamical
matrix is as large as 400:1. A change in the parameters
of only 0.25'Po will then hardly alter the largest eigen-
value but can drastically alter the smallest. The
ferroelectric character of these perovskites then arises
from the almost perfect cancellation of the strong short-
range and Coulomb interactions for one particular
normal mode. A small change in either of these strong
interactions has a drastic eGect on the frequencies of
this normal Inode.

4. Unstable Normal Modes in the (1,1,0)
and (1,1,1) Directions

Several of the models described in Sec. IV show
instabilities against some of the normal modes of vibra-
tion propagating along the (1,1,0) and (1,1,1) directions.
Examples of these are shown in Fig. 8 for models III
and V. It is unlikely that these instabilities occur in
strontium titanate and in this respect those models

"R.A. Cowley, Phys. Chem. Solids (to be published).
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which show them are unrealistic. However, these in-
stabilities may well occur in some of the perovskite
materials which have phases that are slightly distorted
forms of the cubic perovskite structure. For example,
CdTiOg, NaTa03, CaTi03, NaNbO& show multiple unit
cells which are 2)&2&(2 times the cubic cell when re-
ferred to the original cube axes while NaNb03 shows a
4&2&(2 unit cell, and PbZr03 shows a 4X4)(2 unit
cell."

All of the unstable normal modes are rotations of
groups of the oxygen ions. In models I and V octahedra
rotate around the titanium ion while in model III
squares of oxygens rotate about the points (-'„0,0),
(O, sr, 0) and (0,0,sr). A further feature of these unstable
normal modes is that their frequencies are very de-
pendent upon the details of the models. For example,
the normal mode F25' are unstable for models I and V
but for model III have a frequency of 2.6 and for model
IV of 3.5.

The transitions to the multiple unit cell perovskites
Inay well be instabilities against these normal modes as
suggested by Cochran. 2 Unfortunately the displace-
ments of the ions in real distorted perovskite structures
are far more complex than mere oxygen octahedra
rotations. However, in several of these materials, the
rotations of the oxygen octahedra are the predominant
displacements. "The displacements of the other ions are
not, however, negligible and a detailed treatment would
be very complicated. The unstable normal mode must
be strongly coupled both to the macroscopic strain
parameters and to some of the other normal modes in
the crystal.

5. The Models of Other Authors

Several authors have previously used models for
the lattice dynamics of perovskite ferroelectrics. Devon-
shire" used a rigid-ion model with Fowler's" short-range
forces to attempt to relate the parameters of his
thermodynamic theory to the microscopic interactions.
Recently Dvorak and Janovec'4 have calculated the fre-
quencies of the transverse optic modes of this model,
and have found the structure unstable unless the formal
ionic charges are multiplied by a factor 0.16. The fre-
quencies are not then in agreement with the results of
neutron or infrared spectrometry.

Kinase33 has used this model, and included the elec-
trical polarizabilities of the ions, but the results were no
more satisfactory.

Last' suggested that the infrared spectra could be
explained by assuming that the titanium-oxygen octa-
hedra was a strongly bound complex which was weakly
coupled to the other anion. As the lowest frequency
optic mode is a vibration of the titanium against the

rest of the structure this model is unsatisfactory.
Rajopal and Srinivasan~ studied the frequencies of
vibration at q=0 when all the Coulomb forces are
neglected. The high- and low-frequency dielectric con-
stants of this model are then equal (to unity!) and the
frequencies do not agree with the experimental results.
A similar model has been used by Silverman and
Joseph" for the transverse optic modes with q=0.

VII. CONCLUSIONS

The frequency versus wave-vector dispersion curves
of strontium titanate for several normal modes propa-
gating in the L0,0,1j direction have been measured ex-
perimentally by using neutron spectrometry. These
results have been used to And the parameters of several
models of the crystal within the harmonic approxima-
tion. It was found that quite reasonable agreement with
experiment could be obtained by using shell models in
which the ions interact with one another both through
short-range forces between neighboring ions, and through
long-range electrostatic forces, determined by the ionic
charges. The effects of the polarizabilities of the ions are
also included. The principal features of the more suc-
cessful models are that the titanium-oxygen short-range
forces are very large, while the ionic charges on the ions
are also large and very nearly the formal charges.

Of particular interest in strontium titanate is the
temperature dependence of the transverse optic mode
with lowest frequency. This was measured experi-
mentally and for the q=0 mode the square of the fre-
quency was found to be proportional to temperature
above 90'K, in agreement with the temperature de-
pendence of the static dielectric constant as predicted
by Cochran. 2 This result shows that it is a valid ap-
proach to treat the problem of ferroelectricity as an
instability of the crystal against one of the normal
modes. The motion of the ions in this normal mode was
obtained for several of the models used, and was found
to be predominantly a vibration of the titanium ion
against the oxygen octahedron. The displacements of
the ions at the ferroelectric transition in barium titanate
are very similar to this.

It was found that the experimentally observed
changes in the frequencies of this normal mode could be
obtained by changing the parameters of the shell models
only slightly. The fractional changes were very similar
to those needed to reproduce the temperature depend-
ence of the normal modes in the alkali halides. This
result suggests that it is unnecessary to introduce any
mechanism to explain the temperature dependence of
this normal mode, other than those which occur in the
alkali halides. The indications are then that the temper-
ature dependence of this normal mode can be explained

"F. Jona and G. Shirane, Ferroeleetree Crystals (Pergamon
Press, Inc. , New York, 1963).

"H. D. Megaw, Ferroelectricity in Crystals (Methuen and
Company, Ltd. , London, 1957).

0 R. K. Rajopal and R. Srinivasan, Phys. Chem. Solids 2B, 633
(1962).

4'B. D. Silverman and R. I. Joseph, Technical Memorandum
T-451, Raytheon Company, 1963 (unpublished).
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in terms of the anharmonic interactions between the
normal modes of vibration.

The dispersion curves along the (1,1,0) and (1,1,1)
directions of the models have been calculated and some
of these show normal modes against which the crystal
would be unstable. Although it is unlikely that these
instabilities occur in strontium titanate, they may well
be associated with the transitions in other perovskite
materials.

The transition in strontium titanate at 110'K has
been discussed in terms of an accidental degeneracy of
two branches of the dispersion curves. The experimental
results from neutron spectrometry show that this de-
generacy occurs very near 110'K. The anomalous
elastic properties near 110'K and the smooth behavior
of the static dielectric constant can be easily obtained
with this theory. It is suggested that the convicting
experimental results on the low-temperature dielectric
properties, and the temperature dependence of the
distortion of the crystal can also be explained by this
approach.

It is clearly of interest to try to obtain more satis-
factory models of strontium titanate, in the hope of
obtaining a better understanding of both tke tempera-
ture dependence of the static dielectric constant and of
the 110'K transition. Experimental measurements of
the dispersion curves in the (1,1,0) and (1,1,1) direc-
tions would enable the parameters of the models to be
6tted more accurately. The models could then be ex-
tended by including anisotropic oxygen polarizabilities,
more short-range forces, and abandoning the assump-
tion that R= T= S.

The difhculties in describing the results in terms of a
harmonic model might then become more serious, and
it might well prove necessary to use a complete anhar-
monic theory to describe the lattice vibrations.
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APPENDIX I

A. The Characters of the Symmetry Oyerations

The representation chosen for the normal modes is
obtained by displacing each ion in turn along the
coordinate axes by a unit distance. The characters of the
different symmetry elements are:

identity operator

triad axis

tetrad axis along the s axis

x(C4,)= 1+2 exp(i2q, r),
diad axis along the s axis

x (C2,) = —1—exp (i2q.r)
—exp(i2q„r) —2 exp(i2(q, +q„)r),

diad axis at 45' to both x and y axes

x (C2g„') = —2—exp (i2q,r),
inversion operator

x (I)= —3L1+exp (i2 (q,+q„+q,)r )+exp (i2 (q,+ q„)r )
+exp(i2(q„+q, )r)+exp(i2(q, +q,)r)j,

plane of symmetry perpendicular to the 2' axis

x(0,„)=2+3 exp(i2q, r),

plane of symmetry at 45' to x and y axes and including s
axis

inversion tetrad axis along the s axis

y(54,)= —1—exp(i2q, r) —exp(i2(q, +q,)r),
inversion hexad axis

x(S )=0
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B. The Displacements of the Tons in Diferent Normal Modes

A995

Irreducible
representation

(= (0.0,r)

Normal mode

Sr„Ti„Oz, Or r~ =Orr z~.

Ozr~= —Orrr~.

Sr, Ti,Oz~, Ozz~ OIII
Sry, Tiy, Ory, Orry, Ozrry.

Irreducible
representation

(=(Ml)
A3

Normal mode

O„.= —(O,y+O„,.).
Ti, = —Tiy, Sr, = —Sry,
Or. = —Orry, Orrz

= —Or r ry, Ozr r~ = —Ozy.

(= (0,0,k)

373

355

(= (u, 0)

(= (-', ,—,',0)

314

3f2'

355'

(= R,u)
A.1

Trz) Ozzz —Ozrzz

Sr~, Oz~

Ozr~= —Orrr~.

T4, Ozz~, Orrz~

Tr» Ozry, Orrzy

Sr, Or

Sry, Ozy

Ti =Tiy, Sr, = Sry, Oz, ——Ory,

Ozzx Orrry Orrzx Orzy.

Orr~ = —Orrrz.

Ti, = —Tiy, Sr, = —Sry, Oz = —Ory,
Orr*= —Orrry, Orrr*= —Orry

T4, Sr., or., Orr. =Ozrr'

ozr~ =Orzry.

Ozrr*= —Orry

Ozr~ = —Or. rzy

Orrz~ = Ozry

Sr, .

T4) Or'
Ozrz

Ozr rz.

Ti, Sry, Oz, .
Tiy, Sr„Ozy.

Sr =Sry =Sr„Ti =Ti„=Ti„
Ozzzx = Ozry =Orz Orzry =Ozzrz

=Ozr. =Ozz =Or =Ory.

Or~ =Orrz=Ozrry= —ory
= —Orr*= —Orrr~.

Tj,= —(Ti„+»,), Sr = —(Sry+Sr, ),
O .= —(0 y+O, ), O .= —(o +O .),

r2'

I 12

~25

(= O, r, -'.)

Z1

(= (l,0,r)

Or, =Orry=Orrr*

Ore =0r z y
— gO I I Ix.

Or. = —Orry.

Ory= —Ozr'

Ozrx Orrry

Tl ~.

Try.
Tlg.

Sr„Ozy =Orr.
Sry, Or =Ozrr ~

Srz) Orr~=Orrry.

Sr~, Or r~ =Or r ry.

Orzzx — Orry

Orrx — Orrry

T4, Orrz*=orry, Or~

»., Sr» oz., orzr'
»y, Sr., Ory, Ozr'

», Sr =Sry, Orrr~=Ozzz,
Ory =Or*.

Sr~= —Sry, Orrr~= —Orz~)

Ory= Ozx

Tr~=»y) Srz) Ozz) Ozry=Ozzrx)
Orrx =Orrry.

Tr~ = —Try) Ozzzx = —Ozry)

Orr~ = Orrry

Ti, Srz Or Ozzz Orrzz

Sry) Orrzy.

Ti„Sr„Orrz~, Ozrz Ore

Tly) Ory) Orry
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C. The Compatibility Relations

(= (0,0,t ) with (= (0,0,0):
r„—a,+a„r„,—a,+z,.

(= (0,0,f) with (= (0,0,—',):
~1 ~1y ~1 ~2 y ~2 ~3) ~5 ~57 ~5 ~5 ~

(= (f,g,0) with g= (0,0,0):
r13—Z1+Zs+Z4, rss —Z1+Zs+Zs

(= (t g,0) with (= (-,',-'„0):

~1 ~1y ~2 ~3p ~2 ~4) ~8 ~3p ~3 ~4p ~4 ~lp

Ms —Zs+Z4, Ms' —Z1+Zs.

(= (|,g,|) with (= (0,0,0):
r13—As+As, r23 —&2+&3

(= Q,f,t) with f= (-,',—',,—',):
r„'—A,yA„r„—A,+ A, , r„—A,yA„r, ' —A, ,

F12 —A3.

(= (-2', 2,|)with (= (-,', 2,0):
~1 ~1y ~2 ~1 p ~2 ~1) ~3 ~2) ~3 ~2

M4 —~2', m5 —~„m5'—~5.

(=(2)2,|)with (= (-,' —'-'):
r, ' —a,', r„'—z,'+s,', r„—s,+s-., r„—g,yq, ,

rss' —As'+ As.

(= (l,t, s) with (= (0,0, -', ):
M1—Z1, Ms' —Z4, Ms —Zs, Ms —Zs+Z4, Ms' —Z1+Zs.

(= (i Z, ) th (= (l,-'„!):

r, ' —z,, r„'—z,+z,, r„—z,+z,+z„
Zl+Zs+Z4p r23 Z1+Z2+Z4

(= (-,',0,f) with f= (-,',0,0):

M1 Z1 M2 Z3 Ms Z1 Ms Z2+Zs Ms Z4+Z1

(= (-'„Og) with (= (-'„0,-',):
M,—Z„M2—Z„3f,'—Z4, M, —Z„M,'—Z, , M4 —Z„

Ms —Zs+Z4, Ms' —Z1+Zs.

APPENDIX II: THE CONTRIBUTION OF THE
SHORT-RANGE FORCES TO THE

MATRIX R (XX')

The complete (15&&15)matrix can be split up into the

(5)&5) matrices for the (xx), (yy) components. In
this appendix the (xx) and (xy) components are tabu-

lated, in terms of the force constants introduced in
Sec. II.2. C, C„, C, are the cosines of q r, q„r, q,r, while

S, 5„, 5, are the ana1ogous sines, and 2r is the lattice
parameter.

The matrix R„in units of es(2 is

Oz

Ozz

Ozzz

A +228 2

—B2C,
—B2C„
—A2C

Sr

2A 1+481
—(A 1+81)C.C„
—(A 1+81)C,C,

—2B1CyC,

OI

—B2C,
—(A1+81)C,C„

A 1+81+82+A;+383
—2BBCyC,

—(A 3+83)C,C,

—B2C„
—(A 1+81)C C,

—2B3CyC,

A 1+.81+82+A 3+383
—(A 3+83)C,C„

OIII

—32C,
—2B1C„C.

—(As+8 3)C.C. .

—(As+83)C.C„

281+A,+2A 3+28,

The matrix R,„is, in units e jv:
Sr Oz Ozz OIIZ

Sr

OI

Ozz

Ozzz

(A1 81)SQ„—
0

(A1—81)S.S„

(A 3 Bs)S+„—
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Ti-Sr

xx yy

0.5 —4.844 —4.844
0.4 —4.782 —4.782
0.3 —4.618 —4.618
0.2 —4.416 —4.416
0.1 —4.252 —4.252
0 —4.189 —4.189

ss

9.687 0.5
9.563 0.4
9.236 0.3
8.832 0.2
8.503 0.1
8.378 0

0—1.281—2.443—3.375—3.979—4.189

0—1.281—2.443—3.375—3.979—4.189

Ti-Or »-Orrr

APPENDIX III

TABLE V. Coulomb coeKcients. ~

(= (o,0,~)

0
2.561
4.886
6.750
7.958
8.378

0.5
0.4
0.3
0.2
0.1
0

0.5
0.4
0.3
0.2
0.1
0

xx

0—9.436—17.483—23.351—26.838—27.988

0—0.210—0.763—1.455—2.021—2.239

Ti-Orrr

yy

0
6.240

11.323
14.732
16.570
17.135

0—0.210—0.763—1.455—2.021—2.239

Sr-Or

xy ' ys

0 0
2.003 0
3.779 0
5.147 0
5.997 0
6 283 0

0
3.196
6.160
8.618

10.268
10.852

ss xy ys

0 17.060 0
0.420 15.924 0
1.526 13 071 0
2.909 9.756
4.043 7.221 0
4.479 6.283 0

0
0
0
0
0
0

xs

0
0
0
0
0
0

xx

0.5 0
0.4 3.339
0.3 6.359
0.2 8.765
0.1 10.316
0 10.852

yy

0
3.339
6.359
8.765

10.316
10.852

Sr-Or

0—6.678—12.717—17.530—20.632—21.704

10,323
10.373
10.505
10.668
10.801
10.852

Sr-Orrr

0.5 —33.622
0.4 —33.684
0.3 —33.845
0.2 —34.046
0.1 —34.208
0 —34.271

23.299
23.311
23.341
23.377
23.407
23.419

0.5
0.4
0.3
0.2
0.1
0

0
4.013
7.221
9.316

10.423
10.762

0—1.535—2.429—2.581—2.370—2.240

Sr-Orrr

0—2.477—4.792—6.734—8.053—8.523

xy ys

0 0
1 852 0
3.568 0
4.991 0
5.946 0
6.283 0

xs

0
0
0
0
0
0

xx yy

0.5 —7.996 —7.996
0.4 —8.046 —8.046
0.3 —8.177 —8.177
0.2 —8.340 —8.340
0.1 —8.472 —8.472
0 —8.523 —8.523

ss

15.992 0.5
16.091 0.4
16.354 0.3
16.679 0.2
16.944 0.1
17.045 0

(=(~gP)

xx yy

0 0
1.370 —2.619
2.614 —4.989
3'.610 —6.880
4.255 —8.101
4.479 —8.523

0
1.249
2.376
3.271
3.846
4.044 0 5

0.4
0.3
0.2
0.1
0

0
0
0
0
0
0

0
0
0
0
0
0

(= o,u)

ss

0
0
0
0
0
0

Ti-Sr

xy ys

0 0
0.283 0.283
1.170 1.170
2.499 2.499
3.706 3.706
4.189 4.189

0
0.283
1.170
2.499
3.706
4.189

0.5
0.4
0.3
0.2
0.1
0

2.677
2.627
2.492
2.313
2.157
2.094

yy

2.677
2.627
2.492
2.313
2.157
2.094

—5.354—5.255—4.985—4.626—4.313—4.189

xy ys

0 0
0.716 0
2.466 0
4.394 0
5.787 0
6.283 0

0
0
0
0
0
0

0.5
0.4
0.3
0.2
0.1
0

0
0
0
0
0
0

0
0
0
0
0
0

xy ys

0 0
2.923 2.923
4.655 4.655
4.934 4.934
4.472 4.472
4.189 4.189

xs

0
2.923
4.655
4.934
4.472
4.189

0.5
0.4
0.3
0.2
0.1
0

0
0.196
0.713
1.360
1.890
2.094

Ti-Sr

yy

0
0.196
0.713
1.360
1.890
2.094

0—0.392—1.426—2.720—3.780—4.189

xy

10.620
10.094
8.841
7.515
6.599
6.283

ys

0
0
0
0
0
0

0
0
0
0
0
0

0.5
0.4
0.3
0.2
0.1
0

0—9.860—18.557—25.047—28.856—30.082

yy

0
4.930
9.278

12.524
14.428
15.041

»-Orrr

0
4.930
9.278

12.524
14.428
15.041

Sr-Or

xy ys

0 0
1.121

'

0.151
2.198 0.987
3.178 2.404
3.911 3.686
4.189 4.189

0
1.121
2.198
3.178
3.911
4.189

0.5
0.4
0.3
0.2
0.1
0

16,559
16.608
16.741
16.919
17.074
17.135

yy

16.559
16.608
16.741
16.919
17.074
17.135

Ti-Or

—33.118—33.215—33.482—33.838—34.147—34.271

xy ys

0 0
0.702 0
2.426 0
4.353 0
5 771 0
6.283 0

xs

0
0
0
0
0
0

0.5
0.4
0.3
0.2
0.1
0

xx

0—0.553—1.858—3.189—4.052—4.334

yy

0—0.553—1.858—3.189—4.052—4.334

0
1.107
3.715
6.379
8.104
8.668

xy

14.461
13.462
10.842
7.641
5.125
4.189

ys

0
0.466
1.618
2.908
3.851
4.189

xs

0
0.466
1.618
2.908
3.851
4.189

+ The dimensionless Coulomb coefficients are defined in Ref. 16. If these
numbers are multiplied by (e~/o)Z+Zx~ they give the Coulomb contribu-
tions to the dynamical matrix.


