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Fermi-Liquid Effects in Cyclotron Resonance
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(Received 19 November 1963)

The steady-state properties of transverse circularly polarized waves propagating along a static magnetic
field in a uniform plasma (metal) are considered. Using the Landau theory of Fermi liquids, we compute the
effect of correlations on the reQection properties of a semi-infinite metallic plasma. The expressions are
numerically evaluated and discussed for a range of parameters pertinent to the alkalis.

I. INTRODUCTION

'HE properties of electromagnetic waves propa-
gating in a plasma along a magnetic field have

been extensively studied. ' ' In previous calculations
the electrons were treated as the current carrying con-
stituent of a noninteracting gas. For real metals the
a priori neglect of electron-electron interaction effects
is unsatisfactory since the mean energy of interaction
of the electrons (Coulomb energy) is of the order of
their mean kinetic energy. Under such conditions sub-
stantial correlation effects in the motion of the electrons
may be expected. From a practical point of view, how-

ever, it is known that for a wide range of physical
parameters, treatments which neglect explicit correla-
tion eGects provide an accurate description of the elec-
tromagnetic properties of metals and semimetals. We
are interested in determining the range of physical
parameters, frequency, external magnetic Geld, carrier
density, etc., where the eGect of electron-electron cor-
relation may, hopefully, be measured experimentally.

In 1956, Landau4 constructed a semiphenomenologi-
cal theory of a system of fermions, such as He3, inter-
acting via a short-range two-body force. This work was
later extended by Silin' to a Fermi liquid with long-

range Coulomb interactions. We make use of the Fermi-
liquid theory to compute the reQection properties of a
semi-in6nite slab of metal placed in a magnetic field
oriented perpendicular to its surface. In this geometry
for electromagnetic waves incident normally, it is
known' ' that the metallic sample will exhibit an ab-
sorption edge at approximately the Doppler shifted
cyclotron frequency.

in the electrons motion which exhibits itself as a rapid
fluctuation in the surface impedance of the sample is
shifted from the value to./co=1. This comes about since
the electrons traveling with the phase velocity of the
wave see a Doppler shifted frequency. It is these elec-
trons which interact most strongly with the wave. As a
result the resonance in the impedance is shifted. Speci-
fically we are interested in possible shifts in the position
of, and modifications of the shape of the Doppler shifted
electron-cyclotron resonance as the result of electron—
electron interactions.
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II. CALCULATION

The basic assumption of the Fermi-liquid theory is
that it presupposes that as the interaction is turned on,
the single-particle states in the neighborhood of the last
occupied one remain approximate eigenstates of the
interacting system, and that there is a one-to-one cor-
respondence between these states and the single-electron
states of the noninteracting Fermi gas. These approxi-
mate eigenstates are called quasiparticle states. For
slowly varying external disturbances, the transport
properties of the Fermi liquid are completely described
by the quasiparticle distribution function f(P,X) in
momentum and configuration space. s (The external dis-
turbance varies slowly enough in space so that the lack
of commutivity of P and X is unimportant. ) In equi-
librium and at zero temperature the distribution of
quasiparticles fo(P,X) is

o~./(a = 1+(q/qs) (Vp/c), (1) For the spherically symmetric electron gas the quasi-
particle energy is E'(E)=P'/(2m*), where me is an

where ~. ls the electron cyclotron frequency, q is, effective mass whose value depends on the dynamics of
crudely speaking, the wave number of the electro- the interaction between quasiparticles. In nonequilib-
magnetlc 6eld in the medi~, qo the wave number in ri~ situations, the quasiparticle distribution function
free space, and V& is the Fermi velocity. The resonance satisfies a transport equation similar to the golt~ann

equation. We are interested in the transport equation
in the linear approximation, i.e., when the deviation

~ P. M. Platzman and S. J. Buchsbaum, Phys. Rev. 128, 1004
(1962). from Jp is small. If we write y =yolky&, with

'P. M. Platzman and S. J. Buchsbaum, Phys. Rev. 132, 2
(1963). The distribution function f(P,X) is a matrix in the spin'L. D. Landau, Zh. Eksperim. i Teor. Fiz. BO, 1058 (1956) variables F{P,X)=f(P,X)+m{P,X) e. The function m(P, z) is
(English transl. : Soviet Phys. —JETP 3, 920 (1956)g. pertinent only when quantities which depend on the spin (the

& V. p. Silin, Zh. Eksperim. i Teor. Fiz. BB, 495 (1957) [English susceptibility) are of interest. We will be concerned only with
transl. :Soviet Phys. —JETP 6, 387 (1958)j. f(P,X)
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fi=8[—Es(P) E—r]g the linearized transport equation
for g becomes

Bg/r)t+V Vx(g+Ei)+ (e/c) (V x H) Vp(g+Ei)
—eE V= —t.g. (3)

The quantity v. is a phenomenological short-range col-
lision term which permits the system to relax to equi-
librium; V —=BEs(P)/cia =P /ztz*is the velocity of the
quasiparticles and

Ei S(——P,P') ALE p —Es (P)]g(P',X)

XLdV"/(2~a)s] (4)

is the change in energy of the quasiparticles produced
by a change in their distribution function.

The correlation, or interaction function S(P,P ) is
the basic quantity characterizing the Fermi liquid.
Owing to the presence of the delta function in the dis-
tribution function fs and in the transport equation, the
value of S(P,P') is only of interest for ~I' t = ~I"

~

=I'r,
where Pp is the Fermi momentum. $(P,P') may then
be considered to be a function. of the angle between P
and P'. It is conveniently represented by an infinite
sequence of Legendre polynomials.

S(P P') =Q„S„P„&'&(costt), (5)

where P is a unit vector in the direction of P. For con-
venience, we define a set of dimenionsless quantities

b p= Ssrrz*P p/—(2zr)'I'zs

0 —=LS„zrz*Pi /(2zr)'O']L(zz —1)t/(n+1) t]rz& 1. (6)

The correlation function S(P P') contains all the in-
formation pertaining to explicit dynamical many-body
effects. The limit S—+ 0 is the free electron or Hartree
limit. In this limit the transport equation, Eq. (3)
becomes the usual Vlasov equation and the only "cor-
relation" effect which is included is the self-consistent
electromagnetic 6eld.

The correlation function is as important to the many
electron problem as the shape of the Fermi surface is in
the one-electron problem. Unfortunately, the function
S(P P) (for the region of metallic densities), cannot
be computed from 6rst principles. ' Hopefully then a
transport experiment of the kind to be considered here
might enable one to measure the characteristics of the
scattering function S(P P'). Ideally one would like to
perform an experiment in which a specific moment of
the scattering function is measured. It was first pointed
out by Landau4 that the zeroth and first moments of the
scattering function were simply related to two ele-
mentary properties of the quasiparticle gas. The clothed
mass m* of the quasiparticles is related to the first

~ C. Herring has recently computed the scattering function S as
a power series in r, (r,=I'" air where—e is the electron density and
urr is the Bohr radius) for metals r,=2—6 (private communica-
tion).

Z—= (2z/zr)
Zo o Lq' —s(q,co)]

where Zo is the impedance of free space. The quantity
e(q, o&) is the finite wave number and frequency-depend-
ent dielectric constant for the infinite medium,
fe(q, oi)

—=1+o+(g,cv)/z(0].
The quantity Ei is Eq. (4) is related to a first-order

change in the distribution function by the relationship

E = S(P,P',X,X')5)E —Es(E')]g(P', X')

O'P'O'X'
(1O)

(2zr)'lz'

In writing Eq. (4) we have assumed. that S(P,P',X,X')
=S(P,P')h(X —X'). With this assumption the spatial
part of the problem is identical with that in the non-
interacting case. For an interacting gas of quasiparticles
in real materials correlations are not local in space but
do in fact extend over distances of the order of a Debye
length () n Vi/o&~). For metallic densities this is of the
order of the interparticle spacing. The Debye length is
small compared with distances over which the 6eld
varies appreciably, typically distances of the order of
the high-frequency classical skin depth (hs~/o~i),
so that to a good approximation we can neglect nonlocal
effects. Kith the locality assumption on the function

M. Ya. Azbel, K. A. Kaner, Zh. Eksperim. i Teor. Fiz. 30, 81j.
(1956) LEnglish transl. : Soviet Phys. —JETP 5, 772 (1956)].

9 This statement has been proved by J. M. Luttinger (private
communication).

' J. K. Gait, W. A. Yager, F. R. Merritt, B. 3. Cetlin, and
A. D. Brailsford, Phys. Rev, 114, 1596 (1959).

moment S& by
m*/ztz= 1+-'sbt (7)

and the velocity of ordinary sound v~ is related to the
zeroth moment So by

8s ——(5p+ 1)'~'$PJ /(3rpzm*)'I'].

A cyclotron resonance experiment in the extreme
anomalous limit, in the so-called Azbel'-Kaner
geometry, 8 measures only the effective mass. ' On the
other hand, the cyclotron resonance experiment in the
so-called Gait geometry' involves, as we shall see, all
of the moments. In the Gait geometry a static magnetic
field perpendicular to the surface of the sample is
utilized and the reflection (or absorption) of circularly
polarized electromagnetic waves propagating along the
magnetic field is measured as a function of the applied
field. The solution, neglecting correlations, of the coupled
Maxwell-Boltzmann equations in the presence of a
single boundary (assuming specular reflection of the
carriers at the surface) may be reduced to the solution
of an equivalent infinite medium problem. ' The final
expression for the surface impedance Z is
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If we set g(P,q)=—g(8P)=g(8)e'~, then it is easily
shown that

ieEV p~ sin8 (qVp* cos8+co.*)
g(8) = + ~(8), (14)

where Vp* Pp/——m* and

$= (&0—top —qVp cos8) .
The quantity A(8) is

A. (8) = P 8„P„&"(cos8)
n=o

g(8')P &'&(cos8')d(cos8') . (16)

Fzc. 1. Polar coordinate system used for solution of the trans-
port equation, Eq. (3).H is the magnetic 6eld, q is the propagation
vector, and P is the quasiparticle momentum.

S(P,P',X,X'), the expression for the impedance within
the framework of the Fermi-liquid theory is still given
by Eq. (9). However, the dielectric constant e(q, M) will

now include the effects of correlations.
This dielectric constant is obtained by linearizing the

transport equation, Eq. (2), with an rf field varying as
exp(sri X—cot) and solving for the induced current. The
current is given by

me d'I'
I-(q)= — P g(P, q)8(E o E,)—

m (2s-)'As

or, equivalently, using Eq. (4)

I (q)= P (g+E])5(Ep Ep') . (12)
m* (2s.)'PP

We choose our coordinate system (see Fig. 1) so that
the static magnetic field B and the propagation vector
q point along the s axis. The angles 8 and C are polar
angles specifying the direction of P. For a right-handed
circularly polarized wave (E=E,Us+i E„U„) the
transport equation for g(P, q) is,

iqP Bg
iong (P,q)—+ cos8g (P,q)+co.*—

nz* BC

g2

S...i,.(P P')-
IP' —P

I
"~(IP'—P I, o)

(17)

where ez, (q,0) is the zero-frequency longitudinal di-
electric constant. If ~& is computed by summing the

Equation (14) is an infinite set of coupled linear equa-
tions for the quantities 0„=J' P„&"(cos8)g(8)d(cos8).
If we terminate the spherical harmonic expansion for
S(P P') after a finite number of terms, then Eq. (16)
may be solved self-consistently for the quantity g(8).
Knowing g(8), we may substitute into Eq. (11) and
evaluate the current.

For the purposes of this paper we will include the
first three moments of S(P P') Ss, Si, and Ss. We have
no real justification for terminating this series after so
few terms; however, there are at least some crude argu-
ments which suggest that a Legendre expansion for
S(P P) converges rapidly. Landau has shown that the
function S(P P') is proportional to the negative of the
forward scattering amplitude of two quasiparticles. A
typical type of exchange scattering diagram which
enters into a microscopic calculation of S(P P') is
shown in Fig. 2. The dashed line is a bare Coulomb
line and the solid lines represent electron (hole) prop-
agators. This type of scattering diagram contributes a
term to S(P P') of the form

iqP
+ cos8+to.*—

84

X 'dP' /(2 sh)' S( P, P) 8( Ep—Ep )g(P q)

&& eEe'~ sin8, (13)
R

where (u,*= IeB/m*cI and o)=oi+t'p,

FIG. 2. A typical type of exchange scattering diagram which
contributes to S(P P'). Solid lines are electron propagators and
dashed lines represent Coulomb propagators.
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o+= 4s.orp'i V* 1+48i/3 —rpbiU*

(1+48,/3)
(20)

L1+(V*/orW*') (1/(98s)+4/15 —oryW*)$

where y= (cp —or,*)/qVp*, and orp= (4rrrse'/m)"' The.
functions V~ and 8'~ are dined by

sin'8d i,cos8)

(or —or,e—qU p* cos8)

sin'8 cos8d(cos8)

, (pp —or,*—qVp* cos8)

(21)

(22)

The conductivity, although it is reasonably compli-
cated, approaches some rather simple and physically
meaningful limiting values. In the limit q

—+0, 0.+
approaches

(+) =i '/( —.) (23)

There are no effects due to correlations in this limit.
This is a consequence of the fact that total momentum
is conserved in electron-electron collisions. The induced-
current (for a zero wave vector) electric 6eld is not
affected by the electron-electron interactions. In the
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FIG. 3. A plot as a function of pr~/pr of the relative shift in the
position of the Doppler shifted absorption edge due to correlation
effects.

simple set of bubble diagrams shown in Fig. 2 (RPA
approximation), we find

el, (q,0) = 1+(qD'/q')F (q), (18)

where F (q) = 1 for q(&qrp and F(q) = rsfor q = 2q p. Using
this expression for the dielectric constant, we 6nd

S(0)/S(rr) =-', (I+8Pp'/qD'j (19)

For potassium S(0)/S(rr) =0.7 so that on the basis of
this crude computation the scattering is roughly
spherical.

If we truncate Eq. (5) after three terms, solve
Kq. (16) and substitute into Eq. (11), we find for the
scalar conductivity
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Fn. 4. A plot of the Doppler shifted absorption edge as a
function of magnetic 6eld. The plasma frequency, collision fre-
quency and Fermi velocity are fixed. The four curves show the
effect of correlation on the edge. The curve labeled (1) has a Sr =0
and a 82 ——0, i.e., uncorrelated. Curve (2) has sr ——0.1873, 82=0.
Curve (3) has br ——0.1875, 8p

—0.——166, and curve (4) has
a, =0.1875, s, = —0.05.

limit pp/or, ~ 0, the effect of correlations to lowest order
in r ./pp, vanishes. This is true not only for our truncated
scattering function, but for a general scattering function
as well. If we examine the transport Eq. (3) and the
second expression for the current Eq. (12), then
neglecting the relaxation term and the time derivative
term we see that (g+Ft) satisfies the usual transport
equation, without correlations. The energy delta func-
tion in Eq. (12), is just sufhcient to produce a factor m*

canceling the I/me in front of the integral leading to
the uncorrelated conductivity.

III. EVALUATION AND DISCUSSION OF THE
SURFACE IMPEDANCE

Typically, the absorption coefficient of a semi-
in6nite metallic plasma exhibits a rather sharp reso-
nance at the Doppler shifted resonance frequency. " If
we substitute for q in Eq. (1), the value which is ob-
tained from a simple analysis which leaves out nonlocal
eGects, i.e.,

q'/qp' ———pp„'/Lor (~—or.)g . (24)

Then we may rewrite the approximate Doppler shifted
resonance condition Eq. (1) as

/ =1+L(U /c)( ./ )7" (25)

At low frequencies, where (or~/orVp/c)))1 and or,/or))1,
the effects of correlations are not observable. At higher
frequencies, where or„/or Vp/c or./&o 1, correlations
are important.

Since the simple resonance condition, Kq. (24), at
these "high frequencies" is now a function of the "mass"
of the particles, in this case the bare mass, and since
correlations do play a role, it seems natural to ask what
mass comes into play. There are, of course, two masses
in the problem; the so-called bare mass and the clothed
mass Lsee Eq. (7)j. In Fig. 3 we have plotted the

"J. Kirsch and P. II. Miller, Phys. Rev. Letters 9& 421 (1963).
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shift in frequency of the Doppler edge from its un-
correlated value as a function of (cev/ce). For fixed values
of (v./ce) =0.03 and Vv/c=0. 004 there is a shift away
from what might be called a bare-mass resonance
toward higher values of the magnetic field, i.e., towards
a clothed mass resonance. We have taken 8~= ~~ so that
the effective mass equals 1.25 bare electron masses (the
observed effective mass in potassium). " The three
curves in Fig. 3 are for three values of 5s (bs ——0, Bs——s,
os —xs)——. A Positive os tends to decrease the mag-
nitude of the computed shift in frequency whereas a
negative 82 increases the shift. The important thing to
note here is that the resonance occurs at eeither the fre-
quency determined by the bare mass nor by the clothed
mass. The shift is a dyrtamical fmnctioN of the frequertcy

In Fig. 4 we have plotted the actual absorption line
for fixed values of the plasma frequency cov/re=100,
Fermi velocity, collision frequency, and 5~. The effect
of a negative 82 on the line shape is rather striking. It
produces an over-all smearing of the line relative to the
uncorrelated line. The magnitude of the steeply rising
portion of the absorption curve is severely reduced. In
addition, a negative 82 causes the absorption edge to
exhibit a rather prominent minimum. In some cases
(i.e., for the case 8s= —-', or —,', ) the minimum or hole
in the absorption edge effectively causes a splitting of
the edge into two peaks.

Physically, we can understand the origin of this de-
crease in absorption. Suppose for the purpose of this
rather crude argument that the electric Geld inside the
metal could be characterized by a single wave number

q, as it can be in the local or classical theory. The edge
in the absorption is due to a sharp increase in the con-
ductivity when ce./co=(1+qVv/ce). The electrons at
the Fermi velocity traveling in the direction of the wave
see a static dc field spiral out around the lines of force
and pick up energy from the Geld. Suppose we now ask
ourselves if it is possible to introduce a mechanism
which, in this region of increasing conductivity, would
tend to decrease the induced current or conductivity,
thus producing an associated dip in the absorption edge.
Electron interactions can produce just this eBect. As
the quasiparticles (the current carriers in a Fermi liquid
theory) are dragged through the surrounding, now
slightly incompressible Quid, they create a backQow by
pu"hing other quasiparticles out of their way. This
"C. C. Grimes, Bull. Am. Phys. Soc. (to be published).

backRow carries current. At a definite wave number q
and frequency or, it is possible for the backward Qowing
current to exactly cancel the forward Qowing current
so that the conductivity goes to zero. For the circularly
polarized mode we simply require that

g(8) S1Ilgd(COS8)~Qt=0. (26)

This implies that

V*(1 4
1+

i +—teyW*
i
=0.

rd W*s (95s 15
(27)
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For a finite 8s (second moment) it is possible to find at
least one solution to Eq. (27) (to zeroth order in v./~).
The dips in the conductivity, which show up in this
simple model are characteristic of the interacting
Fermion system. Had we retained more terms in the
multipole expansion of the scattering function, it is
likely that there would exist multiple solutions of
Eq. (27). In the actual boundary value problem, q is
not well defined and the zero in the conductivity appears
as a minimum in the absorption curve. If the minimum
happens to fall in the high Geld or classical region of the
curve, then the magnitude of the eBect is reduced since
in this limit g

—&0 and there are no eGects due to
correlations.

The observation of correlation effects in the alkali
metals, unfortunately, is extremely dificult since the
magnetic fields required in order to keep the Dopper
shifted edge in the neighborhood of the cyclotron fre-
quency are enormous. However, experiments could be
performed in semimetals, semiconductors, or doped
insulators.

One should look for a material, preferably one with
a simple band structure, which has an r,&1.In addition,

co/vie /vc es,/&o 1 and &o/v, ))1.The frequency range
in which one can work will primarily be limited by the
magnetic fields which are available.


