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Electronic Specifi Heats of Dilute Solid Solutions

H. Jowzs*

Department of Physics, Oklahoma State University, Stillwater, Oklahoma

(Received 2 January 1964)

The partition function of an electron gas in the presence of scattering centers, such as exist in a dilute
solution, is obtained by using the method first introduced by Matsubara. It is shown that the electronic
specific heat at low temperatures, in such a case, contains a term arising from virtual electron scattering.
If the Fermi limit in the pure metal lies just beyond a sharp peak in the density-of-states curve, this term
increases the specific heat. Comparison with the observations by Rayne on the dilute solid solutions of zinc
and germanium in copper indicate that the effect discussed is probably the explanation of the observed initial
increase in the low-temperature specific heat at small concentrations.

1. INTRODUCTION related to the residual electrical resistance and is deter-
mined by the matrix elements of the scattering potential.HE electronic properties of disordered alloys are

dificult to analyze because there are no simple
quantum numbers in terms of which the single-electron
wave functions can be described. Equilibrium proper-
ties, however, are fully determined when the partition
function is known, and this can be obtained as the trace
of an operator with respect to any complete orthonormal
set of total wave functions. For dilute solid solutions the
Slater determinants of the Bloch functions of the pure
metal form an obvious choice for such a set. In this
representation, the wave function of the ground state of
the alloy is not a single Slater determinant, as in the
Hartree-Fock approximation for a pure metal, but an
infinite series of such determinants. The first member of
the series corresponds to the ground state of the pure
metal, and the other members to various excited states.
In wave-vector k space the alloy has not therefore a
sharply defined Fermi surface in its ground state but one
which is broadened by the effect of virtual electron
scattering. There must, of course, always be a precisely
defined Fermi limit in terms of the true one-electron
states of the alloy but these are not representable in k
space. When the solute concentration is a few percent,
the broadening of the Fermi surface of the ground state
will be large compared to the thermal broadening in the
pure metal at low temperatures.

If the density of states in the pure metal has special
features lying just below the Fermi limit, these will not
affect the low-temperature electronic specihc heat of the
pure metal, but they will affect that of the dilute alloy
if the ground-state broadening, just referred to, is large
enough to include these features. This appears to be
exactly the situation which exists in copper and its solid
solutions. In pure copper it is believed that the Fermi
limit lies just beyond the peak of the density-of-states
curve. Hence, in dilute solid solutions, the influence of
this peak may be felt on the equilibrium properties and,
in particular, on the low-temperature electronic specific
heat. It will be shown that in such a case it leads to a
slight increase in the specific heat even when the electron
c

2. PERTURBATION EKPANSION OF THE
PARTITION FUNCTION

The partition function is obtained as a particularly
simple example of the method introduced by Matsubara'
and developed by Thouless. ' Let H denote the complete
Hamiltonian, X the number of electrons in a volume v,

P= t//kT, and cr = ttP. If p, denotes the partial potential a
is the activity. The grand partition function Z is given
by the trace of 1(, where

y —en%—sK

Z=Trg=g„(m~e~" ~"~st)

The wave functions
~
st), which are used for the evalua-

tion of the trace are Slater determinants of Bloch func-
tions including the spin factor and relating to the pure
metal.

To simplify the notation let

H —ttlV =Ho+ V(r), (3)

where Ho is the Hamiltonian of the pure metal minus

tsar, and V(r) is the potential energy of an. electron due
to the randomly distributed impurity atoms. V(r) is
therefore the difference between the potential in the
solid solution and that in the pure metal.

The interaction representation is defined by
—erroep

and if we write

Ht(u) =e~'"V(r)e

or in terms of the creation and annihilation operators,
Cs(u), Cs(u),

Hr(u) =g(ki Vi l)Cs(u)Ct(u), (6)
k, Z

then

oncentration remains constant. This increase is closely T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).' D. J. Thouless, Phys. Rev. 107, 1162 (1957); The Qnantnm
Mechanics of Many Body Systems

'
(Academ-ic Press Inc. , New

*On leave of absence from Imperial College, London, England. York, 1961).
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which may be solved by iteration as follows:

dli+1(N1)+ d231 iEN2II1(231)ffl(N2)

where

ifg2 JN3H1(231)H1(N2)H1(N3)+etc.

(8)

P)Ni) N2) N2

Order I. 2, 3. 4.

FzG. 1. Diagrams for the perturbation series of the partition
function involving only two wave vectors.

The above solution not only satisfies (7) but also the
boundary condition, Jr=1, when P=O.

From (4) and (2) it follows that, with fr as
given by (8),

Z Q„(NI e-~»pr I23)

Zp p„(23le ~'el23)
(9)

where Zo is the partition function relating to the pure
metal. The terms of the sum (8) can be evaluated in a
manner exactly analogous to that used for the deter-
mination of the energy of the ground state in the many-
body problem.

Writing
&2= Zk(pk 12)C,+Ck,—

it follows from relations similar to (5), and applicable
to any operator, that

Ck(N) =Cke
—

& k-»",
Ck(23) =Ck+e&'k —»". (1o)

An essential feature of Matsubara's method (cf. Ref. 2)
lies in the following definition of the normal product
which ensures that its trace in (9) vanishes:

The second-order term in (15) diverges logarithmically
near the Fermi limit, and it is therefore necessary to
make a partial summation over all orders of (8) in
which only two wave vectors, k and l, are involved. If
we represent the vertices by points with the values of I
increasing upwards, the graphs of the terms to be
summed are as shown in Fig. 1.

When the operators are I ordered as in (8), it follows
from (13) that an upward line corresponds to CkCk+ and
gives a factor 1—fk and a downward line to C3+C3

which gives a factor fi The en.ergy denominators for all
these particular graphs are powers of e~—eI, and the
matrix elements at the vertices either VI,~, Vp„VI,I„or
V33. LHenceforth we use this abreviated notation rather
than that of (15).j It is now easy to see that the above
sequence of graphs gives the following contribution to
In(Z/Zp).

I Vkil'fk(1 —fi)
PQ V—kkfk+P Q

Vkk f2+ V«(1 f1)—
X +L O' —L 1'+

&Lck+Ckj= (1—fk)Ck+Ck —fkCkCk+ (11)
I VkiI'fk(1 —fi)

For example, the contribution to Z/Zp of any normal
product occurring in (8) is given by

(1/Zp)p(22I e ~'eN[Ck+Ckjl 22)

= (1/Zp)r(23le "'e{(1—fk)ck+ck —fkckck+) I23),
(12)

PZ Vkk—fk+P Q
Ie k, i pi ck+ {Vkk—fk+ V31(1 fi))—

(16)

which remains finite at the Fermi limit. It may be noted
that the lower limits of the integrals in (8) (i.e., the
zeros) give no contribution because factors like e~'k "~e,
etc. , combine with fk and fi in such a way as to lead to
exact cancellation. There are, of course, many other
terms in the expansion of fr, but all will involve higher
powers of the nondiagonal matrix elements Vl, ~, and will
therefore be neglected in the present approximate
considerations.

The range of pk and 23 (now written for convenience
as 2 and g, respectively) over which the summand of the
second sum of (16) differs appreciably from zero is shown
in Fig. 2.

Since all quantities in (16) apart from Vk& depend
only on the energies of the states k and 1, the first step in
the suinmation is to average

I
Vkil' over all relative

directions 0 of the vectors 0 and l, and to assume that the
result depends only on e and g. This assumption is
correct if the matrix elements are calculated with

which is zero, if

(1/Zp)Z(nl e ""ck'ckl ~)=fk
(13)

(1/z, )g(~le-~ eckck I~)=1—f, .
and

The number fk, defined by (13), is just the occupation
number for the state k, i.e.,

fk {1+ ee(~a y) ) 1— — —

The contractions then introduce factors fk or 1 fk as-
indicated below. Using the linked-graph theorem, the
result to second order can be given in the following form.

ln(Z/Zp) = ln(P all graphs) =P (linked graphs)

=-~Z v-f.+~ZI(~l vl»l
k, L

XLf„(1 f,)/( ppk) ]+etc (15)
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The specific heat of the system C„(it has been assumed
throughout that the volume is constant) is given by

PP /BE)
(30)

0 (BPl-
Although p may readily be evaluated, it is sufficient for
the present purpose to note that

When ~~@,o it will be seen that the first two integrals
are of opposite sign and tend to cancel each other, and
their contribution to g'(p) will not be considered further.
The third term represents the effect of the peak in X(p)
and its variation with e results mainly from the de-
nominator. Hence a reasonable approximation is

g'(y) = —EpE(p, pi)/(p —pi+2V)', and X'(p) =0. (38)

v=vp 1— &—(p)g(p)
E(jk) dp

where yo refers to the pure metal.

(31) Tlllls

E(p, p )imp
v=vp 1+

(p —pi+2 V)'
(39)

3. EVALUATION OF MATRIX ELEMENTS

It will be assumed that the potential V(r) arises from
v screened unit positive charges randomly distributed
through the volume e which contains X electrons and
the same number of lattice sites. The solute concentra-
tion is therefore given by c= v/X. Hence

V(r) = —e'Q; exp( n[r —R,—
~ )/[r —R, ), (32)

where R, denotes the position of the solute atoms, and
0. is the reciprocal of the screening length.

If in order to estimate the magnitude of VA, ~ we use
free-electron wave functions defined by

eikpr

where 0 is the atomic volume which may be written
0=-',xr,P, and w=(A'/2m)n'. Hence using the free-
electron approximation to determine p, o and writing for
simplicity, m =p, ,

E(p, &)Xp p/256) '" (e'/r, )'

5 E4pr4& p'
(41)

which gives finally, neglecting 2V compared with p —pi,

To estimate the additional term in y we use (35) and

(17) and find

E(p,p,)1Vp (4n-e')'( 5 )' p ( v

(40)
p' 0' (2m) p'(w'+4wp, ) ($

the following well-known result is readily obtained.

4xe'

0.13p (e'/r. )'
7='Yp 1+ c

(1—pi/~)'
(42)

. e&(k—i)'Ri
n~ Suppose the ratio of the two energies is unity, that &&

lies i p of pp below the Fermi limit, and that p~10-', i.e.,
one-tenth of the electrons lie under the effective part
of the peak. These rough estimates which seem reason-
able enough then give y=pp(1+e), where c is the con-
centration expressed as a fraction.

As a result of the random nature of the distribution of
solute atoms,

(4n.e') ' v

IV I=I I
. (35)

& ~ ) (~k—&~+~p)p

The average of this expression over all directions of I
relative to k depends only on k' and P and therefore is in
accordance with assumption (17).

In order to simulate the e8ect of the peak in the
density of states of copper just below the Fermi limit
and at the same time enable the integrals to be evaluated
without too much di%culty we adopt the following
model.

4. RELATION TO RESIDUAL RESISTIVITY

Imagine a hole to exist in the Fermi distribution at
absolute zero in the neighborhood of e~. Elastic scatter-
ing due to impurities will result in a finite lifetime 7 of
any particular state k of this hole. This lifetime will be
approximately equal to the relaxation time for impurity
resistivity. Each level therefore will have a width of
order fi/r. The delta function of (36) is therefore effec-
tively replaced by a function of width 5/r, and if p, —p,

is small part of the tail will overlap the Fermi limit and
give a contribution to the linear electronic specific heat.
This argument can be made semiquantitative as follows.
The linewidth at e may be written

E(g) =1Vp+Npb(g pi), pi(pp, —(36)

where 1Vp is a constant. Here p is a fraction of order 10 '.
It is further assumed that E(p,g) ~ 0 for large values
of g as would be the case with (35). Substituting (36)
into (20) gives

vp EpE(p, q)dn+-
p p —g+2V

"XpE(p, g)
d'g

„, ~—q —2V
5/r

~& (p —n)'+ (&/r)'}
(43)

ÃpE(p, pi)
+ '

. (37)
&—&g+2 V and hence if the density of states in the pure metal is
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No(g) in the solid solution it is

No(g) 5/r
I'g .

o s f(e r)—)'+ Pi/r)')
(44)

For the model in which the density-of-states No(r)) is
as given by (36) it follows that

(5/r)Np
N(y, ) =No+

~f (~—e~)'+ (&/r)'}
(45)

Hence when 5/r«p —eq, which implies that the correc-
tion is small and corresponds to a second-order eÃect,

and

Np(k/r)

~~'(1—et/~)'

p(&lr)
7=vs 1+

~v(1 —e~/~)'

(46)

(47)

mba
( Vq~)'(1 —cos8) sin8d8,

T 2'7l 5 0

(48)

where v=QS is the volume which contains v impurities
and with respect to which the electronic wave functions
are normalized. If we deine half of the integral as
IP (p,p), then a simple calculation shows that

where the approximation Top~/ has been used. The
relaxation time is given by the well-known formula,

5. COMPARISON WITH EXPERIMENTAL RESULTS

The electronic speci6c heats of dilute solid solutions
of Zn and Ge in Cu have been measured by Rayne' and
by Veal and Rayne. 4 It is found that initially for small
concentrations of the solute y increases in both cases.
Since the Fermi limit lies beyond the peak of the density
of states a simple theory would suggest a, decrease of y
due to the increase of the electron concentration. This
decrease is easily calculated and is indicated by Veal
and Rayne. If we attribute the diA'erence between the
observed increase and the expected decrease to virtual
electron scattering and express the results for the initial
slopes by giving the values of b in y/yo 1+bc——, where
c is the fractional concentration, then for Zn we And
b=1.4 and for Ge, b=5.8. Equation (42) appears there-
fore to give values of b of roughly the right magnitude.
Moreover, as might be expected, Ge with the greater
scattering power has the higher value.

There are other examples where the observed elec-
tronic specific heat is larger than would be anticipated
from a simple band model. For example, Keesom and
Kurrelmeyer5 And for a copper-nickel alloy containing
approximately 20 at.% Ni, a p value which is 1.56 times
as great as the p value for pure Cu. Conventional theory
visualizes the d band as just 61led in CuooNi4o. At 80%
Cu the Fermi limit will be beyond the point where N(e)
rises steeply due to the d levels. A similar situation to
that discussed in the preceding theory therefore exists
and may perhaps be explained in the same way. The
measurements of Hoare and his collaborators6 ~ on
Ag-Pd and Au-Pt point in the same direction.
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which is similar to (39) apart from the numerical factor
3/2, the neglect of 2 V in the denominator and the differ-
ent deinitions of E and E'. Both derivations show that
the addition to the electronic specific heatis proportional
to the residual resistivity.
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