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A numerical program has been developed for the calculation of atomic photoelectric differential and total
cross sections, including all polarization correlations. The program is designed to calculate relativistic
Coulomb wave functions in a screened central potential; the outgoing continuum wave function is obtained
in a partial-wave series. Results are presented here for IC-shell differential and total cross sections in point
Coulomb potentials (i.e. , unscreened) ranging from charge Z = 13 to 8=92, and covering the range of incident
photon energies from 200 keV to 2 MeV. Enough data are presented to permit interpolation throughout
these ranges. The total cross sections above 1 MeV are found to be significantly lower than previously
accepted values. Further, the angular distributions from heavy elements deviate greatly from the commonly
used Sauter distribution. These features are discussed and compared with existing experimental and theoreti-
cal work.

I. INTRODUCTION metric potential. Further, we neglect the effects of
finite nuclear size, so that for suQiciently small distances
this potential must simply reduce to the pure Coulomb
Ze'/r potential. For most applications these assumptions
are appropriate.

Under these circumstances the theory of the atomic
photoelectric effect is a simple application of first-order
radiation theory. Ke require a fully relativistic treat-
ment, since even at low energies, relativistic effects can
be signi6cant in a high-Z element. Then the differential
cross section for the photoeffect is'

A CCURATE predictions of the cross sections for the
atomic photoelectric effect have in general been

unavailable. Except for special limiting cases results
must be obtained by numerical methods, even when the
electron wave functions are assumed to be hydrogen-like
and so available in analytic form. The complexity of
these procedures has encouraged the use of extrapolation
formulas based on various analytic approximations and
indeed, at least for the total cross sections, moderate
agreement with experiment has been obtained over a
wide energy range. The availability of accurate experi-
mental total cross sections, the increasing need for
accurate predictions of the differential cross sections,
and the recent interest in the polarization properties of
these reactions, have encouraged us to attempt their
calculation by numerical means. '

We calculate in the central-field approximation, that
is, we assume any atomic electron, whether bound or
continuum, interacts only with a scalar spherically sym-

do/dQ= (2Ir)
—

'Pe~ H )'

subject to energy conservation, where

II= e(2Ir/lt)"' d—'at "'n ee'"'ll. (1.2)

$ This study was supported in part by the U. S. Air Force Oflice
of Scientific Research Grant AF-AFOSR-62-452, and in part by
the U. S. Atomic Energy Commission.

~ Address beginning August 1964: Department of Physics,
University of Pittsburgh, Pittsburgh, Pennsylvania.

$ Present address: Physics International, Berkeley, California.
' We will make some references to the previous work in this field

in succeeding sections. The status of the subject up to 1954 is
summarized for instance in %.Heitler, Qgaetum Theory of Radhu-
tioII (Oxford University Press, New York, 1954), 3rd ed. We, in
general, follow the notation of this book, but throughout we shall
use the units A=c=m, =1.Thus, distances are measured in units
of the electron compton wave length, etc. %'e will often use u=—Ze~.

'While this work was in progress, an independent numerical
calculation of E-shell photoelectric cross sections was reported by
S. Hultberg, B.Nagel, and P. Qlsson, Arkiv Fysik 20, 555 (1961),
hereafter referred to as HNQ. This calculation, although using a
method which cannot be applied to screened potentials and not
obtaining results above 662 keV, is very valuable both for the
information it provided on photoeRect at the lower energies and
because it provides checking points for subsequent calculations,
such as the present work.

The absorbed radiation is described by its momentum k
and polarization e. P;„is a solution of the Dirac equation
in a central potential corresponding to an initial bound
state and QI;„ is a solution corresponding to an outgoing
electron of definite momentum y and energy e ("plane
wave" plus srtgot'rtg spherical waves).

Given the central potential, the entire problem is to
solve the Dirac equation for the desired wave functions
and then to integrate to obtain the matrix elements H.
We have constructed a code for the IBM-7090 which
does this.

In the present paper we present results for photoeRect
from the E shell of an atom, obtained using wave func-
tions in the pure point Coulomb field. The range of
elements from aluminum (Z=13) to uranium (Z=92)
was investigated for photon energies k from 200 keV to
2 MeV. Enough data were taken to permit interpolation
throughout these ranges. For each choice of Z and k we
obtained (1) the total cross section, (2) the differential
cross section, and (3) all polarization correlations be-
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tween incident photon and ejected electron. Results for
diRerential and total cross sections are given here; the
results obtained for the polarization correlations will be
reported separately. ' Most of the information is pre-
sented in tabular form. Modi6cations caused by screen-
ing, 4 extensions to lower and higher energies, and photo-
effect from higher shells will be discussed in subsequent
work.

The organization of the present paper is then as
follows. In Sec. II we discuss the general properties of
the photoeRect, as revealed by simple analytic approxi-
mations, and then develop the complete mathematical
formalism for the process. Section III is devoted to a
short discussion of the numerical methods for calculat-
ing wave functions, some features of which have not
previously been published. The accuracy of the numeri-
cal calculations is discussed in Sec. IV. The remainder
of the paper presents our results and compares them
with experiment and previous theory. This is done for
the total cross section in Sec. V and for the differential
cross sections in Sec. VI.

II. GENERAL PROPERTIES AND FORMALISM

The main purpose of this section is to develop the
formalism, based on Eqs. (1.1) and (1.2), needed for
the calculation of the photoeffect. The wave function

for the outgoing electron must be written as a sum
over partial waves with appropriate asymptotic proper-
ties. Then for each partial wave the integrations over
angles of Eq. (1.2) may be performed analytically, leav-
ing a small number of radial integrals to be done
numerically. The cross sections and the polarization
correlations will be completely

specified

by these
quantities.

It is useful, however, to 6rst have a qualitative under-
standing of the general features of the process. For this
purpose we replace Eq. (1.2) with the corresponding
nonrelativistic expression

where 8 is the angle between k and p, and el is the
component of the photon polarization vector in the
scattering plane which k and p define.

This cross section vanishes both in the forward and
backward directions. For low energies (P«1) it has a
broad maximum centered at 8=90'; as the energy
increases the maximum shifts toward smaller angles and
its width decreases. Equation (2.2) is independent of
any circular polarization of the incident photons, but it
is sensitive to linear polarization: If the beam is linearly
polarized in the direction e, e~ ——cosy, where p is the
angle between the pla, ne of k and p and the plane of k
and e; there is no emission perpendicular to the direction
of polarization. Integrating over angles, the total cross
section for unpolarized photons of low energy (but far
above threshold) reduces to

o =32v22resas/3k "2. (2.3)

We note that this (1) varies as the Pftk power of Z and
(2) decreases rapidly with increasing energy.

These results must be modified both for low and for
high energies. Near threshold the Born approximation
expansion in 43/P is invalid; when the exact non-
relativistic Coulomb wave functions are used it is found'
that the total cross section (2.3) must be multiplied by

Ply l/2 e
—43 cot

f= 2~( —[,g= Ll/(k —I)]'/2, (2.4)
kk) 1—e'3

where I is the ionization energy. This causes an appre-
ciable reduction from the Born approximation predic-
tion, which is reached only slowly as the energy in-
creases, in the entire low-energy region; at the EC-shell

threshold f=0.12.'
For higher energies a relativistic treatment based on

Eq. (1.2) is necessary. Sauter found that, to lowest
order in Z, the diRerential cross section from linearly
polarized photons is given by'

e(22r/k)l/2 d3rtP/. ~efi. estk re. (2 1)
do. P' sin'8 cos'qr 1—(1—P')'" sin'8 cos'y—=4e'u'
dQ k'e4 (1—P cos8)4 2(1—P') (1—P cos8)'

YVe assume a pure Coulomb potential, so that for photo-
effect from the E' shell tP; = (t33/2r)'/'e " where /3—=Ze'
We also make the Born approximation and replace ter;„
with the plane wave e'3'. Then the integral (2.1) is
easily done, and the differential cross section for photo
eRect from both E-shell electrons is given as

sin'0dtr p'—=4e2/33 (elei*)
dQ kses (1—P cos8)4

(2.2)

3 R. H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys.
Rev. 134, A916 (1964) (following paper).

4 For E-shell photoeRect, it is believed that screening eRects are
quite small, typically (in heavy elements) of the order of 1-2%.
For all other shells, screening effects are large and the use of
hydrogen-like wave functions in a numerical calculation is not
justified.

[1 (1 P2) l/2]2 sin'8

4(1—P')'/' (1—P cos8)'
(2.5)

This again vanishes in the forward and backward
directions; the maximum narrows and moves toward the
forward direction as the energy increases. There is now
some emission perpendicular to the direction of polariza-

~ However, in heavy elements relativistic eRects are important
at threshold. Part of this is simply due to the relativistic shift of
the threshold energy. The relativistic E'-shell photoeRect at
threshold has been discussed by B. Nagel and P. Olsson, Arkiv
Fysik 18, 29 (1960), in the approximation of an unscreened point
Coulomb potential. However, as the authors note, screening
eRects are expected to be significant in the threshold region even
for E'-shell photoeRect.

4 F. Sauter, Ann. Physik 11, 454 (1931).
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o.=42resa'/k, (2 6)

and so still varies with the fifth power of Z but de-
creases less rapidly with increasing energy.

For high-Z elements the corrections to this lowest
order theory can be very large. The high-energy be-
havior of the total cross section has been obtained
exactly, r with numerical methods, and for Z=82 (lead)
the prediction of Eq. (2.6) is too large by a factor of
6ve. The expression

tion. For very high energies the total cross section from
unpolarized photons becomes

total energy (including rest mass energy) E. Thus, for
tt;„ in Eq. (1.2) we write

(Ge(r) QUALM(r) &

kiF„(r) QsL M(r))

where I' and I(: are defined by

(2.10)

L+L'= 2J,
«=W(J+'2) as I=L&12, (or J=L'W —',), (2.11)

and the spherical spinors QJ.L,~ are defined in terms of
spherical harmonics' by

o.= L42resas/k7e- '(1—42ra/15), (2.7)

derived analytically, is in fair agreement with these
results, and shows the nature of the suppression of the
Z' dependence. It has also been shown that the cross
section does not vanish in the forward direction when
terms of relative order u' are considered, and such
effects have been observed experimentally. '

In relativistic photoeffect there will also be inter-
actions with the electron spin, and hence many more
types of polarization correlations are possible. To
describe these it is convenient to introduce the usual
polarization parameters. We describe photon polariza-
tion with the quantities

where

f&sLM 1'L,M

~+JLM +L,M+

I=L+—,' J=L——'
2

2L+1 2L+1

I—M "' -I+M+1
2L,+1 2L+1

-I+M "' -I—M+1

(2.12)

(2.13)

kl ei ei e2 e2 $2 ele2 +e2ei
(2.8)

b=i(eies esei ),
and we describe the polarization of the ejected electron
by the direction ( of its spin in its rest system. i 2 is
taken along p, i'1 in the scattering plane. Then if we sum
or average over the initial polarization states of the
bound electron, the differential cross section for photo-
effect must be of the form

The radial functions G„and F„are to be obtained as
solutions of the coupled equations

[E+1+q 7F„PdG„/dr+ —(1+«)(G„/r) 7=0,
[E 1+y7G„+fdF„/—dr+ (1—«)(F„/r)7=0.

The potential pp must be specified (for the pure Coulomb
potential &p= a/r) and the energy E is then determined
from the eigenvalue problem. The wave function will be
normalized by requiring

do (do)
t-; Z u;G;;7,

dQ (dQI „„1
(2.9) r2«((F)2+(G) 27=1. (2.15)

where fp=i p=C ppl arid. (da/dQ)„„~, i is the differ-
ential cross section from unpolarized photons, summed
over final electron spins. The correlation C~o connects
linearly polarized photons and unpolarized electrons,
and as already noted, occurs in the lowest order cross
section. Also occurring in lowest order are C33, connect-
ing longitudinally polarized electrons and transversely
polarized photons, and C3~. The correlations C02, C~2,

C2i, and C23 appear in relative order a. The remaining
correlations are forbidden by invariance considerations.

We can now develop the formalism needed for a
numerical calculation of these photoeGect cross sections.
To begin with, we need wave functions for the electrons.
A bound state will be specified by capital letters: total
angular momentum J, orbital angular momentum L,
(J=L&21), the azimuthal quantum number M, and

2 R. H. Pratt, Phys. Rev. 117, 1017 (1960).

The wave function fr;„of the outgoing continuum
electron is written as a sum over partial-wave solutions
with appropriate asymptotic properties:

( g„Q;,„(r) )
pt; =Q 42r(Q, 1 +(p)Ug)21e ""!

! . (2.16)
jim tiy„Q, , „(r)J

'

Equations (2.10)—(2.14) are understood to remain valid
with the substitution of the smal/ letters j, l, l', ns, I~:, e,
etc. , and of course p'+1= e', where p is the momentum
of the outgoing particle. The two-spinor Ug specihes the
polarization properties of the electron in its rest frame.
Equation (2.15), however, is not appropriate for
continuum functions, and is replaced by the requirement
that the functions are normalized such that at large

We use the phase conventions of A. R. Edmonds, Amgllar
Momentum eu Quautum Mechauics (Princeton University Press,
Princeton, New Jersey, 1957).
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distances
(e+1) i/2 1

g. -
l l

—sin(pr ——',lm. +8„),'-"&2e] pr
(2.17)

(e 1) i/2 1
f, -

l l
—cos(pr--', l m+8„)." 4 2e i pr

Equation (2.17) also defines the phase shifts 8„. [For
the pure Coulomb potentials 8„ in Eq. (2.17) but vol Eq.
(2.16) should be replaced by 8„+(ae/p) ln2pr —this
feature arises from the long-range character of the
potential. ) Note that the sum over j and l subject to
j=l+2 in Eq. (2.16) is equivalent to a single sum over
a, where ~ ranges over all positive and negative integers.

Substituting the wave functions (2.10) and (2.16)
back into Eq. (1.2), H can be written as a summation of
terms, each corresponding to a given ~ and m in the
series for the continuum wave function. It is convenient
to remove some constants and write this in the form where

lcd—=i~ 2 M/Bv
dQ

(2.23)

where r/„= &1 according as j=l&2i. [These R's corre-
spond to R+(M=+ i~) of Eq. (2.19).j Then for M =+2i

Se„=4s e"[(Ug*Q/i+; (p) )eM„+
+(&~*fl/i-. (P))e+R. j, (2 21)

and for M= ——,
'

X„=—4irr/„e""[(L/~*0 i;(y))e+R,+

+(L'~*fl/i+. (P))e-R j (2 22)

We shall slm over the two electrons of a bound S state.
Then the differential cross section for a photon with
polarization parameter $; [as in Eq. (2.8)g to eject an
electron with spin direction ( (in its rest system, with

f3 chosen along the electron, and fi in the scattering
plane) into the solid angle /lQ may be written

H= —e(2~/k)'/' Q Be„, (2.18) &0
——gp= 1, A = 16m-e'pe/k. (2.24)

where each 3C„represents a sum over all m values
consistent with that 1(:.

Now we choose a s axis along the photon direction k
and start performing the angular integrations. In the q
integration nonvanishing contributions come only for
m=M&1, and thus the summation over m implied in
K„reduces to two terms. This is most conveniently
written in terms of the circular polarization coefficients
e+—=e ~ie„, for then

3,„=4 e'~ [(L/„*O,„„,(p))e R„+(M)
+(U *fl; ~- (P))e% (/lf) j (2 19)

where the R's, a set of numbers resulting from 8 and r
integrations contain all the remaining information of the
problem. (R's of &M are easily related. ) To proceed
further for an arbitrary bound state one expands the
plane wave e'"' of Eq. (1.2) in spherical harmonics
and then integrates over products of three spherical
harmonics.

For the purpose of this paper we restrict our attention
to bound S states (J=~„L=O) and the results are quite
simple. All the information of the problem is contained
in two sets of numbers, E„+, dehned by

l(l+1)
R„+= r'drg„F„C, )+;+

2l+1
X [ji-i(&r)+j/-/-i(&r) j

R„= r'dr g.F„C;);
(2.20)

l2
y

1/2 (l+1)2q 1/2-

X —ji-i(&r) I l
+j~i(&r)

k(2l+1)/ 2l+1 )

+r/, f„G„C;p ;( l2'+1)' j/(pkr)=

The only nonvanishing 8's are

BOO
——L l

J-
I

'+
l K-I '+

I J+ I

'+
I K+ I '3,

B02——2 Im[J *K +J+*K+j,
Bip ——2 Re[J *JR+K *K+j,
Bi2——2 Im[J *K++J+*K ),
B„=—2 cos8 Im[J *K~+K 'J~&

+2 sing Im[J *J~+K+*K ], (2.25)

B23———2 cos8 Im[J *J++K+ K $
—2 sin8 Im[J *K++K *J~j,

B„=2cos8 Re[J *K J,*K+]—
—sin8[l J l' —lK l'+lK l' —Jpl']

B„=...8[lJ l
-lK-l'+iK.

I
-IJ.I j

+ 2 sine Re[J *K —J,*K~&,
where

J = —(47r)
—'/2 P ~„e'~ R +Pi'(cos8),

= (4~) '/ g e'4[lulls —1lg '/ R„+Pi (cos8)

J = (47r)-' ' g r/. e""[l/:
l j "'R J'i'(cos8),

(2.26)

K = (4m.) '/' Q e""[I"I)i'2R I,o(cos8-)

C;;—=B,;/Boo. (2.27)

In the sums of Eq. (2.26) terms for which the P &'s do not
exist are to be omitted; 0 is the angle between photon
direction k and electron direction y. [The last four B's
of Eq. (2.25) take their form when a rotation is made so
that f~ refers to a spin along the electron direction. ) To
put our result in the form of Eq. (2.9) we finally define
the polarization correlations by
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The differential cross section from unpolarized photons, determined by either of the Eqs. (3.3), and 7 is deter-

summed over electron spins is then mined by the requirement that

(do)

&d&& unpoi

and the total cross section

(2.28)

or
(tr2 a2)1t2 (3.4)

o.=2srA BM singdg=A g I (R„+)'+(R )') (2.29)
0 g

where the positive sign is taken to obtain a physically
acceptable wave function.

In order to determine E we need to satisfy the bound-

ary condition at r —+~; that is we must approach the

asymptotic solution of (3.2). This solution is determined

by letting r ~oo in (3.2), leading to

Thus, when the quantities R„+ (and the phase shifts 8„)
have been calculated, all properties of the process may
be predicted. . And the main work in calculating these
quantities lies in the prior calculation of the electron
wave functions. (F.+1)F„6'„=0—,

(Z 1)6„+—F'„=0,III. METHOD OF SOLUTION OF THE
WAVE EQUATIONS

A. The Bound-State Wave Equations
which have the solution

G„=Cre—"",
(3 S)

The bound-state wave equations

(F+1+y)F„Pd6„/dr+—(1+i') (6„/r)j=0,
(3.1)

(E 1+y)G„+fd—F„/dr+ (1—tr)(F„/r) j=0,

I'„=C2e ""

constitute an eigenvalue problem for the energy eigen-
value E and the bound-state wave functions F„, G, .
Since F, and G„behave like r& ' near r=0 for the
Coulomb potential' and are therefore singular for y(1,
it is convenient to make the substitution

G„=G„r -', F„=F„r-'.
Equations (3.1) then become

dG„(y+tr)
+ 6„=0,(F.+1+(p)F„

(3.2)
dF. (y —lr)

(F 1+it)G + + — F„=O,
dr r

where F„and 6, are finite at r=0.
Although the following analysis for the solution of

Eqs. (3.2) applies to a potential it of any form, we shall
in the present paper specify the Coulomb potential
y= a/r.

The boundary conditions associated with (3.2) with
&p=a/r are determined at the origin by multiplying
through by r and letting r=0. We have then

(Ft+i+Ft)
(&+1+v»+.)

-6;+i—6; (y+~)
+ (Gs+i+Gs) =0

—~j+& ~i 2~5 +~
(3.6)

(Gt+x+6 )

(3.3)
(&—1+~t+i)aF„(0)—(y+tr) G„(0)=0,

aG, (0)+ (y —te)F, (0)=0.

where X= (1—g')'t' with E(1.Increasing solutions are
ruled out since the wave function must be bounded as
r-+ poLIn the point Coulomb potential, these forms

must be multiplied by r" ~ "~, where n is the principal
quantum number; this has no effect for the E shell. f

In order to numerically integrate (3.2), we must re-

place them by suitable difference equations. In the
difference equations we have chosen, we evaluate the
wave functions F and 6 (for simplification we have

dropped the subscript te) at the discrete points labeled

by integral values of j running from zero at r=0 to J
at a point rJ. The coordinate rJ is that point where the

asymptotic boundary conditions (3.5) are satisfied in

appropriate difference form to within some tolerance Tj.
The conditions (3.2) are applied at j+—, and the deriva-

tives are therefore evaluated as the slope of the chords

joining values at j and j+1.Quantities needed at j+a
are evaluated by averaging. The resulting 6nite differ-

ence equations are

Since the equations are linear and homogeneous, we may
choose G.(0) arbitrarily equal to one. F„(0) is then

F+i F(y—te)-—
+ + (F;+i+Ft)

- ~i+& ~i 2~i+

'L. I. SchitI, Qttamtgra Meehalies (McGraw-Hill Book Com-
pany, Inc., New York, 1955), 2nd ed. , Sec. 44, p. 336. The basis of the method is the simultaneous solution
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x B I

f +g bxi ——0, &=1 2, (3 9)

and the iteration is continued until the Eqs. (3.8) are
satisfied to within some desired tolerance.

If we define the following two vectors

of the complete set of di6erence equations and boundary
conditions. This method has been described for a two-
point boundary value problem by Henyey et ul. ' The
suggestion that the method couM also be used for eigen-
value problems was made to one of us by Henyey"
many years ago and has in fact been used by Levee to
solve many problems.

The Eqs. (3.6), although linear in the functions F
and 6, are nonlinear in the unknowns because of the
appearance of the eigenvalue E. They must therefore be
solved by an iterative technique such as the Newton-
Raphson method described in Henyey et al."

Formally we may write (3.6) as

Qi+i (~r+i,~rgr+i, gr E)=o

Q;+; (I';+i,F;,Gq+i,g;,E)=0,
0&j&J—1.

The Newton-Raphson method when applied to a system

fe(xi, xp, ,xx)=0, k=1, 2, , E (3.8)

corrects an approximate set of values gj&, g2&, , g~&

by variations bg&&, bg2~, , bgz& to give improved
values xi~', xpi'+', ~ ~ ~, xrc&+' where p is the iteration
number. The variations are determined from the
equations

Since the matrix of the coeKcients of Eqs. (3.10) is of
the form

gp

j=O g
1
2

J—1.

q& q2 g3 qJ & qJ bE
g g
g g g

q, =e,oE+f;, 0&j&j,
qp=0.

(3.11)

Substituting the first of (3.11) into (3.10) we find
recursion relations for the two-vectors e; and f; as

A;; '(B;e+—C).
f'+i= ~~+. '(B+:t+Q+:). -. -

(3.12)

Since qp=0, ep= fp=0 and we may determine all the e;,
f~ from (3.12) for 0&j&J.

At j=J we write the asymptotic solution (3.5) in
difference form as

we have J equations in 1+2 unknowns. The two addi-
tional conditions which are necessary to solve the equa-
tions are given by the boundary condition at j=0 and
the asymptotic condition at j=J.

At j=0, Ep is given by either of (3.3) when we have
chosen Op=1 arbitrarily. Then qp=O and the first equa-
tion of (3.10) gives qi in terms of 8E. Using this relation
we eliminate qi from the second of (3.10) to give qp in
terms of bE. The eliroination process is continued to the
final equation which gives qJ in terms of bE. These
equations will be of the form

we may write, in accordance with (3.9), the variational
equations derived from (3.6) as

6J—6z ygl
—&( z—&z-i)l (3.13)

A;+. =

ciQr'+i

BF;+g

clQ. i

BG;+g

~Q~+. '

BG;+g-

) 2+5
~Q,

'

Bo', -

A;+,q,+i+B;+iq;+C;5E+Q,+i 0, 0&j&I———1, (3.10)

where

Taking the variation of (3.13) we have

dX/dE = —E/ (1—E') '~' (3.15)

from the asymptotic solution.
Now from (3.11) and our definition of q; we have

ggJ =e[—&(&z—&z—r)ling& i

(r~ r~ i)G~, (dz/dE—)gE)—, (3.14)

where

~Q+.'

BE-

&Gz i= ez i'"&E+f-z i"'-

8GJ= e~i'& BE+fzt'&

(3.16)

'0 L. G. Henyey, L. Wilets, K. H. Bohm, R. LeLevier, and R. D. 7)
Astrophys J J29 62$ ($959)

' '
where the superscript "2 refers to the lower element of

n L. G. Henyey (private communication to Levee). the e, f two-vectors. Substituting (3.16) into (3.14) and
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solving for E, we arrive at

e i(rg—rg i—)f (2) f (2)

8E=
e&(2)+L6J—1(yJ yJ'—1)(~~/dE) eJ l(2)]e—i(rJ—rJ 1)

(3.17)

The iteration process may be summarized as follows:
(1) From the pth approximation to F;, 6,, and E, com-
pute the elements of A;+;, B,~;, C; and Q,+, for
0&j&J—1. (2) Using (3.12) compute ei, e&, , ez,
f,, f&, ~ fz using eo=fo=O (3). Compute bE by
(3.17). (4) Compute the corrections bFi, 5F2, , bF~,
b6i, b6o, ~, b6J from the first of (3.11). (5) Compute
the p+1st approximations by

En+i En+ bEn—

F n+i=F n+. bF u.
0&g&J.6 ~'=6 "+b6"

This process is repeated until all the unknowns satisfy
the inequality

lbxI, "/xl, "+'I &To, &=1, 2, , E

and
~
5E/E [ & Ti for xl,)To. For xi & To we do not make

a test.
In addition to satisfying the above tolerance tests, we

must also have chosen rJ such that the asymptotic
solution is indeed valid. To check this we compute

p p

g —6.'&—&(~J—x—~J—2)

and require that

The final values of the wave functions for the bound
state are given by

F;=Xr 'F;
0&~&g.

'6;

In the results reported here we have taken T~ ——10 4,

T2 ——10—', 13——10—'. The actual iteration error is much
smaller since the tests involve comparison with values
from the preceding iteration. In fact, since Newton's
method doubles the number of signi6cant figures when
within the linear range, iteration errors are probably
less than 10 8.

B. The Continuum-State Wave Equations

The continuum-state wave equations

(o+1+~)f. L(~g./«)—+ (1+~)(g./y)] =o
(o 1+~)g.—+L(df./«)+(1 ~) (f./y)] =o

(3.18)

constitute an initial value problem since e, the energy of
the ejected electron, is determined by the sum of the
incident photon energy alod the energy of the bound
state determined in the previous section.

As in the case of the bound state, it is convenient to
make a change of variables here also.

and that

l (Fz i Fz i)/F~ il &—Ti

) (6z i 6z i)l6z i
~
&Ti—. — — —

Equations (3.18) then become

(o+1+&)f. Cdg„l«+—E(y+a)/y]g„]=0
(3.19)

(e 1+v)g.+L—df./«+L(V ~)/r]f„]=0
If these inequalities are satisfied we are finished. If they
are not, we advance J by 10 and resolve the equations.
This procedure is repeated until all tests are satis6ed.

In order to normalize our solutions we require that

where f„and g„are Rnite at r=O.
In a manner similar to the bound state we determine

at r=O for a Coulomb potential a/r

¹

y'+'(F'+6') «=1=&' H(r) «.
0 0

or
(3.20a)

(3.20b)

This quadrature was performed by Bessell's formula

H(y)«=g C;(H;+H g;)+Q H, + H(r)«

where the C; take on the values

C0&=0.32986, Cg' ——1.32083, Cg'=0. 76667,

Co'= 1.10139, C4' ——0.98125.

Thus y'=)(' —a' and since Eqs. (3.20) are linear we
may again choose g, (0) arbitrarily equal to 1. We then
may determine f„(0) from either of (3.20). In practice
we use (3,20a) for )()0 and (3.20b) for )(&0 to insure
the greatest accuracy.

In order to normalize the continuum solution prop-
erly, it is necessary to 6nd the asymptotic solution. This
is done by matching the solutions of (3.18) with y not
zero to general solutions of (3.18) with q equal to zero,
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and evaluating the asymptotic behavior from the zero- p
solutions beyond the range of the potential.

Let the Inatching of solutions be done at a point ro.
Let p'=c' —1. Then

f.(«) = [(~—1)/Pro j'"
X[A+I. .(P«—)+A I (.-:i-(P«)j 3.21

g. ( o)=L(+ )/P oj"'
X[A J. :(pro) A I—(.+-:)(-Pro)j

These two equations serve to determine the constants
A~ and A . The asymptotic behavior of f„and g„ is then
determined by the asymptotic form of the Bessel
fUnctions.

(2(e—1))"' 1
f„(r)-i )

—A+ cos( pr ——
() pr 4 -2)

where ~„has components f„, g„and where

t'

r)

(v+~)
(3.26)

Consider now the finite diGerence representation of
(3.25) based on the Euler approximation

(~~+~ ~~)/h= —A~~~ (3.2'I)

where h= r;+~—r, =a constant, and where we have for
simplicity dropped the subscript i(. Equation (3.27) is
restricted to j&0 since the elements of A; are singular
for j=0. In practice co& would be determined from oro by
a series expansion. Equations (3.27) may be written

(
+A cosi pr+——

~

2 2i

(2(e+1)) ~ 1 ( m
g.(r)-l —A+cos( p.——

I) pr 4 2 2)

(3.22)

(o,~g ——(I+hA;)(d;.

The first-order error equation will then be

i1(op~( ——(I+hA;) 5co, , (3.28)

where we have neglected errors in A, . Equation (3.28)
may be simplified to

—A cos~ pr+ —
~2)

A= (A '+A ')"'
cos5„=A+/A,

—sin8„= (—1)"A /A.

(3.23)

The normalization factor A and the phase shift b„are
given by

with

5a),+&=8,8o), )

a)
hi ~+1+—

i

jh)

h(y+(()

h (~,)
jh ~h/

(3.29)

(3.30)

and where we have replaced r by ro+ jh= jh.
If individual errors in or, are to remain bounded, we

must require that the eigenvalue of the matrix 8; be less
than or equal to 1 in absolute value. The eigenvalues of
(3.30) are determined from

The asymptotic forms of f„and g„are then

p2(e —1)q'~' A
f.(r)-~ —cosi pr +8„ i, ——

pr ( 2

(2(a+1))"' A t' ((s.

g.(r)-I —sirr~ Pr ——+ii,) .
pr E 2

(3.24)
(y —i() ( a

1— —X —
hi ~—1+—

j jh =0.
a ) (y+i()

hi e+1+-
jh&

In using this with a true Coulomb potential, the
phase shifts b„will not become constant with increasing
r, but rather will continue to increase, behaving like
(ae/p) ln2pr+constant. This must be taken into ac-
count when checking whether the asymptotic form is
attained. For potentials that die out more rapidly than
the Coulomb potential, the 8„'s should become constants
in r.

The numerical solution of either (3.18) or (3.19) is
straightforward except near r =0. Because of the
singularity exhibited in (3.18) at r =0 we use (3.19),but
even here we have a starting problem.

Let us write Eqs. (3.19) in the vector notation

The argument holds in the limit of h —+ 0 which leads to

[1—(y —(()/j—X][1—(&+i()/j—X]+a'/ j'=0. (3.31)

(3.25)GOg =Aug )

Remembering that y'=i(' —a' we solve (3.31) to give
'A=1, 1—(2y/j). Since we require ~X~ &1 we have
—1&1—(2y/j)&1. Now p and j are always greater
than zero and therefore the right-hand inequality is
always satisfied. The left-hand inequality will be
satisfied if j&p. The conclusion is that if we want
errors to decrease in the solution of (3.19) by numerical

' integration, we must begin the integration at a value of
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j&7.The maximum value of p in our calculations was
20 corresponding to a= &20 and it is therefore necessary
to use the starting series described below for the first 20
steps. Although the above analysis is applied to the
simple Euler method it leads to the same result whexe

applied to the Runge-Kutta method. In fact, it was
using the Runge-Kutta method for starting that led to
the observations of the error growth and the analysis. "
It has been pointed out to the authors by J. ScofieldrP

that the modified Euler scheme, rp;~r ——$(I+2rhA;+, )/
(P——,'hA, +*,)]re; has eigenvalues P, =1, (1—p/(j+p)]/
L1+y/(j+ p)] in the limit ash —+ 0. Therefore errors in
this scheme will be bounded since 7&0.

The power-series solution to (3.19) around the point
r„ is of the form

f(r)=P c;(r r„)', —i=0, 1, 2,

g(r)=P b, (r—r„)', i=0, 1, 2,

Substituting into (3.19) we arrive at the recursion
relations

r (i+2)b,+p+ (i+1)b,~t+ (y+Ir)b;+t
—$(e+1)r„+a]c,~q —(e+1)c,=0,

(+2)c'++(+1) '++(v —) '+
+P(e 1)r +u—]b,~r+ (e—1)b,=0,

where cp= f(r„), bp
——g(r„). These relations allow the

determination of the c,, b, for i&0 for successive expan-
sions about r„=0, r„=h, r„=2h, -, r„=jh. Since we
are always expanding about the previous point,
r—r„=h.

The series solutions (3.32) and similar equations for
the derivatives of f and g were computed out to j=JJ.
The series at each j were terminated when the percent-
age error in f' and g' was less than one part in 10'. Using
the functions and derivatives thus determined, the
numerical solution of (3.32) was then continued by the
Runge-Kutta method. In the case of a general potential
where the series solution is not easily arrived at, we plan
using the modified Euler scheme for starting the
integration.

At this point in j we switched back to using f and g
instead of fand g so that our numbers would not become
too small. In addition it was necessary to add a scale
factor, SF, in both f and g in certain c.ases to keep
numbers within machine limits. Using the values

f~~=j'zs(SF rJ J)~'
gzz= gzz(S& re~)~'

f '=f '(SF r ) '+(v 1)f»!r»—
gz~'= gee'(SF r~~)~'+(y 1)g„/r„, —

the numerical integration of (3,32) was continued by the
standard Runge-Kutta method.

"This difEculty had been observed and resolved previously by
Levee in a problem in controlled thermonuclear reactions."J.Scofield (private communication).

Although our analysis in this section indicates that
we should take JJ=20, we actually used JJ=10.This
allowed small errors to appear in the normalization
factors and wave functions for ~) 10. These errors were
of the order of O'Pc in the normalization factor at z= 16.
However, the high values of sc contributed very little to
the cross sections and the cross sections show no error
due to using JJ=10 instead of 20.

We require f and g to be normalized such that

t~
f-~ —cos pr ——+8

~

4 2e pr 2 i
(e+1 "' 1

t l~
g ~

—sin~ pr ——+b
~

.
4 2e pr k 2

(3.33)

From (3.23) and (3.33) we then have the following rela-
tion for the normalization factor Et. Et 2A(e/m——)r~'

where A is determined from (3.21) and the fi.rst of (3.23).
The phase 8 must now be determined. For a potential

which falls off more rapidly than 1/r the phase will be
given by (3.23) as 5=arctan

~
A /A~ j, but for the pure

Coulomb potential B=arctan)A /A+~ —(ae/p) ln2pr.
In the program reported here we have computed A

at each step of the integration and required that

IV. ACCURACY OF THE NUMERICAL CALCULATION

We have seen that we will have all the information
needed to specify the properties of S-state photoeffect
when we have calculated the quantities R„+ given by
Eq. (2.20). We have not discussed how many of these
quantities we need to calculate, i.e., the convergence
properties of the series in Eqs. (2.24) and (2.22). We
follow usual practice, and will judge the convergence by
the size of successive R,+. Practical considerations force
us to choose a limit for

~
lr~ in, advance, since the methods

employed for calculating functions and organizing the
numerical program for machine purposes depend on
this choice; in the present paper we consider

~
~

~
&20.

Then first of all the calculation of a given R„requires
bound-state radial functions F„, G„, continuum radial
functions f„, g., and spherical Bessel functions jr(kr).
Also, in calculating angular distributions we will need
the associated I.egendre functions Pr (cos8), for m=0,
1, 2. The accuracy of the calculations of these cormpomelts
of the general program are discussed in separate sub-
sections. Ke can then estimate the accuracy with which
each E, has been computed, and the accuracy this
implies for the cross sections. And we must also judge

2;+gp —A
2 &T4.

Ag+rp+A&'

It turned out that for the very small T4 chosen, the
integration was always carried out to the predetermined
maximum at r=120. At this point the normalizations
and phases were determined.
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the error which has been made due to the restriction
fn/ &20.

Checks for the component programs will be discussed
separately. A number of checks are available for the Anal
results: We can compare with analytic results for low Z
and we can compare with numerical results which have
previously been obtained for photoelectric cross sections.
These comparisons are made in the subsequent sections
where we present our results. In all cases the proper
agreement was obtained, so that we have full confidence
in our numerical program. . It should perhaps also be
mentioned that with the present program some ten
minutes of IBM-7090 time were required to obtain the
differential and total cross sections and polarization
correlations for a given choice of element and energy; it
is expected that further improvements in the program
will appreciably reduce this figure.

A. Component Programs

i. Bonrld-State 8'ave Fuectioms

The accuracy of the bound-state calculation can be
tested for the pure Coulomb potential by comparison
with analytic results. It is particularly simple to check
the eigenvalue and the normalization of a calculated
wave function. The energy levels are obtained with
considerable accuracy. However, the normalization
coeKcient, i.e., the constant which multiplies the known
small r dependence, probably gives a better indication
of the over-all accuracy of the wave function. For given
h=—r,+1—r, , the error in mormalization increases with Z.
With h=0.05, the smallest value used, the error is
negligible for Z=26 or 50 but 0.4%%u~ for Z=82 and
0.6'Po for Z=92. To obtain 1% accuracy in the cross
sections for heavy elements we have taken results for
h=0.1, 0.075, and 0.05 and extrapolated to h=0. [Note:
It has since been established that these small errors
result from a minor error in programming; once this is
corrected, the error in bound-state normalizations be-
comes completely negligible. j

ii. Coetimglm-State 8'ave FNmctioes

The two parameters of a continuum-state solution
which are easily compared with the analytical results of
the pure Coulomb potential are normalization and

TABLE I. Accuracy of continuum normalizations.

TABLE II. Accuracy of phase shifts; errors in radians and percent.

Energy+fr
(Mev)~

Low Z 0,354
1.131

0.0004(,2%) 0 0004(0 1%) 0 0005(0 1%) 0 0009(0 1%)
0.0015 (10%) 0.0016(0.5 %) 0.0014(0,3 %) 0,0014(0 2 %)

High Z 0.200
0.354
0.600
1.131

0.0035 ( ~)
0.0030 (1.5 %)
0.0007 (0.2 %)
0.0011(0.3%)

0.0054 (0.3 %)
0.0005 (0.0 %)
0.0001 (0.0 ~)
0.0009 (0.1 %)

0.0001 (0.0%) 0.0021 (0.1 %)
0.0019(0.1 'P ) 0.0034 (0.2 %)
0.0006 (0.1 %) 0.0012 (0.1 %)
0.0011(0.1 %) 0,0014 (0 1 %)

phase. The accuracy of the normalizations calculated
with k=0.05 for some typical partial waves in low-Z
(26) and high-Z (82 and 84) elements are shown for
various energies in Table I. The errors in the higher
partial waves are nearly independent of energy (away
from threshold) and Z, but increase rapidly with K.

These arise from the use of the same switching point
JJ=10 from power series to numerical integration for
all tc. Except at the highest energy (2 MeV), the errors
are not sensitive to choices of h in the range from 0.05
to 0.1. The error in normalization also increases rapidly
as the threshold energy is approached. This type of
error is insensitive to h and may be connected with the
very long periods of low-energy continuum states. In
Table II we give the analogous errors in phase shifts,
expressed both in radians and in percent.

ie. Legemdre I'olymomials

The Legendre and associated Legendre functions
were computed in double precision arithmetic directly
from the polynomials given by Tallquist. ' These were
compared with double precision values computed from
the recursion relations and found to agree to at least one
part in 10". Rough comparisons can be made to the
tables of Mursi' and NBS.'

B. The Main Program

i. I'artia/-Wa~e Irrtegrals R„

The errors in an R„are due erst to the errors of the
component programs and second to the errors of the

iii. Spheri ca/ Besse/ Functions

The spherical Bessel functions j&, 0&l(20, were
computed by the method of Corbato and Uretsky" and
were checked against the NBS Tables" for selected
values of l. The errors were less than one part in 10'.

Energy
(Me

Low Z 0.354
1.131

High Z 0.200
0.354
0.600
1.131
1.5
2.0

+1
(%)
0.01
0.01
0.5
0.1
0.07
0.03
0.02
0.2

+5
('%%uo)

0.02
0.03
0.7
0.2
0.10
0,05
0.03
0.2

+9
('%%uo)

0.4
0.4
1.0
0.5
0.45
0.4
0.3
0.4

+15
('%%uo)

4.0
4.5
5.0
4.5

4.2
4.0
4.2

"F.J.Corbat6 and J.L. Uretsky, J.Assoc. Comp. Mach. 6, 366
(1959).

'e National Bureau of Standards, Tables of SPherical Bessel
Fnnctions (Columbia University Press, New York, 1947), Vols. I
and II.

' H. J.Tallquist, Acta Soc. Sci. Pennica, Nova Series A, Tome
II, No. 4 (1936);Tome II, No. 11 (1938).

»Z. Mursi, Tables of Legendre Associated Fnnctions (E. and
R. Schindler, Cairo, 1941).

"National Bureau of Standards, Tables of Associated Legendre
Fnnctions (Columbia University Press, New York, 1945).
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TABLE III. Regions contributing to partial-wave integrals.

Energy+le
Z (MeV)+
26 0.354

1.131
50 0.354
92 0.208
84 0.354

1.131
82 1.1368

2.0
2.754

+1 +5 +9 +15
84 80
58.5 63
41 45

28.5
20 26
22 25
21 5 23
19 5 25
22.5 24.5

108
78.5
50
35
31.5
27
27
26
25

(does not contribute)
89.5

(does not contribute)
(does not contribute)
(does not contribute)

31
28.5
27
25.5

TABLE IV. Number of a's needed for accuracy to one part in 10".

3 4 5 6

0.140
0.200
0.279
0.354
0.400
0.662
1.131
1.1368
2.0
2.754

2
3
3

5
7
8

11
14

3

5
6
8

12
13

=17

4
5
6
7

10
15
16

6
7
9
9

13

5
7

10
11
14

5
8
9

12
13

'9 It should be noted that the distance required for very high
accuracy has a different dependence on parameters from the dis-
tance which characterizes the main region of the integrand. It is
the latter distance which is discussed in the various analytic
approximations.

integration procedures. The errors in integration arise
from the choice of h and r, , the upper limit of the
integration.

Table III summarizes, for representative parameters,
the distance in r which it was necessary to integrate to
hopefully reduce the residual contribution to less than
one part in 10'. The needed distance increases slowly
with increasing ~; in heavy elements it is nearly inde-
pendent of energy and is determined by the decreasing
exponential of the bound-state wave function. Since this
exponential scales as Z the required distance greatly
increases as Z decreases. In light e'lements this has the
consequence that an energy dependence persists in the
energy range of concern, and the rapid oscillations of a
high-energy continuum-state work to reduce the needed
distance. "Since such a stringent criterion was applied in
the table, it is possible to obtain satisfactory results from
the present calculation for a Z as low as 10 or 13, even
with the restriction r,„&120required in the machine
program.

The error in integration arising from the choice of h

can be estimated by noting the change in the values of
R„resulting from changes in h and subtracting out the
portion of this which is due to change in component
programs with h. As already noted, up to 1.5 MeV, the
only component program which is sensitive to choices
of h in the range 0.05—0.10 is the bound-state wave func-

tion. When the estimated error from this source is
subtracted, the residual error to be attributed to error
from h in integration is generally small and, with one
exception, " completely independent of ~. The typical
error begins to increase at higher energies: the difference
between R„of h=0.05 and 0.10, still negligible at 662
keV, is about 0.4% at 1.131 MeV, both for Z=26 and
82, and 1.5% at 1.5 MeV.

TABLE V. Estimates of total error in numerical calculation.

Low Z

Energy

0,354
1.131

Error in of t,,q

(%)
0.2
0.6

High Z 0.200
0.354
0.600
1.131
1.368
2.00

1.1
0.5
0.5
0.8
0.8
2.0

iii Estim.ate of Tota/ Error ie Cross Sectioris

We assume that a fit is made to the results for differ-
ent h and extrapolated to k=0, and we assume that, in
agreement with our analysis, this renders errors associ-
ated with ts (bound-state normalization, integration,
etc.) negligible, i.e. 0.1% Then the error in E„ is
dominated by the error in the continuum wave function.
From this estimate of the error in each R„, and from the
information just presented on the contribution of each ~
to the cross section, we can get an estimate of the total
error of the cross section. Some rough estimates of this
kind are summarized in Table V. The main conclusion
is that the present calculation obtains total cross sec-
tions accurate to 0.8% in the energy range from 300 to
1400 keV; the accuracy decreases rapidly toward
threshold and at high energies.

V. TOTAL CROSS SECTIONS

Theoretical predictions for the total E'-shell photo-
electric-effect cross section have been based on four

0 The exception is for a= 1, for which R„changes by as much as
0.5% between h =0.05 and 0.10.

ii. %umber of z's Contributieg to Cross Section

The number of ~'s needed to determine the total cross
section to ax)y desired accuracy increases with energy,
but it is almost independent of Z. One or two more a' s
are needed to obtain the same accuracy for Z=26 as
for Z=84. In Table IV we summarize as a function of
energy (for heavy elements) the number of ~'s needed to
obtain an accuracy of one part in 10".The restriction
to

~
Ir~ (20 results in a limitation to energies below about

2 MeV if it is desired to obtain the total cross section
to 1%.
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(Me

0.3543
0.662
1.131
1.5
2.0

13
This
work

0.01543
0.00289
0.00091
0.00054
0.00033

26 50 84
This Hulme This Hulme This Hulme
work et al. work et al. work et al.

0.3885 0.39
0 0754
0.0237 0.023
0 0140
0 0086

7.06 7.1
1.455
0.462 0.46
0.271
0 164

60.6 60.2
13.87
4.54 4.61
2.65

57 o ~ ~

TAsz,z VI. Total cross sections for Z=13, 26, 50, 84, in barns.

(MeV)

1.131
1.332
1.5
2.0

NBS

4.37
3.24
2.65
1.8

Extrapo-
lation

4.07
3.03
2.49
1.56

Present
calculation

4.10
2.99
2.39
1.42

TABLE VIII. Comparison of total cross sections {in barns) for
Z=82, from the NBS tables, an extrapolation of Pratt, and the
present calculation.

TABLE VII. Total cross sections for Z=82, 92, in barns.

Z=82
E This

(MeV) work HNO NBS (MeV)
This
work

Z= 92

HNO NBS

0.120
0.200
0.300
0.400
0.500
0.600
0.662
0.900
1.131
1.332
1.5
2.0

~ ~ ~

239
84.0
40.7
23.7
15.6
12.5
6.49
4.10
2.99
2.39
1.42

921
241
83.6
40.5
23.7
15.5

950
236
80.2
40.4
23.1
15.3
12.4
6.68
4.37
3.24
2.65
1.8

0.132
0.140
0.208
0.279
0.412
0.662
0.900
1.131
1.332
1.5
2.0

~ ~ ~

319
155
59.9
20.4
10.7
6.78
4.93
3.95
2.33

1026
887
324
154
59.5
20.2

1100
942
334
155
59.8
20.7
11.2
7.38
5.5
4.5
2.9

» M. Stobbe, Ann. Physik 7, 661 (1930).
~ H. R. Hulme, J. McDougall, R. A. Buckingham, and R. H.

Fowler, Proc. Roy. Soc. (London) A149, 131 (1935).
"H. Hall, Rev. Mod. Phys. 8, 358 (1936).
'4 G. W. Grodstein, U. S. Department of Commerce, National

Bgreatt of Startdards Circular 583 (U. S. Government Printing
0%ce, Washington, D. C., 1957); see also R. T. McGinnies,
EBS Supplement to Circular 583 (1959).

'5 H. Hall, University of California, Lawrence Radiation Labo-
ratory Report UCRL 5947-T (unpublished).

main calculations: (1) The exact nonrelativistic solution
of the problem, usually associated with Stobbe, "
(2) Sauter's relativistic calculation, ' valid to lowest
order in Zn/P, (3) numerical calculations of Hulme
et a/."for a few selected energies and elements, (4) the
high-energy limit of the relativistic problem for arbi-
trary Z as given by Hall. "Extrapolation procedures,
based on these four results, can be used to estimate the
cross section for arbitrary Z and energy; tables of these
predictions have been given by Grodstein'4 (NBS
tables). Experimental results have generally yielded
satisfactory agreement with these tables.

Since 195S there has been substantial improvement in
all four of these calculations, and one of them has
actually been found to contain an error. Namely,
although Hall's expression for the high-energy limit in
the form of a double integral is correct, the analytic
formula with which he approximated the integral is not,
and overestimates the cross section by a factor of two in
heavy elements. The exact high-energy limit was ob-
tained numerically by Pratt' and later confirmed by
Hall"; as already noted, Eq. (2.7) gives a fairly good

TAnLE IX. Comparison with experimental results (see Reis.
32—34) for E-shell total cross sections (in barns).

Experimenter

Seeman
Mlssonl
Hultberg and

Stockendal
Hultberg and

Stockendal
Bleeker, Goudsmit

and De Vries

Energy
Element (keV)

Pb 511
Au 662
U 1173

U 1332

Pb 1332

Experimental
result

23.4 ~0.7
10.2 &0.3
7.2 &0.5

5.4 ~0.3
3.24&0.13

Present
theory

22.5
10.5
6.32

4.93

2.99

"M. Gavrila, Phys. Rev. 113, 514 (1959).
s' B.Nagel, Arkiv Fysik 18, 1 (1960).
28 V. G. Gorshkov and A. I.Mikhailov, Zh. Eksperim. i Teor. I iz.

43, 991 (1962) LEnglish transl. : Soviet Phys. —JETP 16, 701
(1963)j.

s9 J. W. Cooper, Phys. Rev. 128, 681 (1962).

analytic representation. It is then at first hard to under.
stand why the extrapolation between Sauter and Hall is
in good agreement with Hulme. The work of Gavrila'6
and Nagel, ' who extended Sauter's result to next order
in (Zcr/P), explains the puzzle. Hall's error essentially
involved omission of the factor (—4sa/15) in Eq. (2.7),
but the energy dependence of this term is such that it
is large only at very high energies. )Recently, a compli-
cated analytical expression for still another order in
Zn/P has been given by Gorshkov and Mikhailov. "g

E-shell photoeffect at threshold has been calculated
for the relativistic problem, both analytically and
numerically, by Nagel and Olsson. 5 In the low-energy
region screening eRects are expected to be important,
however, and this has recently been examined in the
nonrelativistic problem by Cooper. " Since, as already
noted, the numerical techniques of the present paper
require modification at low energies, we will not discuss
this energy region further.

The numerical calculations of Hulme et a/. provided
the reference points which Sauter-Stobbe and Sauter-
Hall extrapolations are forced to fit. The accuracy of
Grodstein's predictions for intermediate energies rests
almost entirely on the accuracy of these numerical re-
sults obtained for 0.3543 and i.131 MeV, estimated at
4% for heavy elements and 8% for lighter elements.
Since this is the main energy region of experimental
interest, it is important to verify and extend these
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TABLE X.Z-shell angular distributions for 2=13, 26, 50, 84inbarns/steradian (whenmultiplied by indicated scale factor and by 1490).

z
(keV)
Scale

354
10 '

662
10 6

354
10 4

26
354
10 '

50
662
10 '

1131
10 4

84
354 662
10"' 10 3

o
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
iip
115
120
125

1.0 0.5
2.8 1.4
4.1 1.7
4.9 1.6
5.3 1.3
4.9 0.9
3.9 0.58
2.9 0.37
2.2 0.26
1.65 0.17
1.20 0.11
0.86 0.08
0.63 0.06
0.46 0.04
0.34 0.028
0.26 0.020
0.19 0.016
0.140 0.012
0.101
0.076
0.057
0.042
0.033
0.027
0.020

0.0028
0.19
0.62
1.04
1.27
1.28
1.15
0.95
0.746
0.567
0.422
0.311
0.228
0.168
0.123
0.091
0.067
0.050
0.037
0.028
0.021
0.0158
0.0120
0.0091
0.0069
0.0052

1.4
3.6

4.1
3.3
2.3
1.50
1.00
0.71
0.48
0.30
0.21
0.16
0.116
0.077
0.056

0.0155
0.280
0.92
1.58
2.00
2.10
1.95
1.67
1.36
1.07
0.820
0.621
0.468
0.351
0.264
0.199
0.150
0.113
0.086
0.066
0.051
0.039
0.030
0.024
0.019
0.015

0.033 0.4
0.22 2.0
0.59 4.3
0.79 4.3
0.76 2.8
0.598 1.6
0.435 1.02
0.306 0.67
0.211 0.42
0.144 0.27
0.098 0.18
0.069 0.13
0.049 0.095
0.035 0.069
0.026 0.051
0.019 0.039
0.0142 0.031
0.0109 0.024
0.0083 0.019
0.0064
0.0050
0.0040
0.0032
0.0026
0.0020
0.0017

0.79 0.96
0.14 1.91 1.9S
0.43 3.93 3.40
0.78 5.20 3.40
1.06 5.50 2.47
1.23 4.99 1.62
1.26 3.98 1.07
1.20 2.98 0.71
1.08 2.22 0.47
0.93 1.64 0.33
0.78 1.19 0.23
0.64 0.89 0.168
0.51 0.66 0.125
0.41 0.49 0.097
0.33 0.37 0.076
0.26 0.29 0.058
0.21 0.23 0.046
0.17 0.17 0.038
0.13 0.14 0.032

Z
E(keV)

Scale
1131
10 '

13
1500
10 6

2000
10 6

1131
10 5

26
1500
10 ~

2000
10 ~

1500
10-4

50
2000
10 4

1500
10-3

2000
ip-3

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

0.42 0.4 0.3
0.95 0.79 0.6
0.90 0.63 0.43
0.58 0.31 0.16
0.33 0.15 0.08
0.195 0.09 0.05
0.119 0.06i 0.030
0.075 0.034 0.015
0.048 0.019 0.100
0.031 0.014 0.008
0.020 0.011
0.015 0.007
0.012
0.008

0.06
1.0
2.4
2.36
1.50
0.83
0.50
0.33
0.205
0.122
0.081
0.060

0.05
1.0
2.0
1.60
0.80
0.39
0.24
0.17
0.091
0.053

0.034
0.9
1.6
1.04
0.41
0.19
0.126
0.079
0.040
0.024
0.014

0.4 O.36
2.0 1.8
3.7 3.0
2.9 i.s7

0.76
0.78 0.37
0.49 O.24
0.32 0.15
0.19 O.OS6
0.119 O.O56
0.085 O.P43
0.064 O.p3p
0.045 0.021
0.032 0.015
0.025 0.012

1.0
2.0
3.0
2.43
1.41
0.81
0.51
0.32
0.21
0.15
0.105
0.075
0.058
0.047
0.036

1.0
1.9
2.6
1.6
0.72
0.39
0.24
0.146
0.099
0.071
0.047
0.034
0.030
0.023
0.016

calculated points, and this is the purpose of the present
section.

While the present work was in progress a new
numerical calculation was reported by Hultberg, Nagel,
and Olsson (HNO). 'Like the work of Hulme et al. , the
method used applies only to the pure Coulomb poten-
tial; HNO treated two heavy elements in the energy
range 0.120—0.662 MeV. Moderately good agreement
was obtained with the values derived from the EBS
tables, con6rming the low-energy high-Z point of
Hulme et al.30

"It should also be noted that in principle, another series of
photoeffect total cross sections is available in the numerical calcu-
lations on the coherent scattering of photons from K-shell electrons
carried out by Brown and collaborators: G. E. Brown, R. E.

The E-shell total cross sections obtained in the
present numerical calculations are summarized in Tables
VI and VII. The Z's of Table UI corresponds to those of

Peierls, and J. B.Woodward, Proc. Roy. Soc. (London) A227 5l
(l954); S. Brenner, G. E. Brown, and J.B.Woodward, ibid. A227,
59 (f954};G. E. Brown and D. F. Mayers, ibid. A234, 387 (l955);
A242, 89 (1957}.As the authorsnote, the photoeffect crosssections
can be obtained from the imaginary part of the scattering ampli-
tude in the forward direction for the coherent process, and results
are presented for Hg at photon energies of 0.32, 0.64, 1.28, and
2.56 (allinunitsof wc). Asimilar calculation was laterreportedby
H. Cornille and M. Chapdelaine, Nuovo Cimento 14, 1386 {1959)
for photons of energy 5.12 mc' on Hg. Unfortunately, results of
these papers pertaining to the photoeGect are not presented as
cross sections. We do not wish to now enter into a detailed dis-
cussion, but if our interpretation of these results is correct they are
in fair accord with our numerical work and the highest energy
results show the suppression from previous values reported here.
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TABLE XI. E-she11 angular distributions for Z=82, 92 in barns/steradian (when multiplied by indicated scale factor and by 1490).

Z
8 (keU)

&+Scale
200
10 '

300
10-2

400
10 '

500
10 '

600
10 '

662
10 '

208
10 '

279
10M

412
10 '

662
10 '

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

0.0006
0.132
0.499
1.02
1.61
2.16
2.59
2.88
3.02
3.02
2.91
2.72
2.48
2.22
1.96
1.71
1.47
1.26
1.07
0.91
0.766
0.644
0.54
0.45
0.38
0.31

0.2
0.5
0.8
1.1
1.36
1.53
1.54
1.44
1.28
1.10
0.93
0.78
0.64
0.53
0.43
0.35
0.28
0.23
0.183
0.148
0.121
0.101
0.083
0.068
0.056

0.0289
0.135
0.397
0.688
0.900
0.987
0.964
0.871
0.746
0.616
0.497
0.395
0.311.
0.244
0.190
0.149
0.117
0.092
0.073
0.058
0.047
0.038
0.031
0.026
0.021
0.018

0.0414
0.143
0.376
0.600
0.717
0.717
0.642
0.536
0.428
0.333
0.255
0.194
0.148
0.112
0.086
0.066
0.051
0.040
0.031
0.025
0.0200
0.0163
0.0134
0.0111
0.0095
0.0082

0.523
1.51
3.63
5.33
5.82
5.34
4.43
3.47
2.63
1.96
1.45
1.07
0.80
0.60
0.455
0.348
0.269
0.209
0.166
0.133
0.108
0.088
0.073
0.062
0.053
0.046

0.577
1.55
3.56
4.97
5.16
4.50
3.58
2.71
2.00
1.46
1.06
0.78
0.576
0.431
0.327
0.250
0.193
0.151
0.120
0.097
0.079
0.064
0.054
0.046
0.039
0.034

0.00030
0.122
0.47
0.98
1.57
2.16
2.69
3.10
3.37
3.50
3.50
3.40
3.22
2.98
2.72
2.45
2.18
1.93
1.69
1.47
1.27
1.10
0.94
0.81
0.69
0.59

0.0147
0.139
0.479
0.94
1.42
1.83
2.10
2.23
2.23
2.12
1.96
1.76
1.54
1.33
1.14
0.96
0.81
0.68
0.57
0.47
0.39
0.33
0.27
0.230
0.195
0.166

0.052 0.104
0.175 0.228
0.484 0.489
0.85 0.690
1.13 0.740
1.27 0.673
1.28 0.577
1.19 0.437
1.05 0.332
0.89 0.250
0.74 0.187
0.60 0.140
0.49 0.106
0.39 0.080
0.310 0.062
0.247 0.048
0.197 0.038
0.158 0.030
0.127 0.024
0.103 0.0196
0.083 0.0161
0.068 0.0134
0.057 0.0113
0.048 0.0098
0.041 0.0085
0.036 0.0075

z
(keU)
Scale

900
10 '

1131
10 3

82
1332
10 3

1500
10 3

2000
10 '

900
10 '

1131
10 '

92
1332
10 '

1500
10 '

2000
10 '

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

0.75
1.71
3.34
3.89
3.32
2.46
1.73
1.20
0.82
0.57
0.41
0.294
0.216
0.164
0.126
0.096
0.075
0.061
0.050

0.84
1.79
3.12
3.11
2.24
1.46
0.96
0.64
0.423
0.291
0.207
0.148
0.110
0.085
0.066
0.051
0.040
0.033
0.028

0.90
1.84
2.94
2.57
1.63
0.98
0.62
0.402
0.264
0.183
0.129
0.092
0.070
0.056
0.042

0.90
1.8
2.76
2.22
1.27
0.73
0.46
0.290
0.189
0.133
0.093
0.066
0.051
0.042
0.031

0.87
1.75
2.3
1.4
0.65
0.35
0.22
0.131
0.088
0.063
0.042
0.030
0.026
0.020
0.014

1.37
2.62
4.81
5.68
5.04
3.88
2.83
2.01
1.42
1.01
0.73
0.54
0.40
0.31
0.24
0.185
0.146
0.119
0.098

1.56
2.82
4.63
4.67
3.51
2.39
1.61
1.08
0.74
0.52
0.37
0.27
0.202
0.160
0.125
0.096
0.077
0.065
0.054

1.68
2.9
4.42
3.93
2.59
1.63
1.05
0.68
0.46
0.33
0.231
0.166
0.129
0.104
0.080
0.061
0.051
0.044
0.035

1.7
2.9
4.2
3.4
2.04
1.22
0.77
0.49
0.33
0.236
0.166
0.118
0.093
0.077
0.059

1.68
2.9
3.6
2.25
1.06
0.59
0.36
0.217
0.153
O.iii
0.072
0.053
0.048
0.037
0.025

Hulme et al. and those of Table VII to HNO; in each
case the appropriate comparisons with earlier work are
made. The 6rst striking feature is the excellent agree-
ment, far better than the accuracy which had been
claimed, with the calculations of Hulme et al. This means
that interpolations, such as Grodstein's, based on the
Hulme values would be expected to be good and need
no major revision in this energy range (however, see
below). The errors which remain are of the same mag-
nitude as screening effects; such effects must be included
before the change in the cross section from the Hulme

values is significant. Agreement with the HNO results
is also excellent, and within the estimated error of the
present calculation. The 6rst result of this section is
then the establishment of the accuracy of the values of
Hulme et al.

In Table VII we have also given the corresponding
cross section as obtained in the NBS tables. "The com-

"Since the NBS values are for total absorption cross sections,
the contribution from higher shells is removed by dividing out the
simple multiplicative factor which Grodstein used to put it in.
Another smaller correction is also needed to obtain a K-shell cross
section without screening.
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accord with the NBS tables, which again says that the
experimental results above 1 MeV are higher than the
theoretical values of the present calculation.

The second result of this section is then the finding of
signi6cantly lower cross sections in the energy region
above 1 MeV than are given in the NBS tables or in two
recent experiments. We have previously outlined the
evidence for the accuracy of the present calculations. If
these arguments are correct we see no theoretical
explanation for the discrepancy. It is true that screening
effects will modify the pure Coulomb calculations, but
for the E; shell such corrections are expected to be only
1—2%, and in the wrong direction.

IO

TABLE XII. Comparison of angular distributions with HNO
results, normalized to agree with this work at the underlined
angles.

E(keV) 208 279 412 662
This This This This

8 work HNO work HNO work HNO work HNO
'IO

50 60 90
8 (DEGREES)

I20 l50 l80

Fxo. 1. E-shell angular distributions for U in barns jsteradian.
The small cross sections in the shaded region of the graph are of
low accuracy.

parison is rather surprising; even in the 1-MeV region,
the present results are 5—10% lower than corresponding
interpolations from the XBS tables. It is hard to under-
stand this, since the present results agree with Hulme
et al. and the NBS tables are based on Hulme et al. By
2 MeV, the difference has reached 25%. Further proof
that this diA'erence is real is provided by a new calcula-
tion" which HNO have undertaken to check our results;
it appears that they have obtained complete agreement
with our cross section for Z=92 at 1.332 MeV.

A comparison with the extrapolation formula of
Pratt~ is given in Table VIII for Z=82. This formula,
which is exact at very high energies and exact for light
elements at all energies, is in good agreement with the
Hulme values and so also with the present calculation in
the 1-MeV range. However Table VIII suggests that
the very close agreement at 1 MeV is misleading, since
for the higher energy of 2 MeV the two differ by 10%.

The recent experimental measurements" " of the
total cross section from the E shell are given in
Table IX."These results were all reported as in good

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

0.12 0.13
0.47 0.53
0.98 0.97
1.57 1.50
2.16 2.17
2.69 2.73
3.10 3.13
3.37 3.37
3.50 3.47
3.50 3.50
3.40 3.43
3.22 3.23
2.98 3.00
2.72 2.77
2.45 2.47
2.18 2.20
1,93 1.93
1.69 1.70
1.47 1.47
1.27 1.27
1.10 1.10
0.94 0.93
0.81 0.80
0.69 0.67
0.59 0.50

0.01
0.14 0.17
0.48 0.51
0.94 0.94
1.42 1.38
1.83 1.83
2.10 2.10
2.23 2.23
2.23 2.21
2.12 2.10
1.96 1.95
1.76 1.76
1.54 1.53
1.33 1.34
1.14 1.13
0.96 0.96
0.81 0.81
0.68 0.68
0.57 0.57
0.47 0.47
0.39 0.40
0.33 0.34
0.27 0.28
0.23 0.23
0.20 0.19
0.17 0.17

0.05
0.18
0.48
0.85
1.13
1.27
1.28
1.19
1.05
0.89
0.74
0.60
0.49
0.39
0.31
0.25
0.20
0.16
0.13
0.10
0.08
0.07
0.06
0.05

0.05
0.18
0.48
0.77
1.14
1.27
1.28
1.18
1.04
0.88
0.73
0.61
0.49
0.39
0.30
0.24
0.20
0.16
0.12
0.10
0.09
0.07
0.06
0.05

0.10 0.13
0.23 0.27
0.49 0.49
0.69 0.68
0.74 0.74
0.67 0.67
0.56 0.56
0.44 0.44
0.33 0.33
0.25 0.25
0.19 0.19
0.14 0.14
0.11 0.11
0.08 0.08
0.06 0.06
0.05 0.05
0.04 0.04
0.03 0.03

"S. Hultberg (private communication). We should like to
thank Dr. Hultberg for undertaking this calculation and for
communicating its results prior to publication.

's K. W. Seeman, Bull. Am. Phys. Soc. 1, 198 (1956)."S.Hultberg and R. Stockendal, Arkiv Fysik 15, 355 (1959)."E.J.Sleeker, P. F.A. Goudsmit, and C. DeVries, Nucl. Phys.
29, 452 (1962).

G. Missoni (to be published).
3~ One should also note the measurement by Sleeker, Goudsmit,

and DeVries of the ratio 0 (2.754)/0 (1.368) in Pb. A similar ratio

was obtained earlier by G. R. Bishop, C. H. Collie, H. Halban,
A. Hedgran, K. Siegbahn, S. du Toit and R. Wilson, Phys. Rev. 80,
211 (1950); an early result for 0 (2.62) in Pb is given by G. D.
Latyshev, Rev. Mod. Phys. 19, 132 (1947). See also the total
photoelectric absorption cross-section measurements of W. F.
Titus, Phys. Rev. 115, 351 (1959), at 662 keV in a series of
elements, and of B. I. Deutch and F. R. Metzger, i'. 122, 848
(1961)at 279 keV in Tl. Particularly interesting for this paper are
total absorption measurements at 2.62 MeV in various elements
by I.E. Dayton, Phys. Rev. 89, 544 (1953) and W. F.Titus (to be
published), which lie appreciably below the earlier theories.
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TABLE XIII. Ratio of experiment to theory for angular dis-
tributions in U, both distributions normalized to unity at the
underlined angles.

2.0-
l500 keV

1.0

00
15'
30'
45'
60'
75
90'

6.2
0.95
1.00
1.05
0.94
0.92
0.98

xpel lmentel
Energy (keV) 279

Hultberg
412 662 1332

2.2 0.89 '0.71
0.84 1.00 1.00
1.00 1.04 1.28
1.10 1.32 0.87
1.33 1.46 0.91
1.58 1.68 0.67
1.90 1.69 0.00

0.5-

CO

+R.O-0
I-o I.O
Ld
th

0.5-
CO
CA
O
n R.O-

o0.5-
I-

~2.0-

Ilail keV

VI. ANGULAR DISTRIBUTIONS

Until quite recently the only theoretical result for the
angular distribution of relativistic E-shell photoeffect
was that of Sauter, ' Eq. (2.5), and there was no experi-
mental information. When corrections of relative 0(a)
were computed by Banerjee, 38 Gavrila, "and NageP' it
was found that they did not signi6cantly change the
predicted angular distributions, including the prediction
of a vanishing cross section in the forward direction. On
the other hand, the experiments of Hultberg" ~ indi-
cated some striking deviations from the Sauter distribu-
tion: A nonvanishing forward cross section, a shifting
of the maximum in the cross section toward larger
angles, and a tendency of the cross section to hold up at
large angles. We shall return to the theoretical discus-
sion of these matters following the presentation of our
numerical calculations and their comparison with HNO
and experiment.

The E-shell angular distributions obtained in the
present numerical calculations are summarized in
Tables X and XI. We present these results in some
detail, despite their limited accuracy, since they do dis-

play the significant deviations from the Sauter distribu-
tion and so provide more nearly correct predictions. The
very small large-angle cross sections are not tabulated.
For qualitative purposes we also show in Fig. 1 the
Z=92 distributions for several energies. Forward scat-
tering increases with increasing energy, the maximum
moves in, and backward scattering remains finite but
decreases with increasing energy.

For the lower energies we may again compare these
results with those of HNO which become available
(although they have not been published) in the course
of the present calculation. The comparison for U is
given in Table XII, where the HNO values, which are
normalized to unity at the angle of maximum emission,
are read from their graphs and normalized to agree with

"H. Banerjee, Nuovo Cimento 10, 863 (1958).
's A. Hedgran and S. Hultberg, Phys. Rev. 94, 498 (1954).

S. Hultberg, Aviv I'ysik 9, 245 (1955).
"S.Hultberg, Arkiv Fysik 15, 307 (1959).
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FIG. 2. Comparison with the Sauter angular distribution from
Z=84 for a series of energies. The ratio R of the present distribu-
tion to the Sauter distribution is plotted, where both distributions
have been normalized to their respective total cross sections. The
approximate angles of maximum emission are marked.

4~ Z. Sujkowski, Arkiv I'ysik 20, 269 (1961).
4' K. Bergkvist and S. Hultberg, Arkiv I'ysik (to be published).

our absolute results at the underlined angles. The two
calculations are in good agreement.

Experimental results for E-shell angular distributions
have been obtained for uranium by Hultberg" (412, 662,
and 1332 keV) and by Sujkowski" (279 keV); no other
true E-shell distributions are known to us, excepting the
early work of Hultberg. ""In Table XIII we give, for
a few selected angles, the ratio of experiment to theory.
The experimental results are available at quite fine
angular intervals, and the 279- and 662-keV cases have
elsewhere' "been compared with the HNO predictions
in graphical form. Except at forward angles the 279-keV
result of Sujkowski seems to be in good agreement with
theory, and it should be noted that at this low energy
the forward cross section is very small. The higher
energy data of Hultberg shows more marked deviations
from theory; now that fairly good theoretical estimates
are available, further experimental data in this energy
region would be desirable. Note that at higher energies
theory predicts a larger forward cross section than was
observed. LAngular distributions for Au at 412 keV in
the range 20'—90' have now been obtained by Bergkrist
and Hultberg" in excellent agreement with theory. )

I.et us next compare these new theoretical results
with the much-used Sauter distribution. This has been
done for a series of energies in Fig. 2. What is plotted is
the ratio R of the present distribution to the Sauter
distribution, with both distributions normalized to their
respective total cross section L(do/dQ)/og. Thus, the
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FIG. 3. High-energy behavior of angular distribution. P (x)
=(4e'a34) 1(da/dQ) is plotted against x=ks for Z=82 at three
energies and compared with its form in the high-energy limit.

straight line R=1 corresponds to the Sauter distribu-
tion; an angular region in which R= constant is a region
in which the distribution locally has the Sauter shape.
The only case shown is for Z= 84. For Z= 26 the curves
essentially follow the straight lines R=1 and even for
Z=50 the deviations are barely significant within the
errors of the calculation This was why, as was eluci-
dated by later theoretical work, it was possible to get
along with a Sauter distribution for many years —the
shape was much better than the normalization. Roughly
speaking, the error in the Sauter total cross section is
0(2ra) (from omission of the characteristic e factor)
but the signi6cant errors in the Sauter distribution are
only 0(as). But Fig. 2 does show that in the heaviest
elements the deviations from the Sauter distribution be-
come significant. The rise in R at small angles occurs
because the Sauter distribution, unlike an exact calcula-
tion, vanishes in the forward direction. If this were the
only region which deviated from Sauter form the curve
would elsewhere behave as R=constant. Instead, at
larger angles it falls off more slowly than the Sauter
form, and indeed there is no sizeable angular region of
Sauter shape. These qualitative features were 6rst re-
marked in the experiments. Finally, the angle 8, of
maximum emission, roughly indicated on the graphs,
occurs in the region in which R is rising, so the cross
section is staying up in comparison to Sauter, and so
8 is being shifted toward larger angles in comparison
to the Sauter distribution. This too was first noted in

the experiments.
The relative 0(a) corrections, mentioned earlier, do

not shed much light on these properties —they appear
to be 0(432) effects. This arises, as was noted by Nagel, "
both because at intermediate energies the 0(43) term is
not large and because its distribution is similar to the
Sauter form. There is a tendency for a maximum at
larger angles and for a larger cross section at back angles,
but especially for the latter effect the increase is in-
suKcient. Nagel also pointed out that the reason the
0(a) distribution vanishes in the forward direction is
that it arises as a cross term with the Sauter matrix
element. The lowest order nonvanishing cross section in
the forward direction I(0) is relative 0(43 ), and this Na-
gel obtained. 4"It has been conventional to express this
in, terms of the ratio x=I(0)/I(—g,„).From Table XI
we mould estimate that at 1332 keV, this ratio is 0.30
for Pb and 0.38 for U. These compare with the theo-
retical values 0.27 obtained for Pb by Sauter and
%iister44 in a numerical calculation and 0.42 obtained

by Nagel for Pb from the relative 0(a2) term above.
Hultberg's experimental value for ~ in U at 1332 keV
was 0.245, which again rejects the fact that the experi-
mental forward cross section at the higher energies lies

below theory. 4' (Some new measurements of a have
recently been reported by Rimskii-Korsakov et al.43)

It is finally of some interest to discuss the behavior of
the E-shell angular distribution in the high-energy limit.
At high energies, the significant angles are 0(1/k), and
in analytic work it is appropriate to expand in 1/k and

0, but for arbitrary x=—ke. Neglecting 0(a2), Nagei2'

writes the distribution in this limit as

1—8—
(]+g2)3 2 (]+g2)1/2

including the 0(a) correction to the Sauter distribution
which has its maximum at @=1/v2. Nagel (and also
Mork and Olsen4') find that in this limit forward

scattering is characterized by ~=5.85a' to lowest non-

vanishing order in u. Mork and Olsen also obtained an
exact expression for the forward scattering in the high-

4» This result was also independently obtained by Arne Reitan,
Physica Norvegica 1, 113 (1961).

"F. Sauter and H. O. Wuster, Z. Physi)4 141, 83 (1955).
Actually these authors obtained I(0') numerically and took
I(8, ) from the usual Sauter distribution, a procedure which
certainly becomes invalid at high energies as will be seen shortly.

4' Nagel (Ref. 27) compares the Sauter-Wiister 0.27 value with
Hultberg's 0.245, calling the agreement rather good, apparently
assuming that for large Z, f(: does not change appreciably with Z.
The present results do not support this assumption, and we con-
clude there is a significant difference between theory and
experiment.

46 K. K. Aglinstev, V. V. Mittrofanov, A. A. Rimskii-Korsakov,
and V. V. Smirnov, Bull. Acad. Sci. USSR 25, 1146 {1962};A. A.
Rimski-Korsakov and V.V. Smirnov, Zh. Eksperim. i Teor. Fix.42,
67 (1962) LEnglish transl. : Soviet Phys. —JETP 15, 47 (1962)j;
and Bull. Acad. Sci. USSR 26, 1180 (1963).

~ K. Mork and H. Olsen, Proceedings of the Physics Seminar in
Trondheim. No. 5, 1960 (unpublished).
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energy limit; such an expression was also later obtained
by Weber and Mullin, ' who graph F(0) against Z,
where

1 dc7

F(8)=
4e'a'e dQ

(6 2)

in dimensionless units. In the high-energy limit, Ii is
independent of energy. For Pb we would compute
a=2.1, an absurd result (x&1) which could be inter-
preted as a gross failure of the expansion of F(0) in a.
In fact, the error lies in the supposition that the position
of the maximum is given by the Sauter maximum,
whereas numerical calculations of Boyer" and NageP'
show that in heavy elements the maximum occurs for
forward emission and the distribution decreases mono-
tonically. Using Nagel's calculation" we 6nd that the

ratio of forward emission to emission at the Sauter
angle is 1.6. In Fig. 3 we plot F(x) for Z=82 for three
of the energies of our numerical calculation and also
show the high-energy limit from Nagel's work. This
again makes very clear how far removed 2 MeV is from
the asymptotic energy region. Even the manner in
which the minimum at forward angles gets filled remains
to be calculated by higher energy work. (The high-
energy limit has now also been discussed by Gorshkov
and Mikhailov. ")
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