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in the form and it follows that

exp(iyts cosg)f fy(1—tt')'t' singjPs+ ~(tt)dtt

=2t"Es+ (costi )js+„(y), (A4)

Ig =47'-i' f(&)i -(y)J' -"(cos4)d) (A9)

where j„(x) is a spherical Bessel function de6ned by

i,et

then

J-(x)= (s/»)'"J-+rts(x)

y= (ER/2) ( '—sin'3)'"

coslP= A cos3/(X —sin 5)

si altr = (ks —1)r~s sing/P ~—sjn~$g&&s

(A6)

(A7)

(Ag)

Substituting Eqs. (A6)—(AS) into Eq. (A4), we 6nd an
integral of the same form that appears in Eq. (A3),

Using these results, Eqs. (12)—(14) are easily verified.
Assuming that Eq. (A9) cannot be evaluated analyti-

cally, the following numerical scheme was used for this
purpose. A program for a digital computer, the Control
Data Corporation's 1604, was written which carried
out the integration of Eq. (A9) for a given choice of
E, 8, R by means of Meddle's quadrature formula.
With these values it is then possible to evaluate Eq.
(12). The sum in Eq. (12) was usually i.runcated to
three terms, although four terms were used in some
cases. The same program was used to evaluate e(E,o,E)
and carry out the integration of Eq. (6).

PHVSI CAIi REVI EW VOLUME 134, NUMB ER 4A 18 MAY 1964

&S= ~& Magnetic Multipole Radiative Transitions*

MASATAKA MIZUSHIMA

Departmelt of Physics artd Astrophystcs, Urtt'oersety of Colorado, Boulder, Colorado

(Received 20 December 1963)

The magnetic multipole transition probability is calculated in terms of the matrix elements of the mag-
netic multipole. The magnetic jm moment Q; ( g) is dered as

(e/ts)L47r/(2j+1)g"'Z(Vr;& I; )P(j'+1) 'I;+s;j,
where e and p, are electron charge and electron mass, r;, 1;, and s; are the coordinate, orbital angular momen-
tum, and spin-angular momentum of the ith electron and I'; is the spherical harmonic. Magnetic quadrupole
and octupole moments are explicitly given. It is shown that for the 'Z + &-+ 'Z~+ transition of the hydrogen
molecule, the magnetic quadrupole transition is more important than the conventional spin-orbit electric
dipole transition. The magnetic octupole transition has the same order of magnitude as the spin-orbit mag-
netic dipole transition.

INTRODUCTION

~ 'HK transition between states with diBerent mUlti-
plicity is a very weak one. The corresponding

emission line of some ions were erst found in the spectra
of some nebulas' and the theory has been given by
Condon and other people. ' This type of transition has
been investigated for many ions since then, a brief
review can be found in Garstang's article. ' In all these
theories the mixing of diferent multiplicity states
through the spin-orbit interaction was assumed to be
important. The 'D2 state of 0 III, for example, has

* Supported by National Science Foundation.' I. S. Bowen, Astrophys. J. 67, 1 (1928).
~ See C. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, New York, 1935), pp. 282-
283.

3R. H. Garstang, Atomic and Molecular I'rocesses, edited by
D. R. Bates (Academic Press Inc. , New York, 1962), Part 1.

0.0074 of 'I'2 wave function mixed through the spin-
orbit interaction, and the transition to a triplet state can
occur through this small part of the wave function.
Most of the phosphorescences of molecules are inter-
preted as due to the singlet-triplet transition. ' McClure
first suggested the transition through the spin-orbit
interaction for these molecules. ' The present author and
Koide formed a theory starting with the Dirac equation
of electron and calculated the singlet-triplet transition
probability of the benzene molecule. ' The result with
some approximation gave about 1 sec for the lifetime of
the lowest '82 state of this molecule. Hameka and
Oosterho6 re6ned the calculation and showed the
lifetime of the same state to be 190 sec. Calculations for

4 M. Kascha, Chem. Rev. 41, 401 (1947).' D. C. McClure, J. Chem. Phys. 17, 665 (1949}.
e M. Misnshima and S. Koide, J. Chem. Phys. 20, 765 (1952).
r H. F. Hameka and L. J. Oosterhoif, Mol. Phys. I, 358 (1958).
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other molecules have also been done following the same
idea, and they are brieQy reviewed by Garstang. '

In this paper a completely different mechanism,
namely, the magnetic multipole transition is proposed.
If the probability of the electric dipole transition is
E&&'&, the conventional theory of 65=&1 transitions
gives the probability of about (I'ta&/ttc')'PI&"& for the case
of spin-orbit electric dipole transition, since the spin-
orbit coupling is a 6rst-order relativistic correction to
the Coulomb energy which is about Ace. Ace is the photon
energy which appears or disappears in our transition
and pc' is the rest-mass energy of the electron. It will be
shown that the magnetic quadrupole transition has the
probability of the same order of magnitude, namely,
(Itcc/ttc')PI&'". In the same way one can show that the
spin-orbit magnetic dipole transition has the same order
of magnitude as the magnetic octupole transition.

MAGNETIC MULTIPOLE TRANSITION PROBABILITY

The theory of the spherical photon is given in
Akhiezer and Berestetsky's book. ' They showed that
the electric field for a photon which is the eigenstate of
the total angular momentum with eigenvalues j and ns,
and the eigenstate of the energy with eigenvalue Ace and
at the same time the eigenstate of the parity operator
with eigenvalue (—1)&'+', is

Eu jm = &cojm+ &ru jm

B„j = (AaP/16m'eoc')' 'e '"'g (d/c)Y ("r/r), (2)

where eo is the permittivity of the vacuum and

g;(o&r/c) = (2 )z'I i jJ,+Its(ocr/c)/(ocr/c)'I, (3)

with the Bessel function Jj+Ijs, and Y;; (r/r) is the
spherical vector given by the spherical harmonics
7'j„(r/r) as

I (j+m)(j—m+1)$'"vj„ I+I (j—m)(j+m+1)j'"I"j +I
Y„,„(r/r)= iP(j+m)(j +m1)g"Y—„ I—iL(j—m)(j+m+1))''I' +I I4g(j+1)] '".

2mI'j

There exists another state with the same cv, j, and m
eigenvalues, but with the parity of (—1)j. Such state is
called an electric state while our state is called a mag-
netic state. In this paper we are interested in the
magnetic states only.

If we take the Coulomb gauge we see from (2) that
the vector potential A; is

A, =M„j+Mj",
=i(hco/16m'eoc')'joe ' 'gj(ccr/c)Y, ; (r/r). (6)

Note that the normalization is such that

which indicates that F(cojm) and F*(orjm) are annihi-
lation and creation operators for the (&ojm), photon
respectively,

(v„;„IF*(cojm) I v„;„—1)= (v„j„/doI)'I'
= (v„;„—1

I
F(ojjm) I v„;„), (10)

where v„; is the number of the (ccjm) photon.
The probability of transition e&v& ~ e2v2 is'

P(NIvl ~ ttsvs)

=(~/&') l(~»II&'l~»s) I'~(~ "—~.i.s),

&0 B~jm' Era'j'm' dr s~coc~(cc ~ )~jj'~mm' y

(7) and
cc,s

——(E,—Zo)/t'I

&'= (e/t )Z I
II;.A;—s; (& Ic A;)3,

(12)

(13)

where e~ and e2 are molecular states, v~ and v2 are
photon numbers,

eej m ~co'j 'm, ' ojjm' ot'j'm'd~ ~

Thus, if we expand a given field as

E=P F (coj m) B„;„do)/c'I'

+Q F*(ajm)B„;„*dec/c'", (8)

we see the field energy U is

U=so F-'dr=2eo+ Q F(ooj m)
jm j'te'

)(F*( j'cmo') 8„; f, ,' *dko~doc'dr/c

ItccF (cuj m) F*((uj m) doc,

where y; and s; are the momentum and spin of ith
electron, respectively. A, is the vector potential at the
position of ith electron. e and p are the electron charge
and mass, respectively. In H; the contributions of nuclei
are neglected.

In the same way as in (8) we set

A;= p F (ccjm)W„j„(r;)d /c"o'

F*((ujm)W„;„*(r~)dec/c'" (14)

~A. I. Akhiezer and V. B. Berestetsky, Quantum Electrody-
stamjcs (izd. Fiz. Mat. Lit, Moscow, I953} (English transl. :AEC-
tr-2876).

~ See for example, L. Pauling and E.B.Wilson, Jr., Introdlctioe
to Qualtmm 3lechanics (McGraw-Hill Book Company, Inc. , New
York, j.935},Sec. 43.
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in (13).If

in (11),we have

E( 22V1—1~ 222V)

Vy= V—1, V2= V

= (~/A')(v. oj-( "/c) I (221I (e/j )Z L
—u' ~-oj

Thus, from (16) the probability of the (magnetic j222)

(1$) moment transition is

I'; (~)(e,~ 222)

= (i+1)Lj(2j+1)((Zj—1)~'5 "-.-™',2'+'

X(4~c j+2A«) 'l(~ 1IQ '-"I~2)l' (27)

where
+s, (~'XW„„„)5I~2)2, (16)

O)O=O) n, n2 (17)

and v„„(" is the number of the (magnetic jj&2)

photons with frequency (pp (op+(f(p.
From (6) we see

p,'M„.„=(A(p/162roc'oo)'j2e —'"'g ((por;/c)

Xr,-2(r; x Y;j„) I;, (18)

ELECTRIC MULTIPOLE TRANSITION

The electric multipole transition can be discussed in
the similar way. Since it is not the main purpose of the
present paper, we will just show the result.

The only difference is to start with a photon wave
function which is the eigenfunction of the total angular
momentum and energy with eigenvalues j, nz, and Lo,
while the parity is (—1)j, instead of (—1)'+'.

Th.e (electric jr&2) moment is defined as

Q; "&=+;e;L42r/(2j+1)5)jpr;jFj, (28)where I; is the orbital angular momentum of ith
particle.

Using formulas
where we should include both electrons and nuclei in
the summation, and e; is the charge of ith particle. This

g,.r,.
—2(r, x Y,, )= ~g, F, /Lj(j+. 1)5'(2 (19) definition gives

and

&Xg Y' -=&g F'-L(i+1)/i5"'
which can be shown from (4) we have

Qlo""=P; er;
(20)

which is the familiar electric dipole moment.
The transition probability is

(29)

—p;.M „+s,'(VXM „)
= (A(pp/1621'c2«)'joe —'""Vg I',

~ I.(j(j+1)&-j 1,+{(j+1)/j)"".5 (»)
One can define the (magnetic jo&2) moment as

Q -' "=(e/j )L( i+1)/4 5'"( i—) ('~o/c) '

XZ(&g I' )' L(i+1) '1'+s'5

=(e/j )I:4~/(2j+1)5'"

XZ(« "I' -) I (i+1) 'I'+s'5 (22)

where the last expression is obtained when

(por,/c«1,
so that

Pj„(' ) (221~ 222)

= j(j+1)L(2j+1)((2j 1) & 5 vceojm
'

x(4 ""Ao) 'I( IQ-'"I )I' (3o)

Since thematrixelementofQ; ( 2& isabout (e/jl)rpj 'A

as seen from (22), while that of Q, ("& is about erp j as
seen from (28), taking rp for the atomic dimension, we
obtain the order of magnitude of I'; & g' by means of
Pg(") as

P . (mg) —(~ j—lr j 2A/C1+)2—(v . (mg)/v (el))P (el) (31)

SPIN-ORBIT ELECTRIC OR MAGNETIC
DIPOLE TRANSITION

The conventional theory of dB= & j. transition is to
take into account the effect of the spin-orbit interaction

gj((ppr/c) 42r(2(ppr/c) '/(2 j+1)!~— H,.= —i(eA/2jooc2)P s; (E x ~);. (32)

Note that
Q»™~-(e/j )Z.(i'.+»'.) Since this interaction is similar to Q2, ( g&, which is

given by (33), it can connect a singlet to a triplet. Thus,

which is the familiar magnetic dipole moment.
From (21) and (22) we see

P L
—p; W.„+s,'(vX~.„)5(e/j )

I a00)+ 2 (c1Ms I
II o I a00) (E —E.) '

I c1Ms)
C, Ms

(33)
I
f)1jlf s)+z(d00II2!' oI f)1~s) (E2 Eg) 'Id00)—

= I:(j 1)/i(2i 1)5'"L(2j—1) -5 '
are the improved wave functions of the initial and the

Xe jo1(2p&o/c) jQ, (mg)/22—(c. (26) fin.al states. The electric dipole transition for a o-o 0 is
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thus from (30)

plmpo = (&ruplm pt)p /62rC I3 Cp)

X I g («Pill, .lcm, )(z.—z,)-
c,Ms

X (c I Ql ""
I
b)+ P (dPP

I
&..I

b1~s)
d, Ms

X% —&d) '(~IQ -""ld) I' (34)

—2

0
1
2

g
2rs

0
(3/~)"'(*—py)

28
(3/&)'"(x+py)

0

g
2 pre

0
0

s—Zy
61/2&

6iip(xypy)

TABLE I. COefBCientS q™.

—6'~'(x —py)
$1/2g

—x—sy
0
0

Since the order of magnitude of the electric fj.eld E is
(electric energy)/rp or)M&p2rp, we see the order of rnagni-
tude of the matrix element of H„ is Ap)p/)(pc2 as expected
from the fact that the spin-orbit interaction appears as a
relativistic correction. Thus, the transition probability
due to this mechanism is

pl, .(")—(A(pp/)p(C')'pl(") . (35)

P (mg)~()3u„ /+C2)2P (mg) (36)

From (31) we see that the spontaneous emission
probability through the magnetic quadrupole transi-
tion, which is E2( g~ with v=1, gives exactly the same
expression as (35).

In some cases the electric dipole transition is still
forbidden and only the magnetic dipole transition can
appear with the spin-orbit coupling. The transition
probability for such case has the order of magnitude
given by

be designated as I )SMs). It is easy to see that

(«0I q),2™sl,+q2p' s» lb10) = (h/2) ((3
I
ql*'" q2*'"I b) ~

(«0 I
ql+'"sl++q~2™s~

I
»—1)

= (@/2) ((3I ql+'" —q~2"
I b),

(«plql 2msl +q2 2ms2 Ibll)=(fi/2)(alq, '"—
q2

2" lb)

are the only finite matrix elements. %e see that these
matrix elements are not generally zero because the
orbital part of the wave function Ia) and lb) are sym-
metric and antisymmetric, respectively, under the ex-
change of two electrons. Since, as shown by Mizushima
and Koide, ' the corresponding matrix elements of all the
electric multipole moments and the magnetic dipole
moment are zero, the magnetic quadrupole moment is
the lowest moment which has Gnite matrix elements
between states with diGerent total spin.

If we assume that

From (31) we see
I ~)=XI-u(1).(2)+.(1)u(2)g,

I b) = s'Lu'(1)()'(2) —2/(1)u'(2) j, (41)

P (mg) —(& 2r 2/C2)2P (mg)

=(«P««/uC) pl( ')

=(A(p /pC2)2P ( g) (37)

where

1V '=2 1+ u(1)2 (1)dr,
2-

g' 2=2

MAGNETIC QVADRVPOLE MOMENT

which shows that the magnetic octupole transition is as
important as the spin-orbit magnetic dipole transition. u'(1) m' (1)d r,

Somehow the magnetic multipole transition has never
been discussed, but it should be as important as the we obtain
spin-orbit electric or magnetic dipole transition for
65=~1 transitions. (3 ql —q2 b

=»&'L(~ I")(ul qlu') —(ulu') (al ql")
+ (ul ~') (~I qlu') —(& Iu') (ul ql")j

(42)

From (22) with j= 2 we obtain the five components
of the magnetic quadrupole moment. They are

MAGNETIC OCTUPOLE MOMENT

Q2 (mg) —
Q l(mg)+Q2 (mg)

Qgmp™i= (e/p)P I q;.' s;,+-',q~2™(s; +is(g)
Q

(mg) —
Q (mg) +Q (mg)

Q,„,( ) = (e/)(p)g I q, ,'" +s-', q '™(s,,+is;„)+-', q '"(s;.—is,„)), (39)

The magnetic octupole moment Q3 ™lcan also be
(38) divided into two parts:

while Q2 l( g) is obtained by replacing s by I/3 in (33).
CoeKcients q's are tabulated in Table I.

Let us assume a two-electron system. Such system can
be either a triplet or a singlet, if we neglect the spin-
orbit interaction. The wave function of each state is a
product of the orbital part and the spin part which can

+-,'q; 3™(s;—is,„)], (45)

while Q3 l™lis obtained by replacing s by l/4 in (45).
Coefficients q's are tabulated in Table II.
For the matrix elements we see that formulas (40) and

(43) holds for q3™.
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TABLE II. CoefBcients q other atom we have,

E=E,+Ep
——(dC, /dr „)r„/r „+(dC p/dr p;) rp;/r p;, (49)

—3—2—1
0
1
2
3

0
(15/8) '('(x iy—)'
12'(ss(x sy)-
(9s'—3r')/2
12'('s(x+sy)
(15/8) ')'(x+sy) '

0

0
0

(45/4)'" (x i—y) '
3s(x—sy)
31/2 (3@2 y2)
30'('s (x+sy)
(45/4)'"(x+sy)'

—(45/4)'"(x —sy)'
3—0'&'s (x s—y)—3'~'(3s' —r')
3s—(x+iy)—(45/4)'~'(x+sy)'

0
0

where )p, and C b are potentials due to each part men-
tioned above. Now

r„xV = (i/A)l„, , . r p; x V = (i/A)l, ~+ r p, x V, (50)

where l„ is the orbital angular moinentum of the ith
electron with respect to the nucleus a.

Using (46) we have

HYDROGEN MOLECULE while
l.;u(i) =0, (51)

u(i) =u'(i) =)pi, (r.;),
&(i)= ~'(i) =1ti.(rp'),

(46)

where r; and r b; are distances between the ith electron
and the protons a and b, respectively, and )Pi, is the
hydrogen wave function. From Table I it is easy to see
that the only finite matrix elements of the magnetic
quadrupole moment are

('~.+00
I
Qsp™'I'Z-+10) = 4(eA/2p)I)/+E r, p,

('2 +00IQsi™I'Z„+1—1)=24"'(eA/2u)I)/~X r, p, (47)

('Z,+11IQs i( g I'Z +11)=24'('(eA/2u)X+X r, p,

where r b is the internuclear distance. With the ap-
proximation of X+=E = 2 '~' we obtain

(mg) (lg + ~ 3+ +())
= (2/15) v(d p'(47rc'A p p) '(eA/2u)'r. p'—

(4g)
Es+ ( )('Z,+~st„+ai)

= 5 'v(pp'(47rc'App)
—'(eA/2p)'r, ps,

which shows that the magnetic quadrupole transition is
more effective as the internuclear distance increases, as
far as coor b&C.

For the spin-orbit interaction one can divide the
electric field E into two parts: The part due to the
nucleus to which the electron under consideration is
attached and the part due to the other atom. Assuming
that the charge distribution is spherical around the

The lowest triplet state of the hydrogen molecule is a
dissociative state 'Z +. Since it is a dissociative state the
lifetime of this state due to the spontaneous emission
cannot be measured. The calculation in this section is
just to show that the magnetic quadrupole transition
can be much greater than the spin-orbit electric dipole
transition.

The Heitler-London wave function' is well known to
give a good approximation for the ground state 'Z,+ and
the lowest triplet state 'Z +. A large number of better
wave functions are proposed for these states, ' but for the
present purpose of rough estimation the Heitler-London
wave function will be good enough.

The Heitler London wave functions are obtained by
identifying

(II ~IQ„, Iiz,+)=(2g/3p)r, e,

we see from (34) that

(55)

p (")=(Z/10 )vp)p'e A (p c ppg) (Ar, p ), (56)

where
a= Z('11.)—Z(sZ.+) . (57)

In obtaining this formula we assumed that the main
contributions come from the mixing of the 'II„(1s2ps-)
state to the 'Z„+ state. Note that formula (56) shows
that the transition probability in this case decreases as
r, p increases as (Z/r, )'p

By comparing (56) to (48) we see

p (mg)/p (e))

= (10/Z') (A~p/Rc&)'(~/Rc&)'(r p/rs)' (5g)

where R is the Rydberg constant. In our case

Z' 1/10,
Ap) p/Rch =1/2,

6/Rch 1/4,
r.,/re = 1.4,

(59)

at the equilibrium distance of the ground state. Thus
the above ratio is about 10 in favor of the magnetic
quadrupole transition over the conventional spin-orbit
electric dipole transition. When the internuclear dis-
tance r b increases the ratio will increase very rapidly.

(1s I rp, x V
I 2P~) = (16/2'('27) (rp,/rs)j,

(1s
I
rp, x V

I 2p„)= —(16/2'(s27) (rp,/rs) i,
(52)

where i and j are unit vectors along the x and y axes,
respectively, and r& is the Bohr radius.

If the orbital part of the wave function of the
'11„(1s2pvr) state is

I
'II„)=g i, (1)(psv, (2)+pi, (2)fs,~(1)j/2'(', (53)

we find

('II., I
&..I'~.+1~1)

= (4/27) (eA/2u') (dC p/dr p) r p
—'(r p,/rs) (A/2)

= (Z/277r pp) (eA/2pc)s(r, p'rs) ', (54)

where Z is effective charge of the second atom for the
electron in the first atom. Z is less than one and goes to
zero as r, b increases. Since
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while those for the spin-orbit electric dipole transition
are

EL=0, &1, &2; parity change, (61)

in the case of atoms with L—S coupling. Thus, for ex-
ample, 'S~'S and 'S~4D transitions can only be
explained by the spin-orbit electric dipole transition.

Transitions with parity no change cannot be ex-
plained by either of them, and we have to go to the
magnetic octupole transition or the spin-orbit magnetic
dipole transition. Their selection rules for AS=~1
transitions are

DL=O, &1, &2, but L=O~ 0;
parity no change for magnetic octupole, (62)

SELECTION RULES

The two comparative mechanisms, the magnetic
quadrupole transition and the spin-orbit electric dipole
transition have slightly diferent selection rules. For the
case of M= &1 transitions which we are interested in
here the selection rules for the magnetic quadrupole
transition are just like those of the electric dipole
transition, or

AL, =O, &1, but L=O~ 0; parity change, (60)

AL=O, &1, &2; parity no change for
spin-orbit magnetic dipole. (63)

Selection rules for molecules can be found by finding
those for the electric dipole and the electric quadrupole
transitions. The selection rules for the magnetic quad-
rupole and the magnetic octupole transitions are the
same as those respectively. For the benzene molecule,
for example, the lowest triplet state '81 is known to be
able to go to the ground state 'A1, by the spin-orbit
electric dipole transition" but we see that the magnetic
quadrupole transition is forbidden for this transition. In
the case of the naphthalene and anthracene molecules,
on the other hand, the lowest triplet state is assumed"
to be '82„, and the magnetic quadrupole transition is
allowed from this state to the ground state 'Al, . The
lowest triplet state of the benzene molecule is observed"
to have the lifetime of more than 300 sec, while in most
aromatic molecules the triplet lifetime is accepted to be
about 1 sec. This may be explained by the above con-
clusion, since our analysis on the hydrogen molecule
showed that the magnetic quadrupole transition must
be more important than the spin-orbit electric dipole
transition in the case of large molecules.

' R. Pariser, J. Chem. Phys. 24, 250 (1956)."D. P. Craig, J. M. Hollas, and G. W. King, J. Chem. Phys. 29,
974 (1958).
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Absolute Electron Excitation Cross Sections of Helium*

RoBERT M. ST. JQHN, FRANK L. MILLER, t AND CHIIN C. LINt
Department of Physics, Vnieersity of Oklahoma, doorman, Oklahoma

(Received 16 December 1963)

The absolute apparent electron excitation functions of helium have been measured for the 3 'S, O 'S, 5 'S,
6 'S, 3 'P, O 'P, 3 'D, 4 'D, 5 'D, 6 'D, 3 'S, 4'S, 5 'S, 3 P, 3 'D, O'D, 5 D, and 6 'D states at pressures
sufficiently low so that the effects of radiation imprisonment and collisional excitation transfer can be
neglected. Corrections due to polarization of the radiation and the cascading from the upper excited states
have been applied to the experimental data and the true excitation functions obtained. The peak values
and the shape of these excitation functions are compared with the results reported from other laboratories.
Generally good agreement is found with the previous works where the collisional excitation transfer was
properly reduced and allowance was made for the cascading effect. The experimental cross sections show
satisfactory agreement with the theoretical values calculated by the Born approximation for the 'S and 'P
states at high-electron energies, but are about four times larger than the theoretical values for 'D states.
In the case of the triplet series, the experimental cross sections exceed the calculated values by factors of ten
to one hundred or more. It is concluded that the population of the triplet states is produced mainly by proc-
esses other than direct excitation.

I. INTRODUCTION

ECENT studies of electron excitation of helium
atoms indicate that some of the atomic states may

be populated to a large extent by collisional excitation
transfer and cascading in addition to the usual electron-

~ Supported by the U. S. Air Force Once of Scientific Research,
Grant AF—AFOSR —252—63.

)Present address: Fort Lewis A. R M. College, Durango,
Colorado.

t Alfred P. Sloan Foundation Fellow.

impact excitation process. ' ' The excitation transfer and
its concommitant effect on cascading may be reduced
and even eliminated if measurements of the excitation
are made with the helium gas at low pressure, i.e., about
1 p or less. Furthermore the populations of the 'P states
are aGected by imprisonment of resonance radiation at
pressures above a few tenths of a micron and therefore

' R. M. St. John and R. G. Fowler, Phys. Rev. 122, 1813 (1961).' C. C. Lin and R. M. St. John, Phys. Rev. 128, 1749 (1962}.


