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Inelastic Scattering of Electrons by the Hydrogen Molecule Ion*
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The inelastic scattering of electrons by H2+ is investigated by means of the 6rst Born approximation.
Using the exact electronic wave functions, the integral that must be evaluated to 6nd the differential cross
section for 6xed internuclear separation is studied for an electronic excitation from the ground state to any
discrete excited state. Values related to this integral are tabulated for the processes isog—2pa.„, 1so-g—2pz„,
1so;2sog at the equilibrium internuclear distance, while the first case is studied at two additional inter-
nuclear separations. The corresponding total cross sections are calculated for incident energies up to 400 eV.
Assuming that rotational and vibrational levels of the 6nal electronic state cannot be resolved, it is known
that an observed cross section necessarily depends on the initial vibrational state of the molecular ion. The
effect of two di]ferent initial vibrational states (v=0,3) is investigated for the ]so;—2po„case and it is ob-
served that the vibrational state has a marked inQuence on the total cross section.

INTRODUCTION

HE problem of inelastic electron scattering by
molecules has a complication in addition to those

found when considering scattering by atomic systems
in that the internal degrees of freedom of the molecule
must be taken ioto consideration. However, in the
range of incident energies where the first Born approxi-
mation can be expected to be valid, experimentally
determined cross sections which resolve rotational
effects on electronic transitions have yet to be published,
and it appears that the resolution of vibrational struc-
ture is just now becomirig an experimental possibility.
This being the case, it seems highly plausible to treat
the internal degrees of freedom so that specific vibra-
tional and rotational excitations are ignored while
considering a given electronic process. A detailed
analysis of the erst Born approximation to scattering
by molecules, where the above treatment of the internal
modes was employed, has been given by Lassettre'
and by Craggs and Massey. ' Following their treatment,
the diGerential cross section, where the excitation is
n —+ n' for the electronic system, L,M ~L',M' for
rotation and v —+ v' for vibration, can be written

I(nLMv, e'L'M'v'; 8)

0, X are rotation and vibration functions, respectively,
where it has been assumed that these functions do not
mutually interact in addition to the usual assumption
that the nuclear and electronic coordinates are sepa-
rable. This expression and all remaining equations are
given in atomic units unless stated otherwise. The
quantity c is defined for a molecule with j electrons as
(neglecting spin variables)

e(E,8, $,R) = 4„. (ri r, ; R) P exp(iK r;)
i=1

X%'„(ri. . r;; R)dri .dr;, (2)

where the states n, n' cannot be the same. The quantities
E, 3, (, R refer to the parameters that must be fixed
during the integration over the electronic coordinates.
The symbol E, the magnitude of K, defines the rno-
mentum change of an incident electron scattered
through an angle 8; E'=k„'+k„'—2k„k„cos8, where
k„, k„. are the magnitudes of the momentum for the
incident electron before and after scattering. The
angles 8, $ fix the orientation of the molecule in space
and R is the internuclear distance. Lassettre' has shown
that the differential cross section becomes

= (4k„./k„E')
oO 2 7r 1l' .(E,3,g,R) I(nv, N'v'; 8) = (4k /k E') (1/4s)

' Orsr(8 $)O~r~sri*(3, $)X„(R)X„~*(R)R

Xsin8d5dgdR . (1)
p 0 p

e (E,8,$,R)X„(R)X„.*(R)R'dR

Xsinbd3dg (3)

*This work performed under the auspices of the U. S. Atomic

when one sums over all 6nal rotational states and' K. N. Lassettre, Ohio State University Research Foundation,
Columbus, Ohio, 1957, R. F. Project 464, Report No. 1 (un' averages over the degenerate levels of the initial sta, te.
published}. Equation (3) will be true if the rotation of the molecules J. D. Craggs and H. S. W. Massey, in Hundbnch der Physeh,
edited by S. P]ugge (Springer-per]ag, ]]er]in, 1959), ]l'o]. 37, Part
i~ p. 332. dependence of k„., E' on L'M' is ignored. It has been
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where
y= (Eg/2) (gs—sjnsg)~~s (13)

costp =X cos8/(Xs —sin'8) U' (14)

FIG. 1.The coordi-
nate system for H2+
and its orientation
with respect to E.

p
- fg —fb

R

Stewart' and are of the form

)X—1) '-
e.= (&+1).(X'—1)-i"- "P q;I

&& tZ' fP~-"( )1.+'-s (10).

The primed sum means that only even or odd values
of i are to be used. The quantities o, p, sr' a.re eigen-

parameters for the eth state and P&+ is an associated
I egendre polynomial of the 6rst kind. The product

~ appearing in Eq. (9) can be written in the form

~'+-+- *=~'f() ) exp(i~) E' «Pi+-"(~)

=f() ) exp(i~) P' biPi+ (is), (11)

since the product of any two Legendre polynomials
can be written as a sum of Legendre polynomials. LSee
Ref. 6 for a general formula applicable to the case
sos=0.j The ground state involves only terms of the

type Pss, hence, the sum in Eq. (11) will have values
of m and t+m identical to those representing the excited
state.

In this notation Eq. (9) becomes

and j is a spherical Bessel function. The details of this
derivation are sketched in the Appendix.

NUCLEAR ORIENTATION

The qualitative behavior of «(E,8,E) as a function
of 5 for various final states can easily be determined
from Eq. (9) or Eqs. (12)—(14). Expanding the expo-
nential of Eq. (9) in a power series of the exponent and
then noticing the symmetry of the integral with respect
to p, or g, a large number of terms will be found to
vanish. In addition, each nonvanishing term in this
series will have a very restricted dependence on b.
Listing the results for the cases studied here, it is
found all nonvanishing terms involve cos(2k+1)5 for
final epo states, sin(2k+1)5 for final tspm states, and
cos2kb for final ms(T, states, where e, k are positive
integers. These same conclusions can be reached by
using Eqs. (12)—(14). It is also known that «(E,B,E)'
must be either symmetric or antisymrnetric about
6=0, m-/2, m, since ~«(E,S,R) ~' must be symmetric
about these points. This follows immediately from the
symmetry of Hs+ and implies that we need «(E,8,R)
only over the range 0&8&m/2.

From the above analysis or directly from Eqs.
(12)—(14), it can be shown that for certain transitions
«(E,S,R) will vanish identically for a specific orien-
tation. It is apparent that «(E,S,R) is zero when B=~/2
for sipo.„final states and when 8=0 for ripe. final states.
«(E,b,R) is never identically zero for final states of the
type iso-, . This type of orientation selection rule has
been noticed by other authors and the results here are
consistent with the conclusions of Dunn' for the homo-
nuclear diatomic molecule.

The quantitative behavior of «(E,S,E) as a fun. ction
of E and 5 is shown in. Fig. 2 for the case 1so-s—2po„,
8=2.0. In the limit of small E, «(E,S,R) approaches

«(E,S,R) =4sr(R/2)s P'i "a„

X ) «f0)y.+.(y)P„+ -(cosy)~)

Fn. 2. The be-
havior of «(K,s,R)
shown as a function
of 8 for the 1so-;2po.
(R=2.0) case and
several values of E'.

1.0

c tK, S,R)
~(K,O, R)

0.5

.4

.0

—P'i"b. f() )j „+„(y)P~ "(cosP)dX, , (12)
1O 3O 5O

8

~E. T. Whittaker and G. N. Watson, A Course of Modern
Aaulysss (Cambridge University Press, Cambridge, 19.i8), p. 331. ' G. H. Dunn, Phys. Rev. Letters 8, 62 (1962).
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TABLE L Values of
~
e(X,R) ('/IP Lsee Eq. (6)g for the electronic transitions 1so, 2—po„(R=1.4, 2.0, 3.2),

1so,—2P~„(R=2.0), 1soe 2s.o—o (R=2.0) as a function of E.

0.0
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

1so,-2po (R =2.0)
(DE=0.43509)

0.3676
0.3666
0.3641
0.3539
0.3378
0.3166
0.2915
0.2638
0.2349
0.2058
0.1777
0.1512
0.1270
0.1053
0.0863
0.0700
0.0562
0.0447
0.0353
0.0277
0.0215
0.0166

0.0098

1so,—2po (R= 1.4)
(nE =0.6/219)

0.2296
0.2291
0.2277
0.2221
0.2130
0.2011
0.1869
0.1711
0.1543
0.1373
0.1205
0.1045
0.0896
0.0760
0.0639
0.0532
0.0439
0.0360
0.0293
0.0237
0.0191
0.0153

~.(R,R) [e/Re

1so,—2po (R=3.2)
(hE =0.18102)

0.7656
0,7632
0.7559
0.7275
0.6826
0.6247
0.5579
0.4867
0.4145
0.3453
P.2816
0.2250
0.1762
0.1355
0.1024
0.0762
0,0558
0.0404
0.0289
0.0205
0.0145

1so o
—2ps-, (R= 2.0)

(nE =0.67385)

0.3414
0.3403
0.3369
0.3237
0.3031
0.2765
0.2461
0.2140
0.1818
0.1513
0.1233
0.0987
0.0777
0.0602
0.0460
0.0347
0.0259
0.0191
0.0140
0.0102
0.0073
0.0053

1soe—2sae (R=2.0)
(nE =0./4176)

0.0

0.001091
0.004143
0.008633
0.01382
0.01890
0.02320
0.02622
0.02777
0.02785
0.02667
0.02456
0.02185
0.01886
0,01585
0.01301
0.01047
0.00827
0.00643
0.00493
0.00374
0.00281

cosine behavior; hence, the differential cross section
will have a cosine-squared dependence on 8. As E in-
creases, the behavior changes from a cosine curve to
one quite eccentric, although still possessing cosine
symmetry. Note that the maximum in e(E,S,R) moves
away from 3=0 and approaches 5=a/2. From the form
of Eq. (9), when the exponential is expanded in a power
series, it is possible to say something about the behavior
of this eccentricity as the internuclear separation is
altered. As R —+0, e(E,S,R) becomes much less de-
pendent on E while, as R is allowed to become large,
its behavior becomes much more dependent on E and
quite complex in general. This behavior is observed in
the case where several internuclear separations are
studied. These general arguments apply to other tran-
sitions but both the symmetry and quantitative
behavior can be expected to be different.

These observations about the dependence of e(X,S,R)
are useful when the integration of Eq. (6) is performed.
e(E,5,R) need be evaluated only over the range 0&3
&z-/2, as pointed out above. Since this must be done
numerically, a considerable saving in labor ensues. In
addition, since the form of the trigonometric behavior
is well speciled, this gives a strong hint as to the
method of numerical integration that should be used.
If one evaluates e(E,3,R) at a series of equally spaced
values of 8 for a given E and then fits these points with
a trigonometric interpolation formula, ' a simple series
results which contains only terms like cos(2n+1)5 for

i e(E,R) i'
f(E,R) =2AE (16)

f(R) is the optical oscillator strength and f(E,R) is
the generalized optical oscillator strength as defined
by Bethe. ' Values of f(R) for the 1so,—2pa„case are

the 1so,—2pa case. Similar behavior results for the
other cases. It is a simple matter to then square this
series and carry out the indicated integration. In
practice, e(E,S,R) was evaluated for increments of 10
deg in 8; hence, the series consists of nine terms. This
procedure is exact if the expansion of the exponential
in Eq. (9) can. be truncated to the first nine nonvanish-
ing terms. Obviously, as E and R increase, this expan-
sion becomes less valid. However, for the cases studied,
a sufFicient range of E could be covered so that all
significant contributions to the total cross section were
obtained. The resulting values of

~
e(E,R) ~'/E' for the

various cases are given in Table I. An accurate error
analysis seems out of the question but it is estimated
that any error should be confined to the last figure
quoted.

One check of the values given in Table I can be made
through the relationship

limf(E, R) —+ f(R)
E—&0,

where

' C. Lanczos, Applied Analysis (Prentice Hall, Inc. , Englewood
Clips, N. J., 1956), p. 229.

9 N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, Oxford, 1952), p. 248.
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available" and are 0.309 (R=1.4), 0.319 (R=2.0),
0.281 (R=3.2) which are to be compared with 0.3087,
0.3198, 0.2772, the values of f(R) obtained from Eq.
(15). The optical oscillator strength for the 1so,—2ps-„
transition" is 0.460 which is to be compared to 0.4601.
Obviously, f(R) vanishes for the forbidden 1so,—2so,
transition, as does the limit of Eq. (15) for this case.
LNonvanishing limits were found directly from Eq. (9)
rather than using Eq. (12).7 Agreement is quite good
for all cases except 1so.,—2po.„(R=3.2) and the value
obtained here is within the limits of accuracy (3%)
claimed by Bates."

O.l—

0.08—

0.06—
OI00
~ 0.0e-

Q02—

I

100

I so& -2scrg

I

200
INCIDENT ENERGY (eV)

0.5—
lscrg -2paU

oJQ 03—

C3'

O.I—

l

100 200

INCIDENT ENERGY (eV)

f

300

Fro. 3. The total cross section Q(ff) for the 1s~,—2ps'~
(8=2.0) case.

TOTAL CROSS SECTIONS

The total cross sections Q(R), defined by Eq. (7),
were found from the values listed in Table I in the
following way: For small values of E(E'&0.4) Table I
was interpolated graphically to intervals in E of 0.01.
Then the integrand of Eq. (7) was evaluated for avail-
able values of ~e(E,R)~'/E' and the integration was

Fro. 4. The total cross section Q(R) for the 1s0 ~
—2so.~

(8=2.0) case.

relatively small, as expected. The 1so,—2po.„case is

shown in Fig. 5 for three internuclear separations. The
curve for 8=2.0 corresponds to the equilibrium inter-
nuclear separation and is, therefore, an approximation
to the Born cross section when the effects of the inte-
gration in Eq. (8) are ignored. This is, of course, most
accurate when H~+ is in the v=0 vibrational state. The
other two curves are for internuclear separations that
correspond roughly to the turning points of the vibra-
tional state v=3. It is apparent that the cross section
for this case is strongly dependent on internuclear
distance for intermediate incident energies. In the limit
of infinite incident energies, these cross sections ap-
proach constant ratios of each other; specifically,

Q(3.2)/Q(2. 0) =2.1 and Q(2.0)/Q(1.4) = 1.6. The effect
of this strong dependence of Q(R) on R is investigated
below where Eq. (8) is evaluated for two diferent
vibrational states.

The curve for 1so.,—2po. (R=2.0) can be compared
with the results, ignoring exchange, given by Ivash'

carried out using Simpson's rule. In general, Table I
does not contain values of

~
«(E,R) ~'/E' for E large

enough to include the upper limit of the integral in
Eq. (7). However, the contributions to the total cross
section from this range are quite small and in practice
this remainder was estimated by fitting the integrand
with a function depending on E '.

The cross section Q(2.0) for the 1so.,—2p~„case is
shown in Fig. 3. (The equilibrium internuclear distance
of Hs+ is R,= 2.0 as.) It is apparent that this transition
contributes quite heavily to scattering by H&+ and
must be taken into account when considering processes
where this final state is possible. The 1s~,—2so„8=2.0
case is shown in Fig. 4. This corresponds to an optically
forbidden transition and the total cross section is

l.5—

I.O—

0.5—

I s~g 2&oU

f I 1

IOO 200 K6
INCIDENT ENERGY (eV)

I

400

'o D. R. Bates, J. Chem. Phys. 19, 1122 (1951). Fzo. 5. The total cross section Q(R) for the 1so,—2p0 (E=1.$
"D.R. Bates, R. T. S. Darling, S. C. Hawe, and A. L. Stewart, 2.0, 3.2} case. The dashed line is from a calculation by Ivash

Proc. Phys. Soc. (London) A66, 1124 (1953). (Refs. 3, 12).
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which are shown as the dashed curve" in Fig. 5. To
obtain this curve, he used wave functions of the form
%=st,+ttb, where I is a 1s screened hydrogen wave
function. His results are uniformly above the present
calculation of Q(2.0) by 20% or more in this energy
range and in the high-energy limit will be greater by
17%. The difference between the two calculations is
not large but the present treatment has the advantage
that all aspects of the derivation of the first Horn

approximation remain valid as a result of using the
exact H~+ wave functions. A direct comparison with
Kerner's calculation does not seem justified since he
treats a specific rotational and vibrational excitation
in conjunction with the 1so.,—2po. electronic transition.
However, it is interesting to note that his cross section
is roughly an order of magnitude less than Q(2.0).

To study the effect of vibration on the total cross
section, it is necessary to evaluate Eq. (8). If a diatomic
molecule is in its lowest vibrational state (v=0) and
it is assumed that Q(R) varies slowly with R, it is a
good approximation' to replace Qs with Q(R,), since

~Xs(R) ~' will be strongly peaked at the equilibrium
internuclear distance E,. For the transition under
consideration, Q(R) is seen to be rather strongly de-

pendent on R, so it appears that Qs must be evaluated
without using the above approximation. In addition,
it is known that H2+ is often observed in excited vibra-
tional states which have a rather long lifetime. Hence,
Q„will be evaluated using Eq. (8) for the vibrational
state s =3. This state is chosen because it is a highly
probable vibrational state for H~+ if this ion results
from the ionization of H2 in its ground electronic and
vibrational state.

The integral defined by Eq. (8) was estimated in the
following way: Q(R) for a given incident energy was
fit by a polynomial in R. Since Q(R) is known for only
three points this polynomial was necessarily a quadratic.
Then, using the vibrational functions given by Cohen,
Hiskes, and Riddell, " Q„was evaluated by Simpson's
rule.

The results for Qo, Qs are shown in Table II along

with Q(1.4), Q(2.0), Q(3.2). It is interesting to note
that Qo is about 10% higher than Q(2.0) and that Qs
is almost 70% higher at 400 eV with the deviation
increasing as the incident energy decreases. Hence, to
predict the inelastic electron scattering into the 2po.

state, it is necessary to know precisely what vibrational
levels are populated, and to what degree. It does not
follow that scattering into other final electronic states
will show such marked dependence on v, but points
out the necessity for caution before neglecting the
initial vibrational state. Relationships equivalent to
Eq. (8) can easily be derived for the differential cross
section and the generalized oscillator strength. The
effects of v on the differential and total cross sections
can be expected to be quite similar. However, using
the information in Table I, it can be seen that f(K,R)
has a maximum near R, for the 1so.,—2po.„case; hence,
the generalized oscillator strength will be much less
dependent on v.
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1 2'

j(),) exp{ (iKR/2)

&& L)ttt cosh+ ()t' —1)'"(1—tt)'" silly sinii]

i~)Pb+ "(ts)dctr—dtsd) (A1)

are obtained. Utilizing the integral'

APPENDIX

Substituting Eq. (11) into Eq. (9), integrals of the

type

TABLE II. The total cross sections Q(R) and Q„(in units of
ma0') for the iso.g-2po- transition tabulated as a function of the
incident energy.

ei (no seine) dQ
—
2srJ (g)

where J„is a Hessel function of the erst kind,

(A2)

E(eV)

50
100
200
300
400

Q(1 &)

0.426
0.304
0.197
0.148
0.120

Q(2 0)

0.977
0.635
0.396
0.295
0.230

Q(5 2)

3.25
1.92
1.11
0.795
0.612

Qo Q3

1.09 1.92
0.698 1.17
0.431 0.691
0.320 0,502
0.248 0.383

'2Ivash's calculation has been extended to include the energy
range of interest in this investigation.

'3 S. Cohen, J. R. Hiskes, and R. J. Riddell, Jr. , University of
California Radiation Laboratory Report No. UCRL-8871, 1959
(unpublished); S. Cohen, J. R. Hiskes, and R, J. Riddell, Jr.,
Phys. Rev. 119, 1025 (1960).

I —2x f()t) exp{i (KR/2))its cos5))

's G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1958), p. 20.

'Ref. 14, p. 378.

&& Z„L-;KR(),' —1)"(1—
t ')" sin~ )

X~by "(t)dt d) (A3)

is found. Gegenbauer's finite integral" can be rewritten
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in the form and it follows that

exp(iyts cosg)f fy(1—tt')'t' singjPs+ ~(tt)dtt

=2t"Es+ (costi )js+„(y), (A4)

Ig =47'-i' f(&)i -(y)J' -"(cos4)d) (A9)

where j„(x) is a spherical Bessel function de6ned by

i,et

then

J-(x)= (s/»)'"J-+rts(x)

y= (ER/2) ( '—sin'3)'"

coslP= A cos3/(X —sin 5)

si altr = (ks —1)r~s sing/P ~—sjn~$g&&s

(A6)

(A7)

(Ag)

Substituting Eqs. (A6)—(AS) into Eq. (A4), we 6nd an
integral of the same form that appears in Eq. (A3),

Using these results, Eqs. (12)—(14) are easily verified.
Assuming that Eq. (A9) cannot be evaluated analyti-

cally, the following numerical scheme was used for this
purpose. A program for a digital computer, the Control
Data Corporation's 1604, was written which carried
out the integration of Eq. (A9) for a given choice of
E, 8, R by means of Meddle's quadrature formula.
With these values it is then possible to evaluate Eq.
(12). The sum in Eq. (12) was usually i.runcated to
three terms, although four terms were used in some
cases. The same program was used to evaluate e(E,o,E)
and carry out the integration of Eq. (6).
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The magnetic multipole transition probability is calculated in terms of the matrix elements of the mag-
netic multipole. The magnetic jm moment Q; ( g) is dered as

(e/ts)L47r/(2j+1)g"'Z(Vr;& I; )P(j'+1) 'I;+s;j,
where e and p, are electron charge and electron mass, r;, 1;, and s; are the coordinate, orbital angular momen-
tum, and spin-angular momentum of the ith electron and I'; is the spherical harmonic. Magnetic quadrupole
and octupole moments are explicitly given. It is shown that for the 'Z + &-+ 'Z~+ transition of the hydrogen
molecule, the magnetic quadrupole transition is more important than the conventional spin-orbit electric
dipole transition. The magnetic octupole transition has the same order of magnitude as the spin-orbit mag-
netic dipole transition.

INTRODUCTION

~ 'HK transition between states with diBerent mUlti-
plicity is a very weak one. The corresponding

emission line of some ions were erst found in the spectra
of some nebulas' and the theory has been given by
Condon and other people. ' This type of transition has
been investigated for many ions since then, a brief
review can be found in Garstang's article. ' In all these
theories the mixing of diferent multiplicity states
through the spin-orbit interaction was assumed to be
important. The 'D2 state of 0 III, for example, has

* Supported by National Science Foundation.' I. S. Bowen, Astrophys. J. 67, 1 (1928).
~ See C. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, New York, 1935), pp. 282-
283.

3R. H. Garstang, Atomic and Molecular I'rocesses, edited by
D. R. Bates (Academic Press Inc. , New York, 1962), Part 1.

0.0074 of 'I'2 wave function mixed through the spin-
orbit interaction, and the transition to a triplet state can
occur through this small part of the wave function.
Most of the phosphorescences of molecules are inter-
preted as due to the singlet-triplet transition. ' McClure
first suggested the transition through the spin-orbit
interaction for these molecules. ' The present author and
Koide formed a theory starting with the Dirac equation
of electron and calculated the singlet-triplet transition
probability of the benzene molecule. ' The result with
some approximation gave about 1 sec for the lifetime of
the lowest '82 state of this molecule. Hameka and
Oosterho6 re6ned the calculation and showed the
lifetime of the same state to be 190 sec. Calculations for

4 M. Kascha, Chem. Rev. 41, 401 (1947).' D. C. McClure, J. Chem. Phys. 17, 665 (1949}.
e M. Misnshima and S. Koide, J. Chem. Phys. 20, 765 (1952).
r H. F. Hameka and L. J. Oosterhoif, Mol. Phys. I, 358 (1958).


