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Effects of Collisions on Electron Density Fluctuations in Plasmas*

MAHESH S. GRKWAr.

Aerospace Corporation, E/ Seggwdo, Califorreia

(Received 12 November 1963)

The spectrum of electron density fluctuations has previously been calculated for a collisionless plasma.
In this paper, the theory is extended to include collisions as represented by a Fokker-Planck equation such
as the one used in the theory of Brownian motion. Numerical calculations have been carried out to show
graphically the transition of the spectrum from the collisionless to the collision-dominated case. The results
of the present analysis involve some thus far untabulated functions. These functions have been numerically
evaluated and the results are presented in graphical form.

I. INTRODUCTION

ECENTLY, considerable interest has been shown
in the determination of the spectrum of the elec-

tron density Quctuations in plasma. This interest has
been mainly stimulated by the experiment of Bowles'
on the incoherent scattering of electromagnetic waves

by the ionosphere and by the possible extensions of his
experiment to laboratory plasmas.

Several independent calculations have been pre-
sented for the quantity of interest (~se'(k co) ~'), which

represents the spectrum of the spatial Fourier trans-
form of the electron density. The spectrum of the
scattered power P(co), for the incident wave charac-
terized by the frequency coo and the wave number ke,
is proportional to (~ee'(k, ro) '), when co is measured
from a&o and k is equal to

~ ko (e„—eo), where e„and ee
are unit vectors in the direction of the scattered and
incident wave. Dougherty and Farley, ' Salpeter, ' and
Rosenbluth and Rostoker4 have presented the results
when the plasma can be considered collisionless for the
entire range of the parameter hk, where h is the Debye
shielding length. Fejer' has presented results for the
limiting situations of a collisionless and a collision-
dominated plasma and in both cases for the two limiting
values of the parameter hk, hk —+0, and hk~. '

In view of possible applications of incoherent scatter-
ing of electromagnetic waves by plasma as a diagnostic
technique in the laboratory, where one may encounter
a wide range of the parameter hk and collision fre-

quency, we have considered electron density Quctua-
tions over the entire range of collision effects, i.e., from
the collisionless to the collision-dominated case,
embracing the whole range of the parameter hk. In
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This paper also deals with the efFect of collisions on the plasma
density fluctuations but it is from a difFerent point of view.

Sec. II, expressions have been derived for the quantity
(~e'(k, &o) ~'), which are valid for all values of collision

frequency and parameter hk. These expressions reduce
to the formulas presented by the other authors (Refs.
2—5) when suitable limits are taken. In Sec. III, results
of the present analysis are presented in graphical form
and are discussed. The analysis is carried out for thermo-
dynamic equilibrium except that the electrons and ions

may have diGerent temperatures. Only singly ionized
ions are considered, although the extension to a multiply
ionized plasma is straightforward.

II. ELECTRON DENSITY FLUCTUATIONS

Fluctuations of electron density in plasma may be
conveniently written as the sum of two parts. One
part pertains to the Quctuations caused by the random
thermal motion of electrons themselves modified by the
accompanying electric fields; and the second part
pertains to the Quctuations induced in the electron
density by the random thermal motion of ions through
the interaction of electric fields associated with these
two species. In the following analysis, the first part will

be denoted by e,' and the second part by n . Similar
notation will be used to represent the ion density
Quctuations.

To compute the first part e,', we proceed as follows.
When the electron density Quctuates about its mean
value due to the random thermal motion of electrons,
it produces a Quctuating electrostatic field. This electric
field, in turn, modifies the random thermal motion of
electrons and also induces Quctuations in ion number
density. I,et e'" denote the hypothetical electron
density Quctuations which would have existed had the
spontaneous random motion of electrons not been
modified by the accompanying electric field. The actual
electron density Quctuations rs, ' can now be written
as the sum of e'" and a quantity e", which represents
the correction to e'". The quantity e"can be evaluated
in terms of e" by considering it a perturbation in
electron density caused by an electric field Ii', the
source of which, partly external and partly self-
consistent, is given by charge density equal to
{ee,'—(seer+se")), where se,', as previously stated, is the
change in ion number density induced by the electric
field E'
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4xe
{e,'(k, co) —[n'"(k,c0)+e"(k,or)]} (6)

e'"[1—G;(co)]

1—G, (c0) —G, (ce)
(7)

e;—+v —+—E'—
Bt Br m, Bv ~«[G, (c0))

To compute the response of electrons and ions to the Equation ~ ~ ~ ~ gi ns ~3~ and ~4~ alon with Poissons equation
field E', we employ a Fokker-Planck equation with
collision terms of the type used in the theory of
Brownian motion (e.g., see Ref. 7). If F;(r,v, t) denotes
the joint position and velocity distribution at time t
of electrons and ions, with subscript j equal to e and i can be solved to obtain
respectively, then the Fokker-Planck equation under
consideration may be written as

ctf e; 8)—P,—I v+——
I F;(r,v, t)=0, (1)

c3vk m, tv)

where p; is the effective collision frequency, and e;,
ns;, and g; denote the charge, mass, and temperature,
respectively. Linearizing F; (r,v, t) around a Maxwellian
distribution and rearranging, we obtain from Eq. (1)

n, '=—
1—G (o&)

—G (a&)

By arguments and the analysis analogous to the one
that led to Eqs. (7) and (8), one obtains for I, the ion
density Quctuation due to their own random thermal
motion, and n,', the Quctuations induced in the electron
density by the ion density Quctuations

8 8 8( 8; 8)—+v.—p,—I
v+——

I f, (r,v, t)
at ar 'ave m; av)

= ——E', (2)
m; Bv

~' [1—G.(~)]

1—G, (c0)—G, (o&)

e"[—G,(o))

1—G, (ce) —G, (o)

(9)

(10)

where we have introduced f,=F; f,s, with—f,cj(v)
=ne(m, /27' )"' exp( —mp'/28, ).

One observes that the operator on the left-hand side
of Eq. (2) is identical with the one in Eq, (1) except
that the term involving E' is absent. The Green's
function for this operator has been previously derived
(Ref. 7). Using this Green's function, we construct the
solution for Eq. (2) to obtain for e" and e.' (calcu-
lations are shown in Appendix A)

where G;(c0) is the same as de6ned in Eq. (5).
Summing Eqs. (7) and (10), we arrive at the total

electron density Quctuations

~-(k,~)[1—G, (~)]
rc'(k, cd) =n, '+e,' =

1—G, (oi) —G, (c0)

N'"(k, ce)[-G, (ce))
(11)

1—G;(c0)—G, (o&)

k'
B = fg (k,cd v) d'v = —

Qg (gGg (c0) )
4xe

k'
e,'= f, (k, cdv) d=s4g, „G,(ce),

4me

where we have taken time and space Fourier transforms
of the functions depending on r and t; Q~ „ is the
potential representing the electric Geld E'(k,ce), and
G;(a&) is given by

4n-e'no " 1
GJ( ) = —[exp(—Ptt) —11

tJZ&. p

k28;
Xexp — [exp( —p, t)+p;t —1)

m;pcs

Xexp( —icut)dt. (5)

' S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

[Fluctuations in ion number density, if desired, can be
obtained by summing Eqs. (8) and (9).)

One notes that I' as expressed in Eq. (11) could also
have been obtained without separating it into two
parts n, ' and n . To this end, we would have solved
Eq. (1) for e" and e" with the source of the field F
given by the charge density equal to {(e"+I")
—(e"+I")};in this case, e"would have included e,'
as part of it. However, it is felt that the partition of
e' into e,' and n gives a better insight into the problem
as will be seen in the results. This partition of m' is made
possible by the linearity of the governing equations.

Taking the modulus squared and averaging both
sides of Eq. (11), one finds

(l~"(k,~) I') I1—G'(~) I'
(I e,(k,c0) I') =

I1-G'(~)-G.(~) I'

(I I'"(k ~) I')
I
G.(~) I'

(12)
I
1—G;(ce) —G, (ce) I'
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r4(r, t) =P 8{r—r;(t)), (13)

where r, (t) is the position of the ith particle at time t

Taking the Fourier transform, one obtains

rid(t) =P, exp{—ik r;(t)) . (14)

Forming the product of r4&(t) with its complex conjugate
r4q (t+r) at a time r later, we obtain after separating
the diagonal and off-diagonal terms

eq(t)ej*(t+r) =P exp{ik.$r, (t+r) —r;(t)j)

+ P exp{—ik, r, (t) )

where the term involving ((e'"~ ~r4'"~) that expresses
the correlation between random motion of ions and
electrons is neglected, and use is also made of the fact
that G, (4p) and G, (4p) already represent the averaged
quantities.

To evaluate ( (
r4'"(k, pp)

~

'), we first express ((e(k,&p) (')
in terms of the transition probability for a single
particle as follows:

where W„,(r, t+ r; rp, t) denotes the probability of
finding the particle at time t+r at r when it was

initially at rp with velocity up, W'(rp) and W(up)
denote the position and velocity probability distri-
butions at time t.

The expression (~e&'"(k,&p) ~') can now be evaluated
using Eq. (18), with the transition probability given

by that of a field-free Brownian particle Lconsistent
with our use of Eq. (11)$. As shown in Appendix B, after
the required integrals are carried out, (~ri"(k,&p) ~') is

given by

00

((e "(k,pp) i') =— cos4pt
7l 0

ks;
&&exp — Lexp( —P,t)+P, t—1j dt. (19)

mz;pip

Equation (12) along with Eqs. (5) and (19) expresses
the final result for the spectrum of the electron density
fluctuations.

&&exp| ik r;(t+r)]. (15)

Taking the average of the modulus of both sides,
neglecting the correlation between the ith and jth
particles, and taking account of the identical nature of
the particles, one finds that Eq. (15) yields

(ie (t)e *(t+r) i)
=ep(l exp{ik Er(t+r) —r(t)3) I). (16)

Making use of the fact that mz(t) is a stationary random
function and applying the Wiener-Khinchin relation
to the left-hand side of Eq. (16), the correlation function
for ez(t), one obtains for the spectral density

+00

(~ rt(k, 4p) ~') =— exp(ippr)dr
2x +@0

&&(I exp{ik Er(t+r) —r(t) j}I) (17)

Using the transition probability for a single particle,
one finds that the right-hand side of Eq. (16) can be
rewritten as

So
( ~

44(k, cp)
~

P) =— exp(icpr) dr
2'

dr exp(ik r)W„,(r, t+r, rp t)

cosh&t tP'(t)dt ) Ip'= sinrpt p'(t) Ct

(20)

cos&pt Q'(t)dt, I4'= sin4pt Q'(t)Ct,

where

and

k2e;
P'(t) = exp — [exp(—P;t)+P, t—1]

m,PP

exp( P;t) 1——
4'(t) = 0"(t)

In terms of the following dimensionless quantities

o, =2k e;/m;; X;=4p/ot, p;=P;/o;; y=Pt/p, (21)

III. RESULTS AND DISCUSSION

To find numerical values for (~r4'(k, a&) ~') from Eq.
(12), one must evaluate the integrals given in Eqs. (5)
and (19). The integrals can be evaluated in terms of
tabulated functions only for the two limiting cases;
(a) P~0 (collisionless case), and (b) P —+pp (collision
dominated case). For intermediate cases the integrals
have to be evaluated numerically. To simplify the
expressions, the following integrals are defined:

&&exp(—ik rp) W(rp)drpW(up)dup, (18) the integrals Ii&' and Ip&' can be rewritten as

0 Iy~—
00 1

cosx;y exp —
t exp( —p,y)+p,y —1$ dy—=C&'(x;),

2'
(21a)

r;I2&'= sinx;y exp — Lexp( —p,y)+ p,y—1) dy—=S&'(x;) .
2PP

(21b)



ELF CTRPN DFNSIT Y F LUCTUATIONSI T S I N PLAS M AS

Integrals I3&'and I & b4 can eex ressedinp in terms of I~&'and I2&'b the folin 2
'

y e ollowing relations (see Appendix C:
I3&= '2/—o;2+ (2x;/o;)I2&,

After some al ebra

I4&= —'(2x o" I ~

a gebra, the expression (i ti'(k, co) ~'), as given in E . 1a ebra ti, co ', as given in Eq. (12), may be ex ress

A89

(22)

No [1+(1—x,S')/h 'h'+(1 —x.S' h' ' ' ' x

1 o, C'(x,)j[(1—xg')/h. 2h'$'+ [x,C'/h, 'h'$'

[1+(1 x.S—')/h 'h' 1—+( —x;S')/h~h']'+[x C'/h 'h' x C' h'h' '

where

hj =8y/47re'ne

Results of nof numerical integration for C'
1 of tho e parameter are

() o ()
xS(x) areplottedtomak th

'
o t

E 23
two limiting cases of the parame
can be expressed by the followin
A

limS(x) =2 exp( —x') exp(N') dg;

[The function exp( —x') Jo~ex rN"dg

viously tabulated fa e, see or example, Ref. 8.$

C(x) =x'I' exp( —x') (24a)

4p'x
limS(x)= C x =C(x) = . (24b)
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APPENDIX A: CONSTRUCTIO

e ental eglon pf the

p is icated one e. . th
an a more If we

F EQUATlON (2)

we denote by ro and vo the
D ld d' f h

xperimentsf
o e ectromagnetic wav

unc ion or the o erato
g ic waves by density side of E . 2si e o Eq. (2) may be written as [R f '/,e. , Eq. (280)]

where

exp(3p1)

, „,e p [~l«—«pl'+»Ie —
«pl Ip —«pl+&Ip—

«
—

«p
——v exp(pr) —vp. p —p, = r—rp+ [(v—vp)/p] = —,; = a — a=0

— = —
o

—vo r=t —to, A=ah —h' u=

b= (0/ )[ (2P.)—1], h= —2

reens function f(r,v, t), the solution of Eq. 2 can

+00 +00 t

q. can be expressed by the f lle o owing integral:

(A1)

f(r,v, t) =
V0=—oo

dvp
r p=—o0 tP=00

dtoG r vv t ' 1'p v p, tp)I(rp, vp, tp) 7 (A2)

where I~rI 1'p, vp, tp) 1s given by the ri h-ng — a eo q ().
ime an space Fourier transforms of E . A2

+00 +00

q. ~, we obtain

f(k,v,pp) =— f(r,v, t) exp[ —i(cot —k r)]dtdr

dt exp[ —i(p&t —k r)] G(rvt r vp vp, tp)I(rp vp tp)dvpdrpdtp. (A3)

9 M. N. Rosenbluth, %V. M.

00 00 00

. M. MacDonald, and D. L. udd P. Judd, Phys. Rev. 107, 1 (1957).
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(A3) becomesnd r, Eqends only up

A92
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+0000 +o0

exp —i cv p
~[—(o~to —k rp)7,

after some rearrang

dro dtoI(ro, vo, o

p

f(k,v,op) = dvp ~ —' .—k ~ ~)3drG((, v, r, vo) exp[ i—oir—

(A4)

x i—oir k—F) jI(k,vp, oi)drG((, v, r, vo) exp[ i—oir ~—f(k, v, oo)=

+00

dvpzz(k, oo =, ) = dvf(k, v, oi) = x —i(a&r —k g)]I(k,vp, o~) .drG(g, v, r, z p) exp[—i oir

p+00 —00

tin o
' . A4) over velocity v

dvo

be till both sides of Eq.

00 00+00 +00

be obtalne d by integrating onum sit zz(k, oo) can now beThe require num sit

dg

is the time and spa

(4zre'rzp "[exp( —pt)—
-

(—pt)+pt —1] ep(—
2

x —zoot) dt .[exp-
rnp'

LD- NIAN PARTICLE

4&t, m

n(k u LD-FREE BROWNIANn(k, oil ~'} FOR FIELD-' EVALUATION OF (~n(k, oiAPPENDIX 8: EVAL

er v, and vo withe integration over

zzz 2vr8)ot'Po „exP —zrz o
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o
— /0) (zk. vo)zzo(m

zI

arry'

I(kvpoi)=+ e
'

rn
2

of otential represence ourier'er transform of po e(where yo „

Equation (18) may be written

where

tip
im(k, pp) i')=— dt exp(zoor)Co(r)

&
(81)

r; rp —'
r W(ro)droW(up)dup.r; rpt) exp( —ik rp), rpexp z r'k r)drWup(r, t+r; ro (82)

ef. 7

0 2Pr —3+4 exp( —Pr-—.)—"p(—2p )3-2~0 r-
5$1'—rp —

Up
—eX

ex —r —exp( —2pr)

u on g, Eq. (82 can8'up depends only upon, . 2 nble =r—rp anb e = — d notes that 8'up es the new variab e (=-
dr for v&0

If e introduces eone s e

+00

W(rp rp,

—3/2

Wuo(r, t, +r, rp, t)=

dg exp z ~'k. g) Wup($, r) W(uo) duoC.()=
I'(}=o0

nted in Eq. (171) of

Co(r) =

ian ar, e the results presente in . 1 ofian article, we take t e reof a Geld-free Brownian parn robability of a eForF the transition p

znp'
R

dgexp(ik $)W u(gp, rr) W(up) dup,o(

' 20, we arrive at
d the fact that J'where we have use

Evaua ' 'nte ral in q.l ting the integral in q.

for &0ex pr)+pr—=rz exp — [ p(Co(r) =rzp exp

r&0, we obtaina CIe T' for r&0 equal to C& — r&r) for r&, —81) along with Co(r) for r85) into Eq.Substituting Kq.

(85)

'Bp

irz(k, oi) i') =— cos~r exp exp( pr)+pr 1j—dt. —
zzzp'

(86)
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APPENDIX C: EVALUATION OP THE INTEGRALS
I3 AND I4 IN TERMS OF I1 AND I2

With the use of the nondimensional quantities
de6ned in Eq. (21), integral Ip can be written as

1 "Lexp( —py) —1jI3=—

APPENDIX D: EVALUATION OF 8(x) AND C(x)
FOR THE LIMITING CASES OF PARAMETER P

For p —& 0 the exponential function appearing in the
integrand of S(x) and C(x) can be reduced as follows:

exp — Lexp( —py)+ py —1)
2 2

&(exp — t'exp( —py)+py —1j cosxydy.
2 2

=exp —— — — - exp
4 12 "P 4)

Thus, for limit p —+0

The above integra1 can be rewritten as

1
Ip= — —2 exp — exp( —py)

0 p dy 2p

S(x)= sinxy exp~ ——
~dy

0

= 2 exp( —x') exp(N')dn

1 - 1( I )
&& exp — (py —1) cosxydy+ —

~

—0—~.
~2l

and
y'l

C(x) = cosxy exp ——~dy=m exp( —x').
0 4i

1( 1 1
+-~I,—-~I,

I

p

Integrating the 6rst term by parts and evaluating the or p, e approximate the above function by'

noticing that for p -+~, py dominates exp( —py)m egrasm. ermso ~an 2, weo tarn
and 1. Thus,

I («p — (exp( —py)+ py —1j -expl —
I

2 2 2)
2$

I2 ~

0 0'

Fo1Iowing the same procedure, we get for I4

I4= —(2x/o) Ig.
C(x)

y ) 4p'x
sinxy exp ——~dy=

2pi 1+4p2x2'

y 2p
cosxy exp ——dy =

2p 1+4p'x'

and we obtain for S(x) and C(x) in this limit,


