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A convenient method is devised for the calculation of magnetic hyperfine constants in atoms, molecules,
and metals taking into consideration the exchange interaction between the core electrons and the unpaired
valence electrons. In this method, the core-electron wave functions are perturbed by the nuclear mag-
netic moment via the Fermi contact term, and the energy of the system is then calculated in the Hartree-
Fock approximation using the perturbed core wave functions. The present method is closely related to the
exchange perturbation method of Cohen, Goodings, and Heine. However, the former has the advantage of
being more Qexible in the sense that the same perturbed core-electron functions may be used for the ground
and excited states of the atom and for metals without significant error. For lithium atom 1s'2s and 1s'2P
states, we obtained values for the core contribution to the hyperfine constant o (in al S) of 83.76 Mc/sec
and —8.9 Mc/sec in good agreement with the earlier values of Cohen, Goodings, and Heine. We have
applied this method to a calculation of the core-polarization correction to the Knight shift in lithium metal
using recent wave functions of Kohn and Callaway. The core-polarization corrections produced by the s
and p parts of the conduction-electron wave function are nearly equal but opposite in sign, while that pro-
duced by the d part is an order of magnitude smaller. This results in a net correction of about —5.3% of the
direct contribution to the Knight shift from the conduction electrons.

I. INTRODUCTION

N UMBER of recent detailed and careful investi-
gations'-' of the magnetic hyper6ne interaction

in atoms and paramagnetic ions have clearly demon-
strated the important role of exchange polarization of
the core electrons in contributing to the magnetic
hyperhne interaction constant. In all these investi-
gations, the method that has been employed has come
to be known generally as the unrestricted Hartree-Fock
(UHF) method. In keeping with the recent attempt of
standardization of nomenclature, " we shall call the
unrestricted Hartree-Fock method the spin polarized

~ Supported by the National Science Foundation.' R. M. Sternheimer, Phys. Rev. 86, 316 (1952).
s V. Heine, Phys. Rev. 107, 1002 (1957).
' J. H. Wood and G. W. Pratt, Phys. Rev. 107, 995 (1957).
4 D. A. Goodings, Phys. Rev. 123, 1706 (1961).' M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys. Soc.

(London) 73, 811 (1959).
~ R. E. Watson and A. J. FreeInan, Phys. Rev. 120, 1125, 1134

(1960).
r R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955);

Phys. Rev. 118, 681 (1960).
s W. Marshall, Proc. Phys. Soc. (London) 78, 113 (1961); see

also N. Bessis, H. Lefebvre-Brion, and C. M. Moser, Phys. Rev.
124, 1124 (1961).

i' L. M. Sachs, Phys. Rev. 117, 1504 (1960).I K. F. Berggren and R. F. Wood, Phys Rev. 130, 198. (1963).
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method (SP). Similarly, the projected unrestricted
Hartree-Pock method will be denoted as the projected
spin polarized method (PSP)." Some of the investi-
gators' "' have handled the SP method self-con-
sistently, while others have used a perturbation
approach. To avoid confusion we shall refer to the
method of treating the exchange potential as a per-
turbation, the exchange perturbation method (EP).
In recent papers, Nesbet, ' Marshall, ' and Heine" have
discussed possible errors that can occur in the results
of calculation by the SP method, because the many-
electron wave function used in the SP method is not an
eigenfunction of S', where S is the total spin of the
atom. From the investigations of these authors, one
arrives at the conclusion, that for paramagnetic ions
and atoms, this limitation of the SP method is not a
serious source of error; but in extending the SP method
to metals and molecules, one has to be more careful
about the inhuence of this source of error.

In this paper we are interested in a perturbation
method which has the advantage of flexibility over the
EP method while not sacrificing accuracy. The accuracy

"The PSP method should be distinguished from the SPP
method. In the SPP method one applies the projection operator
after an SP calculation is performed to obtain an eigenfunction
of S'.

+ V. Heine (to be published).
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of the method can be easily compared with other
perturbation calculations, which we shall show to be
exactly equivalent in principle to our method. Specifi-
cally, what one does is to perturb the core electrons
with the nuclear magnetic moment (tr) via the Fermi
contact interaction; and with these perturbed functions,
one then computes the energy to first order in p, which
is directly related to the hyperfine coupling constant.
This method, which we shall call the moment per-
turbation method (MP), divers from the EP approach
only in the order of application of the perturbations,
since there the core electrons are perturbed by the
exchange potential rather than the nuclear magnetic
moment. The Qexibility of the method arises by letting
the nucleus perturb the core functions and approxi-
mating (which we demonstrate by our lithium atom
calculations to be a good approximation) these per-
turbed functions as being independent of the configu-
ration of the outer valence electrons. Thus, we assume
that the interaction between the magnetic moment of
the nucleus and the core electrons of the atom is not
greatly altered when one goes from the atomic ground
state to an excited state, or to molecular and metallic
states. This has the advantage of enabling one to
calculate exchange-polarization effects when the system
is in a variety of environments without having to solve
separate differential equations in each case. In order to
demonstrate the practicality and Rexibility of the MP
method, we have calculated the hyperfine interaction
constants for atomic lithium in the 1s'2s and is'2p
configurations, and compared them with the results
of earlier calculations. We then apply the MP method
to calculate the contribution of exchange polarization
to Knight shift in metallic lithium. In all these calcu-
lations, the perturbed core wave functions used were
those calculated for atomic lithium 1s'2ib configuration.
This procedure'4 is analogous to similar cross pertur-
bation methods that have been used for the quadrupole
antishielding factors for ions, " and for the calculation
of nuclear magnetic shielding coeflicients in molecules. "

In Sec. II we describe the details of our method and
its correspondence with the EP method. In Sec. III the
method is applied to lithium atom 1s'2s and 1s'2p
states, and the results are compared with earlier EP
calculations. In Sec. IV we calculate the core-polari-
zation correction to the Knight shift in lithium metal
using the recent Wigner-Seitz wave functions obtained
by Kohn and Callaway. "In Sec. V we shall discuss the

While this work was in progress, we received a preprint of a
paper by Heine (Ref. 13) in which he mentioned that E. Rime, nek
had independently proposed a similar method to Heine to avoid
some of the inaccuracies of the SP method that were discussed in
Ref. 13.

"R.M. Sternheimer, Phys. Rev. 84, 244 (1951);R. M. Stern-
heimer and H. M. Foley, ibid. 102, 731 (1956);T. P. Das and R.
Bersohn, ibid 102, 733 (1956). .

'o T. P. Das and R. Bersohn, Phys. Rev. 115, 897 (1959).
'7 W. Kohn and J. Callaway, Phys. Rev. 127, 1913 (1962).

limitations of the MP method and the problem of self-
consistency.

THEORY OF THE MP METHOD

The general procedure followed here is similar to that
employed in some other perturbation problems. How-
ever, for the sake of completeness, we have presented
here an adaptation pertinent to our problem at hand.
Let us consider a general system whose unperturbed
Hamiltonian is Xo and whose ground-state wave
function is 4 o.

+o%o= Eo@'o

Let the system be perturbed by two general first-order
perturbing forces described by Hamiltonians X~ and
KN. If 6+g and N N represent the first-order changes in
the wave function of the system due to BC' and K~,
respectively, then the energy of the system correct to
the second order is

(To+84'@+5@N[xo+x +X' [%o+&2'+8+N)
jV=

(+p+8+~+5+~ I +o+8+ir+8+rr)
(2)

On simplication, after making a binomial expansion
of the denomintaor, one gets

~= {~o+&+~iv+ 2(+o
I
X& I 8+ir)+2(Po I

Xiv I 8+ir)

+2(+o[xs[~iv)+2(+o[xiv[~iv)+(~ir[X I 8+ir)

+(BVN [X[8%'iv)+2(8%@I Xp
I Wiv) }

{Q+ir[8+E) (8+iv I 8+rr) 2(~+X [8+N)) (3)~
After omitting terms higher than second order, Eq. (3)
becomes

~=&o+~.+~N+(8+N[xo &o I priv&—
+(~ir I Xo—&o I b+s)+2(~it I Xp—~o

I ~iv)
+2(%'p [Xir [M s)+2(@p[Xiv [W~)

+2(+p [Xa [N iv)+2(@p I X' [ &Piv) (4)

where we have assumed that the perturbed wave func-
tion is normalized to first order. That is,

(e,[ms)=(e, [8e )=0,

and the first-order changes in energy are given by

E,=(%'p[Xs [Op),

&iv=(+o IXN [ Po).

The second-order change in energy is given by

Zt»=2(e, [Xs [ms)+(res [X,—Zp[8Ps')

+2(+o I Xsr I 8+sr)+(~i' I xo &o
I
~iv)—

+25, I
Xs In „)+2(+pI Xiv

I mir)
+2(BPg

I
Xp—Zp [8%'iv). (7)
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(XO EO)~+N (xz +z)+0 y (10)

which may also be derived by minimizing E."' and
E&(') with respect to 5%'z and N&, respectively. From
Eqs. (9) and (10) it is easily seen that

(Nzlxzl+0& —(N zlxz I+0&

(N'zlx0 E0INz&. (11)

Hence, using Eq. (11),E,z &'~ reduces to

E, ~'&=2(Nzlxzl+0),

E,z&'&=2(Nz lxzle0&.

(12)

One could now apply this result to our problem of
core polarization. For the perturbing Hamiltonian Xg,
we take the exchange potential at the position of the
core electron due to the unpaired valence electron and
for X~, the Fermi contact interaction due to the nuclear
magnetic moment.

4-i(1) e'
Xz——— P .)(2)—P„„(2)dr0,

P«re (1)

46m

xz —— y,yzA'I Sb(r).
3

(15)

In Eq. (15),y, is the magnetogyric ratio (e/2 Mc/sec) of
the electron, p~ is the magnetogyric ratio of the nucleus,
and I and S are the respective spins of the nucleus and
electron. Equation (14) requires some explanation'.

In the presence of an unpaired valence electron, with
spin "up,"Eq. (14) represents the difference in exchange
potential seen by the up and down core electrons. If the
restricted Hartree-Pock Hamiltonian for the core states
were used as X0 in Eq. (9), we should consider two
erst-order equations of the type of Eq. (9), one for the
up core state and one for the down. The equation for
the up state would involve +Xz/2 on the right and
that for the down state —Xz/2. For those effects which
involve X~ to 6rst order, one cari. consider the down

' T. P. Das arid A. Mukherjee, J. Chem. Phys. BB, j.808 (1960).

The terms in the second-order change in energy can be
regrouped" as

~."'=2(+0IXzlN z&+(N z IX0—E0IN z),
E~"'=2(+0 IX' lN'z)+(N'z IXo—&0 IN'z&

E,z&'&=2(%'0lxzlwz)+2(4'0lxz IN z) (g)
+2(N'z

I
x,—E0

I
N'z&.

The quantity E,&') is the second-order change in energy
due to X~ alone; E~(" is the second-order change in
energy due to X& alone; and E,&(') is the second-order
change in energy due to the interaction of Xz and X~.

The erst-order equations for M ~ and 8%'~ are

(Xo—Eo)N'z = —(Xz—E.)+0, (9)

state to remain unperturbed and the up state to be
perturbed by Xz as given in Eq. (14).

Besides E.~('&, the various higher order terms that
could contribute to the hyperhne interaction are
X~'X~, X~'X~, X~'X~, . These terms are expected
to be negligible in heavy atoms where X~ is a small
perturbation compared to Xo. For light atoms there
may be a non-negligible contribution from such terms.
We have not investigated its effect in lithium atom
since our major interest is in Knight shift calculations.
It will be shown in Sec. IV that these higher order terms
in X~ do not have to be considered in core-polarization
contributions to Knight shift. Higher order terms like
X~'X~, X~'X~, ~, lead to terms in the energy non-
linear in nuclear spin and are of no interest to us.

For metal p~, ~ becomes goo„0, the wave function for
a conduction electron which extends over the entire
crystal and therefore, involves more than one center.
The perturbation equation for 8@z I Eq. (9)7 cannot,
therefore, be separated into radial and angular parts.
Cohen, Goodings, and Heine' attempted to meet this
limitation by expressing f„„z around the nucleus in

question as a linear combination of spherical harmonics
and used the linear independence of spherical harmonics
of different orders to separate Eq. (9) into a number of
independent differential equations. This procedure is
rather cumbersome because one now has to solve a set
of differential equations in place of Eq. (9). In the MP
procedure, one considers the perturbations in the reverse
order. This is justified because of the two alternative
expressions (12) and (13) for E,z&'&. Instead of erst
considering the perturbation N~ due to XE, let us
consider the perturbation of the wave function N~
due to X~. Thus, we can determine N'~ by solving
Eq. (10) and obtain E,z."' from Eq (13). .Since Xz
is a localized perturbation by a point source and p0
refers to g;„, (the wave function of the core electrons)
which is, to a very good approximation, localized and
centrosymmetric, Eq (10) ca.n be separated into radial
and angular parts. It should be noted that when the
wave function for the conduction electron is expanded
as a sum of spherical harmonics, the MP method
obviates the necessity of having to solve a set of
differential equations; but instead, one has to evaluate
a set of integrals arising out of Eq. (13). In principle,
the two procedures for calculating E,~(2& should lead
to identical results; but in practice, this will not be
exactly true. In the process of obtaining numerical
solutions of the di8'erential Eqs. (9) and (10), one
weights various regions of space differently because of
the different natures of the two perturbations X~ and
X~. This point will become clear in Sec. III, where we
compare our results with those of Cohen, Goodings,
and Heine's EP calculations on lithium atom. We shall
also show in Sec. III that for a model, where analytic
solutions are obtainable with both KP and MP methods,
the two methods do, in fact, lead to identical results.
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With these general remarks, we now proceed to the
detailed forms of the equations that one has to solve
for the MP method. Since, in a general case, one may
have more than one core state to perturb, a formulation
such as Dalgarno's for the perturbation of many-
electron systems" is helpful. We will follow Dalgarno's
method II (i.e., non-self-consistent perturbation) and
obtain the first-order perturbation equations for 8P&
by minimizing the second-order energy LEq. (59) in
Dalgarno's paper) with respect to g~.

The first-order perturbation equations are then given
by

where 3C; is the one-electron Hamiltonian, and P;, f;
are the one-electron wave functions in the Hartree-
Fock approximation, and e; and e; are the corre-
sponding eigenvalues. The first-order change in the
wave function for the ith one-electron state due to
BCir is g;,N. For a core us state, Eq. (16) for 5fna, zr

takes the form

One has to solve Eq. (17) for all occupied core us states,
since the s states are the only ones which do not have
nodes at the origin and, hence, can contribute to the
hyperfine interaction through the Fermi contact term.
The summation terms on the right-hand side extend
over all the core s states.

The zero-order one-electron wave function P„, satis-
6es the equation

(~ns —~ns)Pns =0.

That is, in atomic units

(—V'+ V„,—e,)P .=0, (19)

where V„, is the one-electron potential seen by an
electron in the es state in the Hartree-Fock approxi-
mation. Therefore,

(I na
—'ans) = V'Pna/Pns ~

Substituting this in Eq. (17), we get

I

—V'+
p„, i

(& ' n& s)Q' n's~gn'nssN)4n's, '

n, 's

—3'-~4-+2 8 -"I2C~ l4-)0-" (21)

"A. Dalgarno, Proc. Roy. Soc. (London) A251, 282 (1959).

(~ns &ns)~dna, N= P 't& ' na& )nQs'n' ~gs'ns, N)fn's
n's

—~ 0-+Z Q-"I& I4-)0-" (17)

where

4'ns Pns, N
+ I'o'(0, $),

4~ r

16m ns

pep%~ Iz
3 ao~2

(22)

and remembering that V'(1/r) = —4~8 (r), Eq. (21)
reduces to

d 4ns, x
+ u„,—

27rr3

duns pns, N d uns

2'' dr Nns

e's
(6n's &ns) {( u'n~spns, N)un's}

+~K 4".(0)4-(0)u ", (23)
m's

where we have used the notation

Because of the first term on the right-hand side,
Eq. (23) is an integrodifferential equation and must be
solved self-consistently. This term represents the in-
Quence of Pauli principle on the perturbed core states.

After determining g„,,z by solving Eq. (23), one
can get the second-order energy E,~&'& using Eq. (13).
Thus, substituting for the determinantal function N~
in terms of the one-electron functions g, ,~ and using
Eq. (14) for Kz, we get

(2) =2 Q 4 .i(1)W"., ~(1)lf-i(2)4-(2)

1
X dridr2 Z —4' .i(1)4—-(1)4-~(2)k-"(2)

r12 n'

1
X dridr2 P —.bP .~dr . (24)

r12

From this equation the correction a, to the hyperfine
constant a from core polarization is obtained by the
equation

(25)a, =E,~&'&/IJ2~A.

In solids and molecules, J is equal to the total spin S;
whereas, for atoms, J is the total angular momentum
of the valence electrons.

III. RESULTS FOR LITHIUM ATOM 1s'2P
AND ls~2s STATES

For the lithium atom 1s'2p (J=-,') state Eq. (23)
for gi, ,ir takes the forin

A duia /is, ~ d uisd 41s,N
+ ui, —

27rr3 2xr' dr N1, dr'

=~ I4 .(0) I'u ' (26)

If we now introduce the new function Q„, N, defined by
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147s'32
(2) — Il $5ss

9 -4(s+5)' 8(s+5)' 8(s+5)'(ss ) 1/2 ( P5 1/2

e '", $2„5=I — re &" coso (27) 21s ln(s+ g) 48s ln2 21s lns
+ + (33)

2(+5)' (+5)' 2(+5)'-and

To illustrate the nature of the solution of Eq. (26), we (28), and (31), and performing the necessary integra-
6rst assume a hydrogenic form for u~, for which an tions, we get
exact solution of Eq. (23) can be obtained. The Coulson-
Duncanson functions" represent such a choice. 15 273s

s=2.69, (=0.525.

The solution of Eq. (21) is then found to be"

A
/is, N =—(2s lnr+2s'r)ui, (r) .

47t-

Substituting the values of s and t, one gets

Z, &» = —0.0540@.

From Eqs. (25) and (32), remembering I=I=-22, it
then follows that

To find a solution Sit», N which satisfies Eq. (5), we
use the Schmidt orthogonalization procedure and
obtain from Eqs. (22) and (28)

4p~p pE,~&'&

345psIJ (22ri2)8
= —5.24 Mc/sec, (35)

where

A
~As, N I Fis (WislFislilisHitiss

4x

F1,————+2s lnr+2s'r .
r

(29)

where p~ ——yah is the magnetic moment of the Li'
nucleus and pp is the Bohr magneton.

Since ui, (r) involves a single exponential for the
Coulson-Duncanson function, one can obtain an exact
analytic solution for the perturbation equation (16)
for the EP method, with g;N and XN replaced by g,z
and Kz, respectively.

From Eq. (14), the exchange perturbation BC/2 due to
the 2pp electron is given by

u2, (r) -1
K@= — — u2 is (S)ui, (S)Sds

3u„(r) r' p

8 (S3~
1/2 $5e zr 3 (S+P)4r2e

—25r—
9(2r) (s+()' 4$

-3(+r)' 9(+r)'- -3(+~)'
+ + re

—2$r+

00 1
+r u2, (s)u„(s)—ds . (30)

2
r S

Hence, from Eqs. (24) and (30) it follows that

9(s+t)' 51(s+5)'
+ +

4P

75e—2)r

e 2$r+-
4r

u2, (r)bur„N(r)dr

24e(z—$) r 75' e
—2(r

dr+ 48s
e (z—$) r

dr

ui, (s)u2~ (s)sds

where

and

00 1
+r ui, (s)u2 (s)—ds, (31)

2S

A e' 4 y~y O'Iz
&=—X—=—

4m ap 3 ap'

4x
//u1 s, N r//4'1s, N ~

A
(32)

~ C. Coulson and %. E. Duncanson, Proc. Roy. Soc.
(Edinburgh) 62, 37 (1944).

"C.Schwsrtz, Ann. Phys. (N. Y.) 6, 156 (1959).

For the Coulson-Duncanson functions using Eqs. (27),

28 (s3 1/2 s2$5e—zr ( 1 ]
I
r+—lnr — . (36)

(s+ P)&k s

Substituting 8/1, ,s from Eq. (36) into Eq. (12), one
obtains, after some manipulation, exactly the same
expression for E,N&2& as in Eq. (33).

The value of a, in Eq. (35) is about one-half of
Goodings'4 calculated value (—10.7 Mc/sec) by the
SP method and is in somewhat better agreement with
Cohen, Goodings, and Heine's' value (—8.5 Mc/sec)
by the EP method. However, one does not expect very
good agreement with these earlier results because the
single-exponential hydrogen functions are not good
approximations to the Hartree-I'ock wave functions. "

To get a result by the MP method which could be
properly compared in terms of accuracy with Cohen,

~2 Per-Olov Lowdin and K. Appel, Phys. Rev. 103, 1746 (1956)~
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a,= —8.9 Mc/sec. (38)

This value compares very favorably with Cohen,
Goodings, and Heine's EP value (Table I). This is
satisfying in light of our Eqs. (12) and (13) and our
earlier demonstration that EP and MP methods lead

Goodings, and Heine's Ep calculation and Goodings'
SP calculation, we next solved Eq. (23) using Hartree-
Fock wave functions. The solution has now to be ob-
tained by numerical integration. of Eq. (23). In Fig. 1,
the function 6u&, ,~ Ldefined in Eq. (32)7 is plotted,
together with Goodings' Hartree-Fock wave function'
N~„which was employed in our calculations. The
function 8N&, ,z resembles a 2s type function, in that,
it has a node, but hat, ,N=(A/4s)(Sent, ,sr/r) goes to
negative inanity at the origin.

Using Eq. (31), together with Goodings' HF wave
functions N~„n2„, and bg~, ,~ of Fig. 1, it follows that

8 ~ "&= —asB(0.13'/) . (37)

From Eq. (25) this leads to

to identical results whenever exact solutions of Eqs. (9)
and (10) are obtainable.

Both ours and Cohen, Goodings, and Heine's values
for u, are in slight disagreement with Goodings' value
(Table I) obtained by the SP method. However, no
measured value of a, is available, so it is rather dificult
to assess the importance of this small disagreement
between the values obtained by MP (and EP) and SP
methods.

The feasibility and accuracy of the Mp method has
now been demonstrated by its favorable comparison
with the results of the EP method for the lithium atom
1ss2P state. We would next like to show the flexibility
of the Mp method by a consideration of core polari-
zation effects for the is'2s state of lithium atom. The
perturbation equation to be solved to get 8$&,,rr (or
Q&, ,N) in this case is exactly the same as in Eq. (26)
except that I&, may be different from its value for the
1ss2p state. Available tables" of ut, for 1ss2s and 1ss2p
states show that there is only a very slight difference
between the values of N~, in the two cases. One could

TAsr.E L List of contributions to hyperfine constants in Mc/sec for lithium atom 1s'2s and is'2p states.

Goodings
Cohen, Goodings,

and Heine~
This paper
Experimental

Core
polarization

106
86.74

83.76

1s'2s
Direct 2s

contribution

284
286.26

Total

390
373.0

367.76
401.786

Core
polarization

—10.7—8.5

1s'2p
Direct 2p

contribution Total

—10.7—8.5

—8.9

a The direct 2s contribution is taken from Table I of Ref. 5.

s3 D. A. Goodings, Ph.D. thesis, Cambridge University, Cambridge, England, 1961 (unpublished).
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therefore use the same pi, ,~ for both 1s'2p and 1s'2s
states. If using this approximation we find good agree-
ment with results obtained by Cohen, Goodings, and
Heine's EP calculation (which is not subject to the same
approximation), we can indeed justify our claim about
the flexibility of the MP method. For heavier atoms, the
alteration in core wave functions I„, for different
atomic configurations would be even less than for
lithium; and so the flexibility approximation will be
more justified.

The second-order energy expression E.~&" for the
lithium atom 1s'2s state is then given by

E, &)= —2a us, (r)oui, ,~(r)

r

Big (S)Ssa ($)dS
p

00 1
+ Ni, (s)gs, (s)—ds dr . (39)

On evaluating the integrals in Eq. (39), one gets
E,a &'& =28 (0.1434). The hyperfine constant is therefore

a.= 83.76 Mc/sec. (40)

The comparison of this value with Cohen, Goodings,
and Heine's and Goodings' values (Table I) is very
satisfying.

(41)

where X„ is the spin susceptibility per atom, and
(~Pi (0) ~'), is the average electron density at the
nucleus from electrons at the Fermi surface. Equation
(41) can be interpreted in the following way: Of the
conduction electrons near the Fermi surface, a fraction
(si+ X~/2lis) have their spins parallel to the field, and
a fraction (i —X~H/2lie) have their spins antiparallel
to the field. When these electrons interact with the
nuclear moment through the interaction term BC~, we
get the effective field hH in Eq. (41) out of the difference
in populations in the parallel and antiparallel spin

'4 W. D. Knight, in Solid State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. 2.

IV. CORE CONTRIBUTION TO KNIGHT
SHIFT IN LITHIUM METAL

As another important application of the MP method,
we shall consider the magnetic field produced at the
I.i' nucleus in lithium metal as a result of the exchange
polarization of the core 1s electrons when the con-
duction electrons are polarized by the external magnetic
field. The usual expression for the Knight shift due to
the conduction electrons is given by'4

states. This population difference between the parallel
and antiparallel conduction electron states also leads
to an exchange polarization potential to the core
electrons, given by

go /core (1)

1
A(2)~--(2)drs (42)

r12

where lt s~ is the wave function for a conduction electron.
at the Fermi surface, r, is the radius of the Wigner-
Seitz sphere, and A~ is the area of the Fermi surface.
Equation (43) can be evaluated using available wave
functions fir for lithium metal. Of the published wave
functions for lithium, those which are available in a
readily usable form are the recent ones by Kohn and
Callaway "

Lus (r)1ikmi (r)Pi (cos8i„)
(1V)1/2

+k'(es(r)Ps(cosgi, „)+$(r))). (44)

It is this potential BC~ which enables the core electrons
to produce an additional field at the nucleus.

Since BC@ is now a weaker perturbation than in Eq.
(14) by a factor X~/ps, the perturbation methods EP
and MP are more justified than in atoms. Also, it is
clear from Eq. (42) that terms of the order Kz'X~,
BC~'K~, ~ ., would lead to contributions to the Knight
shift which are proportional, respectively, to the first,
second, and higher powers of the field. However, there
is little current evidence for such contributions to the
Knight shifts in metals.

To calculate the contribution to the Knight shift
from the core 1s electrons by the MP method, we then
proceed in the same manner as in Sec. III to calculate
E.~&'i as given by Eq. (13). For the perturbed core
wave function, the function oui, ,ir (Fig. 1) for the
atomic lithium 1s'2p state was used. This is again an
approximation because there may be a smaLL difference
between the wave functions u~, for the metal, and for
the atomic 1s'2p state. However, our experience with
the lithium atom 1s'2s state in Sec. III indicates that
the error due to this approximation has little effect on
E,~&'&. We would also like to point out that this error
would be expected to be smaller for the metal than for
the 1s'2s atomic state because the conduction electron
wave functions appear to have predominantly p
character at the Fermi surface. '~

Making use of Eqs. (13), (25), and (42), and re-
membering that we have to average over the Fermi
surface in calculating Knight shifts, we get

AH Sm 2
A~(1)Vi. ,~(1)

B 3 Ap p

1
XA.*(2)~ .(2)—~ ~", (43)

r12 Fermi surface
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E=4m(1+ 2. .79333kpo) . (45)

Since the Fermi surface in lithium approximates a
sphere quite closely, we can take the magnitude of k»
in all directions as the same. The details of the calcu-
lations for evaluating the integral in Eq. (43) are given
in the Appendix. It is shown there that including up to
terms of order kr' [Eq. (A4)]

Po»(r) =As(kr, r)Pp(cos8o„)+A p(kr, r)Pi(costt/, „)

+Ad(kr, r)Po(cos0»„),

As(kr, r) = jp(kr, r)up(r) —kFji(kr, r)Ni(r)
(4~) i/o

+kF'I jp(kr, r)P(r) jo(kr, r)N&—(r)

2.79333
jp(k», r)Np(r)

2

Ap(kr, r) = 3Nop i+k» (j'o» 2&2»—)
(4~) 1/o

+kr'I 1 2jilo+3 jig 1 8j»o

3(2.79333)
~oji I

2

Ad(kr, r) = —5j»p+kr(3 joli —2jiu&)
(4~) i/o

10 18
+k p'I j pip jong S—jo—P+ j—4No—

7 7

5 (2.79333)
+ jomo

2

where j„(k&,r) is the spherical Bessel function of th
order n. Using Eq. (46), it is shown in the Appendi

The potential used in obtaining these results was an
empirical potential which is expected to be more ac-
curate than a calculated potential based on some model.
In Eq. (44), t4, is the angle between a radius vector r
and wave vector k. The functions Np(r), g(r), Ni(r),
and o»o(r) were given in tabulated form and X is a
normalization factor calculated up to kr' term (where
kp is the Fermi momentum in the spherical Fermi
surface approximation) .

[Eq. (A15)], that one obtains after some manipulation

DH 8+X~ 1
g'1,»/(rl)pl (r2)

H 3 2%

As(kr, ri)As*(kr, ro)
&& (4~)o

(4n')
+3I —

I
A p(k.ri) A p'(kryo),k3) ' ' r)'

(4ir) o r('
+5I —

I A~(kr, ri)A~*(kryo) ro'«orP«i (47)
&5&

The contributions to AH/H from the three terms in
Eq. (47) involving As, Ap, and Ad refer, respectively,
to the s, p, and d parts of the conduction electron wave
function at the Fermi surface. These were evaluated
by numerical integration and are listed in Table II.
It can be seen that (&&/H), » is almost equal to
(A&/H)„but opposite in sign. In contrast, (AH/H), q

is about a factor of 25 smaller than both (AH/H), o
and (hH/H)„. This leads us to expect that the con-
tributions to the core polarization from f and higher
angular momentum parts of the conduction electron
wave function would be negligible. Unfortuna, tely, it
is not possible to test this point using Callaway and
Kohn's wave function, because they did not give higher
angular momentum components beyond d. The value
of the total core contribution, ( UX/H), in units of
(647.5 X„), namely —0.00544, is to be compared with
the value of 0.10280 in the same units, for (~/H)q;, o

that one gets using Kohn and Callaway's wave functions
and Eq. (41). So we find that the core polarization
contributes about —5.3%%uo correction to the Knight
shift. Also it is to be noted that, while the s character
of the conduction electron wave function is alone im-
portant, for the direct contribution to the Knight shift
as given by Eq. (41), the core polarization depends
sensitively on the s and p parts of the wave function,
since there is a near cancellation between (DH//H). ,
and (l»H/H), „. It is therefore imperative to know
accurately the relative amounts of s and p characters
in the wave functions for other metals, since the core-
polarization contribution may be a more signi6cant
fraction of the direct contribution. This point has also
been noted by Cohen, Goodings, and Heine. ' These
authors assumed tha, t the conduction electron wave
function can be well approximated by a combination
of 2s and 2p atomic functions. In such a case, the core
polarization can be calculated by taking a weighted
combination of the core polarizations for atomic 1s'2s
and is'2p conigurations. However, in Figs. 2 and 3,
we have compared As and Ap with the 2s and 2p
atomic wave functions, respectively, obtained by
Goodings. ' It is seen that, while there is a reasonable
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similarity in shapes between the metallic and atomic
wave functions, the correspondence is far from exact.
To make a quantitative application of the EP method
comparable to our MP calculations, one would have to
solve two equations of the type of Eq. (9) using Eq.
(42) for Ks and then calculate (AH/H), using Eq.
(12). With the MP method, however, because of the
flexibility in using g&, ,sj as long as the core wave
functions do not vary substantially, we did not have
to solve any new differential equations to obtain
(hH/H), . This is an illustration of the computational
advantage of the MP method.

In our numerical calculations leading to the results
in Table II, we had to make use of the expressions in

TABLE II. List of contributions to Knight shift in lithium metal.

Contributions' to AH/H

Core-polarization s part, (nH/H) „
Core-polarization p part, (AH/II), „
Core-polarization d part, (nH/H), q

Total core polarization (nH/H),
Direct contributionb (d H/H) s;«.q

Grand total (nH/H), ...,
Experiment'

Value

0.02355—0.02813—0.00085—0.00544
0.10280
0.09736
0.101

' The tabulated numbers are in units of ao 3 (atomic units). To correct
to the usual dimensionless manner (%) that Knight shift data are obtained,
multiply by 647.5 xp, where Xp is the spin susceptibility per gram.

b Calculated using Kohn and Callaway's wave function (Ref. 17).
&Taken from Table IV, Ref. 24.

Eq. (46) correct to k&'. This was necessary because of
the form of Eq. (44) in which Callaway and Kohn's

wave function was available. However, Eq. (47) can
be used for any general wave function (such as orthogo-
nalized plane wave and augmented plane wave), since
one can obtain As, Ap, and Ad by expanding the con-
duction electron wave function in spherical harmonics.

CONCLUSION

As we mentioned at the outset, our motivation in
developing the MP method was to 6nd a procedure for
investigating the contribution from exchange polari-
zation to Knight shifts in metals and alloys. %'hile the
EP method as developed by Cohen, Goodings, and
and Heine can, in principle, be applied in any situation,
one would like to have a method that is computationally
simpler and Qexible enough to apply for a nucleus in a
variety of environments. Our experience with lithium
nucleus in the three situations discussed here leads us to
believe that the MP method can be extended to give
reliable results in other cases. The necessity for careful
investigations of core polarizations is strongly felt at
the present time, because a variety of Knight shift data
in metals, alloys, and internal 6elds in ferromagnets,
are now available; and it appears that direct contri-
butions from conduction electrons cannot quantita-
tively explain such data.

We would like to conclude by making a few comments
on the self-consistency problem in core-polarization
calculations in general and specifically as pertinent to
the MP method. In an atom containing an unpaired
electron, the many-electron wave function has to be
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Fn. 3. Comparison of the p part
of the conduction electron wave
function (at Fermi surface) with
Goodings' 2p wave function (Ns~)
for lithium atom is'2p con6gura-
tion.
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an eigenfunction of S'. As has been pointed out by a
number of authors, in a correct application of the
Hartree-Fock method, this condition must be built in
as a constraint. This is the case with the PSP method.
The SP method, however, does not have this constraint,
and the results from both SP or SPP methods are
therefore somewhat suspect. Heine has pointed out
that it is the self-consistency procedure in the SP
method which is responsible for its dangers because it
leads to an uncertain admixture of correlation and
exchange eBects and may in fact overemphasize the
correlation unduly. The EP method, which considers
the exchange polarization as a perturbation and has
no self-consistency built in, is free from this danger
although it is evidently less accurate than PSP. In the
MP method, however, the perturbed state is not an
eigenfunction of S' because of the nature of Xk/,' hence,
there is no condition of constraint regarding the total
spin. Self-consistency can therefore be used in the MP
method without any fear of spurious contributions
from correlation. However, our aim was to extend this
method to metals where self-consistency is rather
difBcult to apply even for restricted Hartree-Fock
calculations. We have therefore not explored the e6ects
of self-consistency (Dalgarnos' method I) here.
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APPENDIX

As(k p, r) = jo(k p,r)uo(r) —k pjl(k p, r)ul(r)
(4lr)'/o

+kp
~ j o(kp, r)P(r) —j&(kp, r)u&(r)

2.79333
jo(kp, r)uo(r)

~

2
' i

AP(kp, r) = 3jluo+kp(joul —2jo»)
(41r)'/o

+kp'~ 1.2jluo+3 jig —1.8jou&
~

(A4)

(2.79333)uoj

Ad (kp, r) = 5jouo+k p—(3j oui 2j lul)—
(4lr)'"

10 18
+kp'~ jouo ——jou2 5jo4+—j4uo

7 7

+-.(2 79333)uojo I

where j„(kp,r) is the spherical Bessel function of order
n. Using Eqs. (A3) and (A4), Eq. (A1) takes the form

X, and keeping terms up to kp', pkp can be written as

Pkp(r) =As(k p,r)Po(8k„)+AP(k p,r)P1(8/, „)+Ad�(k„r)P,
(8,„), (A3)

where

From Eq. (24), the second-order change in energy
due to the exchange polarization of the core electrons g &o& g,, (r,)y, (r,) ~LAs(k r,)
by the conduction electrons at the Fermi surface is

2 ~d

(1)~4 ., (1)
4mk p2

1
Xgkp*(2)gl, (2)—drldro, (A1)

r12 Fermi surface

where r, is the radius of the Wigner, Seitz sphere= 3.21
ao, k p is the Fermi momentum =0.59788/ao, and

Luo(r)+ ik pul(r)P1(8k„)
(+)1/2

+A p(k p,r,)P, (8k,)+Ad(k p,rl)Po(8kl) j
)&LAs*(k p, ro)+A p*(kp, ro)P1(8ko)

+Ad*(k p, ro)Po(8ko) $)drldro sin'8k„d8k dpkp, (A5)

8kl representing the angle between k p and rl and 8ko the
angle between kp and ro. We perform the integration
over the spherical Fermi surface first, and then inte-
grate out the angular parts of dr1 and dv 2.

Since the directions of r1 and r2 are arbitrary, let r~

be directed along k, for convenience. Using the addition
theorem for spherical harmonics

+kp'(uo(r)Po(8k„)+P(r)) j, (A2)

8k„being the angle between kp and r, and E the nor-
malization factor, 41r(1+2.79333kp') and for abbrevia-
tion we denote P&(cos8k,) by P«o» where 8k„ is
the angle between kp and r. On expanding e'"p' and

4m

Po(8ko) =—Q l o (8kl,fkl) l 2 (812)4'12) y

5 m=—2

4x
P1(8k2) Q l 1 (8klpfk1) l 1 (812)412) y

1

(A6)
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In order to perform the angular integration involved
in Eq. (A9) the following relationships will be used:

1 oo 1 r& l—=42r g Z 1'1"*(8181)
r» 1-o (21+1)r&'+' ~=1

X 1'1"(82,&2), (A10)
FzG. 4. Relative

orientations of k, rl, 4m

alld 22. Pl(812) Z l 1 (8li41) l 1 (82&42) &

3 m=—1

(A11)
4m.

P2(812) Q l 2 (81)41)I 2 (82)4'2) )
5 m—2

one can evaluate the following integrals over the Fermi
surface:

where (A11) again follows from the spherical harmonic
addition theorem. Thus,

1 (42r)2
Pl(812)dflldfl2

r12 3 1=o (2l+1) r&'+'

4m. 1

Pl(821) Q I 1 (821)gkl) I 1 (812)$12)dflk
3 m=—1

4x
=—Pl(812)b„p, (A7)

3

4x 2

P2(821) Q l 2 (821)421)l 2 (812)tf112)dflk
5 m=—2

4m=—P2(8»)8 p, (AS)
5

P;(821)P,(822)dQ&
——0, iW j.

Equation (AS) then reduces to

1
8 12' 8/1, 1r(rl)lpl (r2) 42rAs(k2' rl)

2~ r12—

4m

XAs*(k r, r2)+—A p (k r,r 1)A p*(k z,r2) P 1(812)
3

4x
+—Ad(kr, rl)Ad*(kr, r2)P2(812) drldr2. (A9)

5

x g I'-'*(8,e )I'"'(8.,e.)
mr =l

1

X Q I 1 (81 $1)I 1 (82 42)dflldfl2
m=—1

42r)2 r&
(A12)

3) r&'

1 (42r)' r&'—P, (8„)dn,dn, =i —
i XS,

r12 Esi r&2

1—Pp(812)dQld02= (42r) —.
r12

(A13)

(A14)

The Anal expression for E,~&'~ is then

1
841. -(rl)A. (")

2%

X{(42r)'As(kr, rl)As*(krr2) (1/r&)

+3 (42r/3)2A p*(kr, r2)A p(kr, rl) (r&/r&')

+5 (42r/5) 2Ad (kr, rl) Ad (kr, r2) (r&'/r&') )

Xr2'dr2rl'dr2, (A15)

which involves only radial integrations over r1 and r2.


