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Cluster Expansion in the Heitler-London Approach to Many-Electron Problems*
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Argonne Sational Laboratory, Argonne, Illinois
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The Heitler-London method based on nonorthogonal atomic orbitals is applied to arrays of an in6nitely
large number of atoms. The electronic energy is given by a quotient with strongly divergent numerator
and denominator, which until now has de6ed correct computation. By noticing some resemblance of this
problem to the linked-cluster expansion in many-body problems, we have now developed a new method to
compute the Heitler —London energy. Here, the numerator and denominator are divided simultaneously
by a common factor, which leads to a set of recurrence relations between the normalization matrices F.
The matrices F are essentialparts of the quotient to be calculated. When an overlap integral (k(h) is repre-
sented by a line starting from h and ending at k, the calculation of F using the recurrence relations is carried
out systematically by drawing diagrams consisting of connected loops. Since our present aim in applying the
Heitler —London method is to compute spin-wave spectra, the calculation is carried out in the complete space
of spin waves and the energy expression is given by a Hermitian matrix. This introduces additional matrices
A. The computation of A is also carried out by the diagram technique, since A can be expanded into an
asymptotic series using F. Finally the energy matrix is written as a sum over connected diagrams, in ac-
cordance with the speculation obtained from the linked-cluster expansion. An error introduced by truncating
the series of diagrams is also calculated. The present method not only ensures that the energy density in the
Heitler —London method is finite, but also provides an accurate and practical way to compute the Heitler-
London energy, which has never been accomplished previously. To calculate the ground-state energy the
technique is simplified since the computation of A can be completely eliminated.

I. INTRODUCTION

q OR many years, the concept of exchange coupling
has played an important role in theories of chemical

bond and magnetism. This concept was 6rst introduced
in the Heitler —London theory' of molecular binding and
applied by Heisenberg' to ferromagnetism. Although
the Heisenberg theory has been formulated in a very
attractive form by Van Vleck' and Mfiller4 and much
theoretical work in magnetism has used this formalism,
the method has been criticized in many respects.

In this paper, we will limit our discussion to one of
the difficulties inherited in the Heitler —London approach
to magnetic problems; that is, the nonorthogonality
difficulty in calculating energy spectra. The other
aspects of the difhculties will be found in, for example,
review articles by Herring. '

The nonorthogonality difKi.culty can be stated as
follows. If we assume that there are no spin-orbit terms
in the Hamiltonian, the calculation of the Heitler-
London energy of the form

is reduced to that of the Heisenberg exchange Hamil-
tonian

3c.n ———2 Q J,;S,'S;, (1 2)

provided the wave function + of this system is con-
structed from orthogonal atomic orbitals.

~ Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

~ W. Heitler and F. London, Z. Physik 44, 455 (1927).
2 W. Heisenberg, Z. Physik 49, 619 (1928).
3 J. H. Van Vleck, Theory of Electric end Jtrugnetic Sgscepti-

bilities (Clarendon Press, Oxford, 1932).' C. Mgller, Z. Physik 82, 559 (1933).' C. Herring, Rev. Mod. Phys. 34, 631 (1962); also J. Appl.
Phys. 31, 3S (1960).

The orthogonality of atomic orbitals makes the ex-
change integrals J;; thus obtained all positive. Since a
positive exchange integral in the Heisenberg theory
corresponds to ferromagnetism, this approach leads to
the obviously absurd conclusion that all substances are
ferromagnetic.

To utilize the Heitler —London method to full ad-
vantage, nonorthogonal atomic orbitals should be used
as the basis. However, the calculation of energy spectra
becomes extremely dificult since both numerator and
denominator of the energy expression (1.1) diverge
when the number E of electrons involved increases. It
is not at all obvious if it is permissible to discard, from
the energy expression, terms of higher order in overlaps.
Such terms may appear E times, S' times, or even more.
Slater' and Inglis~ pointed out this difhculty, which led
to grave doubts as to the validity of the Heisenberg
exchange Hamiltonian (1.2).

Previously I we have discussed this difficulty. (This
paper will be referred to as paper I.) The remaining
problems will also be examined in detail and will be
published elsewhere. " The conclusions will be summa-
rized as follows: The exact calculation of the Heitler-
London energy can be converted to the eigenvalue
problem of a spin Hamiltonian of the form

X„;„=P~(—1)~Z~J ., (1.3)

where I' is a permutation operator and I" the corre-
sponding permutation of spin variables. The exchange
energy J~ for a single interchange I' of electrons is
very nearly equal to the value one would compute by
neglecting terms of higher order in overlaps. The con-

s J. C. Sister, Phys. Rev. 35, 509 (1930).
r D. R. Inglis, Phys. Rev. 46, 135 (1934).
s J. C. Sister, Rev. Mod. Phys. 25 199 (1953).
s G. Heber, Fortschr. Physik 1, 70 (1954)."T.Arai, Phys. Rev. 126, 471 (1962)."T.Arai and C. Herring (to be published).
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tribution from the higher order terms in Hamiltonian
Pp'( —1)~JAP', where the summation Pi ' excludes
all single interchanges, is small.

This gives a rigorous justification for using the
Heisenberg exchange Hamiltonian in the calculation of
thermodynamical functions. " However, we have not
succeeded in evaluating the value of Jp when P is not
a single interchange. Although we have bounded the
total energy E as well as the exchange energy J& for a
single interchange by applying algebraic identities that
exist between Jp's, the values of the bounds are merely
first order in the approximation. The method cannot be
extended immediately to narrow the bounds beyond
the single interchange approximation. This implies that
the accuracy of the Heitler —London method so far is
limited up to that of the Heisenberg model.

If we would like to use the Heitler —London method
as a rigorous mathematical tool to calculate many-
electron systems, we have to provide an expansion
technique with which the energy expression (1.1) as
well as the expectation value of any observable quan-
tity can be calculated up to a desired accuracy. This is
the purpose of the present paper.

To achieve this goal, we have to carry out more de-
tailed calculations of both the numerator and the de-
nominator of (1.1). It is, of course, impossible to
proceed with the calculation directly. However, we 6nd
that our problem has some resemblance to the linked
cluster expansion for Green functions. " In either case,
the quantity to be calculated is a quotient with di-
vergent denominator and numerator. Use of Dyson's
equation'4 reduces the numerator of a Green function
to a factor multiplying all connected diagrams. Since
the factor is exactly equal to the denominator and
cancelled by it, the Green function consists of just the
sum over all connected diagrams.

In the Heitler —London calculation, a set of recurrence
relations (3.14) and. (3.15) for the F matrices will take
the place of Dyson's equation. Here the F matrices de-
fined by (3.1) are the normalization matrices and the
essential quantities to be calculated. Since the recur-
rence relations reduces the F matrices for X-electron
systems to those for X—1, X—2, electron systems,
the successive application of the relations leads to the
complete expansion of the F matrices in terms of over-
laps. The expansion technique is similar to that used in
both classical and quantum-theoretical treatments of
many-body problems, and use of diagrams will facilitate
the computation. It will be finally found that F is
written as a sum over connected diagrams, when an
overlap integral of the type (&s

~
Xs) is denoted by a line

starting from the center h of the atomic orbital X~ and

"For a general review of the theory of direct exchange see
C. Herring, in Mogaetisra, edited by G. Rado and H. Suhl (Aca-
demic Press Inc. , New York, to be published).

'SFor instance, P. Nozihres and D. Pines, Nuovo Cimento 9,
47 (1958). J. Hubbard, Proc. Roy. Soc. (London) A24(l, 539
(1957) and A243, 336 (1957)."F.J. Dyson, Phys. Rev. 75, 486 (1949).

ending at k of Xs. Following the prescriptions (i)—(iv)
described in Sec. III(1b), diagrams for F can be drawn
without knowledge of the expansion technique used.
An error accompanied by truncating the expansion will
be calculated by using a theorem which will be probed
in the Appendix.

Since the energy matrix should be Hermitian, it is
necessary to calculate, in addition to F, the matrix A

defined by (3.2). The matrix A is to correct the devia-
tion of F from Hermitian form. Although A is close to
a unit matrix, the straight forward calculation is very
difficult. In Sec. III(2), we shall, instead, develop an
asymptotic expansion of A and discuss the convergence
of the series. The calculation can also be carried out
automatically by drawing diagrams.

By multiplying F by A, the energy niatrix can be
obtained and it will be found that the energy matrix
is also written as a sum over connected diagrams.

The significance of the present method will be sum-
marized as follows.

(1) By using this method, a rigorous calculation of
the Heitler —London method including all overlaps can
be carried out without difhculty. The effect of overlaps
between distant atoms has been cancelled out rigor-
ously. Such a calculation has never been performed for
a many-electron system previously. ""In fact, this has
been considered impossible from the mathematical
point of view. '

(2) The awesome task of calculating the inverse of
the overlap matrix" is completely eliminated. The
calculation can be carried out just by drawing diagrams.
Even for a system with a small number of electrons,
therefore, this method will be more convenient than
inverting the overlap matrix directly.

(3) The fact that the energy matrix consists of just
a sum over connected diagrams implies that the energy
density is a finite number. This will, in practice, elimi-
nate the nonorthogonality di%culties. Actually, a rigor-
ous proof for this problem will be given in a forthcoming
paper.

So far, the calculation was carried out in the total
space of the Heitler —London wave functions aiming at
the computation of spin-wave spectra. The wave func-
tions are naturally described by a vector in that space
and the energy matrix is given in the form (2.26) or
(2.27) rather than (1.1). This is why the matrix A

appears. If, on the other hand, one is interested in the

"The only exception is the calculation by F. Takano, J. Phys.
Soc. Japan 14, 348 (1959). He has calculated the energies of the
ferromagnetic ground state and the excited states obtained from
the ground state by reversing only one spin.

"Also see W. J. Carr, Phys. Rev. 92, 28 (1953).
"The overlap matrix D in this paper is de6ned by (2.4). Here

the ij element of D is given by the overlap between N-electron
wave functions P; and p;. Under this definition of 9, neither the
inverse of 9 nor 9 itself has ever been calculated correctly when
N is large. %hen the overlap matrix d. is dehned by overlaps
between atomic orbitals so that its kh element is given by (k ) h),
the inverse LL ' has been expanded into a power series of A by
P. 0. Lowdin, Advan. Phys. 5, 1 (1956). However, there is very
little relation between A and D.
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ground state carrying a suitable spin function O, the
wave function is simply written as (2.1) and the calcu-
lation of A can be bypassed. This will simplify the
calculation considerably as we shall describe in Sec. IV.

Most of the present discussion will be carried out as
if we are dealing with arrays of one-electron atoms.
However, this limitation is merely an aid to keep track
of the formulas and manipulations. In Sec. IV(3), we
shall give a brief discussion of problems which arise
when arrays of many-electron atoms are considered.

Before we start to calculate F and A in Sec. III, we
shall review the method used in the previous paper I
in Sec. II.

II. THE HEITLER-LONDON METHOD

Let us consider an array of Sone-electron atoms. The
Heitler —London wave function for this system is given
by

where (PA~A) represents the integral over the coordi-
nate variables

(PA~A)= P—"A(r ir ,s,r iv)*A(r„r ,s,r iv)d e, (2.5)

while the integral over the spin variables is denoted by
Uq; (P) as follows:

U"(P) =—(—1) P'O';*0~;do. . (2.6)

From (2.4), it is clear that the normalization constants
D;; can become very large, which leads to the diS.culty
of calculating the Heitler —London energy.

The overlap integral D;; can be regarded as the ij
element of the overlap matrix D, and similarly U;;(P)
as the ij element of matrix U(P). Using the matrix
notation, Eqs. (2.4) and (2.6) are written as

+=($~) '"g(—1) PA. (r ir ,sirdar)
P D—= e tedr=g~ (PA~A)U(P), (2 &)

e'= (1V~)
—'~'P( —1) P"AP'0 (2.3)

by using the matrix representation.
The wave functions %'=(+i,%'s, ) thus obtained

are not normalized because of the nonorthogonality of
the atomic orbitals X~ used as basis. Instead, it will be
found that the overlap between 4'; and 4; is given by

D,;=—

[P(—1)i'P'AP O~,]*AO~,dr
P

=Z (PAIA)U'i(P),
P

(2.4)

XP O(err)os). ,os), (2.1)
where h(r ri.,s, r&) is a product of occupied atomic
orbitals Xs(rs),

A(ri, rs, , r+) = Xi(ri)Xz(lz) ' ' ' X+(tv), (2.2)

O~(ot, as, . ,aiv) is an arbitrary function of the spin
variables, and P" and P are permutations P of co-
ordinate and spin variables. (P" and P' are considered
as corresponding to the same abstract permutation P.)
The summation P~ in (2.1) includes all 1V! permuta-
tions P.

There are many ways to construct O~(oi,o.. .oiv)
of 31 spins, but, in any case, we will And 2~ linearly
independent and orthonormal functions 0'i, Os,
Starting from an orbital product A(ri, rs, . ,r~), there-
fore it is possible to generate, in principle, 2~ linearly
independent functions%'~, %'2, of this array. Let 0
be the row matrix 0= (0't, O's, ), whose elements are
2~ linearly independent and orthonormal functions O~,

of X spins. Similarly %' is the row matrix
= (iI its, ). Then the wave functions 4; introduced
by (2.1) are written as

N?

and

U(P)=(—1)~ P.et.0d~. (2.8)

It is easily proved that the matrix U(PQ) corresponding
to the successive application of two permutations Q and
P is given by the product of two matrices U(Q) and
U(P) as follows""

U(PQ) =U(Q)U(P). (2.9)
' The matrix U(P) introduced by (2.8) is unitary and is a

representation matrix of the permutation group. Use of repre-
sentation matrices of permutation groups in the calculation of
electronic energy levels is originally due to R. Serber /Phys. Rev.
45, 461 (1934)j and T. Yamanouchi )Proc. Phys. Math. Soc.
Japan 18, 623 (1936)g. Also see the review by M. Kotani in
Table of Molecglar Integrals, edited by M. Kotani et al. (Maruzen
Co., Ltd. , Tokyo, 1955). In the present paper, however, we shall
not use any group-theoretical argument except in (2.9) and (3.39).
It is more convenient to understand that U(P) is merely a nota-
tion representing the integral appearing on the right ol (2.8) and
has the property described by (2.9).

"The relation (2.9) will be obtained as follows. Since 2+
linearly independent and orthonormal spin functions 0;, for i=1,
2 . 2+ are complete in the spin space, we can expand E'O~; in
terms of O~; as follows:

P'o'= (—1)' ~ oivi'(P)* (1)
7

where U;;(P) is merely an expansion coeKcient but it is easily
recognized that U;;(P) defined above is equivalent to U;;(P) in-
troduced by (2.6). Here U(P) is the transpose of matrix U(P).
Let us apply two permutations Q and E successively to 0;.Then

P Q'0;=(—1)@ZP Hf, Vg„(Q)~

= (—1)"& & oiU'i~(P)'&~'(Q)* (2)
j k

On the other hand, we can write this as follows:

P Q o*=(—1)po& os&i'(PQ)*. (3}

Comparison of the above two equations yields

U(PQ) = U(P) U(Q), (4)
which is equivalent to (2.9),
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The orthonormal wave functions %'3[ of the array are deleting Xq(rq) as follows:
then given by

%'~=%'D 1~2. (2.10) A[k(h)j—= P"(k + h)—A.(rl, r2, ,r~) . (2.14)
X,(r,)

Our problem is to calculate the Heitler —London
energy of a Hamiltonian of the form

N N N

~=K f(r3)+2 Z Z'a(r. ,r.,),
hi=1 h2=1

N

where the summation p' excludes h2 ——hl. For this
hg =i

purpose, it is convenient to split off, from the S-
electron wave function %', one or several atomic
orbitals, which are of particular interest for the manipu-
lations we want to perform. This will be carried out as
follows. An antisymmetric wave function of S electrons
is constructed by taking the summation over Ã'I

permutations P as is shown in (2.3). Here the X!
permutations I' can be divided into two sets; the first
set includes (N 1)!perm—utations Q[hf of E 1elec-—
trons 1, 2, , h —1, k+1, , 7, while the second one
consists of X permutations P(k ~ h) taking electron h

to orbital k, where k=1, 2, ~, X. The original Sl
permutations are given by Q[hj P(k&—h) and the
summation over cV. permutations P in (2.3) splits into
two; the summations over (X—1)!permutations Q[hg
and over k's. If we take the summation over (X—1)!
permutations Q[h] after operating a particular permuta-
tion P(k~ h), this portion of the wave function is
antisymmetric with respect to electrons 1, 2, ~ ., h —1,
k+1, , X, but electron h always occupies orbital k.
To emphasize this situation, let us denote the sum by
X2(r3)4,[k (h)j where i= 1, 2, , X.The original wave
function %' is then written as

Similarly we introduce

~[kl(hl)k2(h2) j) ' ' '
y ~[kl(hl) ' ' ' k+(hn) j

For example,

e [k,(h,)k, (h,)g

[(g 2) [$—I/2 g ( 1)Q[3132]P(2122~3&32)

q I.hihg]

XQ "[h,h,)X[k,(h,)k, (h,)iQ.[h,h,]
XP'(klk2 &—hlh2) 0, (2.15)

where

~[kI(hI) k, (h,)j
P'(klk2 ~ hlh2)

x,, (r3,)X22(r3,)
Xh. (rl, r2, ,r~), (2.16)

and Q[hlh2j represents (E—2)! permutations not in-
volving electrons hl and h2, while P(klk2~ hlh2) is a
permutation taking electrons h~ and h~ to orbitals k~
and k~. The functions

F[kl(hl)k2(h2) j& ~[kl(hl)k2(h2)k3(h3)3 )

etc., are related to the original wave functions %' as
follows:

~= [&P—1)3-'"2 2' X.,(",)X..(r")
I[[:1 kg

X2I [kI(hI)k2(h2) j=etc. (2.17)
e'=&V I&2 P x, (ry, )-2F[k(h)j, (2.12)

We further define the overlap matrices

where %'[k(h)j is the row matrix whose elements 5[kI ~ k Ihl h„]
%,[k(h)) are functions of X—1 orbitals and l]]' spins as between the functions ~[k (h ) k (h )j f 11
described above. More explicitly,

~[k(h) j—[y 1) ]]—u2 P ( 1)q[a]) &2~3)

Qthl

XQ [h)~[k(h))Q [h)P (k h)e (2.13)

S[kI k„
I
hl h g= %'[kI(hI) k„(h„)$~

X%'[kI(hI) k„(h„))dr . (2.18)

and 6[k(h)j is a product of X—1 atomic orbitals, ob- The method used in obtaining (2.4) is applied to the
tained from A. (rl, r2, ~ . ~,r&) by applying P"(k+—h) and above matrices, which leads to

S[kl k„l hl h„f=
Q [h1. ~ ~ h]

&Qlh, " h„)~l k, (h,)" k„(h„)I~[h, (h,) . .h. (h.)l)

XU(Q[hl h~jP(kl k~~ hl h„)). (2.19)

Those overlap matrices are again related to the overlap matrix D between the original wave functions %' intro-
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duced by (2.4) as follows:

D= S[hlh)+P' (klh)S[klh)

= s[h,h, lh, h )y(h, lh, &(h, lh, &s[h,h, lh, h,)
+2'((k I »&SLkh2 I h,h2)+ (k I h2) S[h,k I

h ih2)+ (k I h2&(h2 I h, & S[h2k I h,h2)+ (k I h, &(h„ I h, & S[kh~ I h~h2))

(2.20)

=etc.,

where

+p" (k] lh, &(k, lh, &s[k,k, lh, h2) (2.21)
k1k2

(2.22)

and pa' excludes k=h, and Qq, a,
" excludes kx ——h~, using the orthonormal wave functions %'N defined by

k2 ——h2 and also k~=h2, k2 ——h~. These results can be (2.10), are given by
proved by inserting (2.19) into (2.20) and (2.21).

More generally, it will be found that (f)=(~N I E f(r&) I ~~&

S[kg k pl hg h

=8(h.Wkg, , k g)s[k, . k„,h„lh, h. gh )
++&"&(k lh )8[kg ~ k„gk„Ikey h„gh„), (2.23)

where

8(h„/kq, , k~q) = 1, if h„ is not included in kq,

otherwise=0,

S[h;,h, ," h;„lh,h, " h„)
=U(P;) S[hgh2 h„ lhgh2 h„), (2.24)

where E; is a permutation in which h~h2 h„are taken
to orbitals h, ,h;, h;„. This relation will be proved
easily by replacing P(k& k„+- h& ~ h ) in (2.19) by
P; and by splitting matrices U(Q[h~ ~ h„)P,) as
U(P, )U(Q[h& h )) by using the relation (2.9).

Now we are ready to calculate the energy matrix
of the Hamiltonian (2.11). Since the Hamiltonian is
totally symmetric and commutes with the antisym-
rnetrizer Q~(—1)~P in the wave functions (2.3), the
method used in obtaining (2.4) is again applied to this
calculation and it will be found that

(~ I 2 f(")I ~)=— ~t 2 f(")~d.
h h

=g (hl f(r.) Ih&S[hlh)

and, in the summation QI,„&"~, we exclude k =k&, k2,
~ ., k„~, h„. Furthermore, the following equality will

hold:

=g &h I f(r.) I
h&D-' sD I

h)D-

+P g' (kl f(r/) I h)D '"S[klh)D "' (2.26)

Similarly the expectation values (g) of two-body inter-
action —', Qz,Pz, 'g(rj„,rz,) are obtained by

(g)—= (ON I
-: 2 2' a(r~ r") I +~&

h1 h2

= 2 2 2 2 2 (kÃ2I g(ra, ra,) Ihih2&
hl h2 Icl ~2

x D—"'S[kgk2lhgh2)D —'~') (2.27)

where h~ and h2 are also included in the summations

Pq,Pq, ' for simplicity.
Here (f& and (g) are both matrices and can be calcu-

lated if the normalization matrices D—'~'S[klh)D —'~'

and D ''S[kzk2lhzh2)D '~' are evaluated explicitly.
The calculation of the normalization matrices is the
main subject of the present paper and will be carried
out in the following section.

III. CALCULATION OF THE NORMALIZATION
MATRICES

Here we shall expand the normalization matrices of
the type D '"S[k~ ~ k~lh~ ~ h )D—'" in terms of
U(P) and evaluate the expansion coeKcients. To pro-
ceed with the problem, let us divide the expansion into
two steps and 6rst consider the calculation of matrices
of the following form:

+g P' (kl f(r„)Ih&S[klh). (2.25) F[k,. k„lh]. h„)=S[k] k.—Ikey. . .h.)D-'
h =P f [k," k„lh," h.)U(P). (3.1)

The normalized expectation values (f), calculated by
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The second expansion to be calculated is of the form:

A&'i'&(R) =D-'i'0(R) D'i'=P upi'I'&(R)U(P). (3.2)
P

The original matrix is thus expanded as

D '"S[k . . .k lh . .h ]D '"
= D—'"S[ki k„l hi. h.]D—'D'"
=P fq[k, k~. lhi h„]D—'"U(Q)D"'

Q

=P g fq[ki k
I hi . . h ]apt'/3& (Q)U (P) .

P Q

(3.3)

Previously, ' "we have shown that, as long as atomic
orbitals x used as basis are linearly independent, the
inverse D ' exists and can be expanded as (24) of
paper I, that is,

D-i=+ T,c(P). (3.4)

Multiplication of this expression with (2.19) yields
(3.1). The second equation (3.2), which is similarly
obtainable, has been introduced previously by (68) of
paper I.

Our problem now is to expand the coefficients
fp[kl' 'kel hi' ' 'h ] and ap&' '&(R) in terms of overlap
integrals so that fp and apo~'&(R) can be evaluated
explicitly.

where
= (1+X[k])-',

x[h]=—P (klh&s[klh]s[hlh]-i.

(3.5)

(3.6)

Repeated use of (2.23) in X[h] yields

(I) Expansion of the F Matrices

(a) The Recgrrertce Relations for the Expamsion

Let us first consider the matrices of the form
F[hi. h„lhi .h„] and show that, by using the rela-

tions (2.20), (2.21), and (2.23), the matrices can be
decomposed into a sum of products of two parts: The
first ones denoted by I'[P] are made of overlaps be-

tween electrons h~ h„and the other electrons, and
can be calculated up to any desired accuracy explicitly
while the second parts are equivalent to the F matrices
originally considered except that the new matrices are
for a new array which can be obtained by removing
electrons h~ h„ from the original array. Therefore we

can repeat the same calculation in the second parts.
This expansion will converge since overlap between
electron Ig and a distant electron decreases exponentially.

For example let us consider the simplest case, the
matrix F[hlh]= S[hlh]D '. By inserting (2.20) into
F[h

I h], we find that

["I
"]=s["lh]&s["Ih]+~' &'I "&s['lh]) '

x[h]=P &hlk„&&k, lh&s[k, hlhk, ]s[hlh]-

+2"Z' &hlks&&kslki&&kilh&S[kikshlhkiks]s[hlh] '
k2 kI

+p g g &hlks)(kslks&(kslki)(kilh)S[kikskshlhkiksks]S[hlh]
k3 k2 kI

I.et us introduce the notation F3[hi k„l ki k„]by defining

S[hkt k„lhki k„]S[hlh] '= F3[hi .k Iki k„].
Use of this definition as well as (2.24) leads to

x[h]=P'&hlk, )(k, lh&0(k, h) F.[k, lk,]

(3.7)

(3.8)

+Z E &hlks&(kslki&&kilh)U(kiksh) Fs[kikslkiks]
k2 kI

+Q Q Q &h I k3)(ks I ks)(ks I ki)(kil h)U (kiksksh) Fs[kiksk3 I kiksk3]
k3 k2 k1

(3.9)

where (kiks ~ k„h) is a cyclic permutation in which electrons h, ki, ~ ~, k i, k„are shifted to orbitals ki, ks,

, k„, h. In (3.9), terms such as (hl ks)&kslki)(kil h)U(kiksh) belong to the first part I'[P], while the matrices

F3[hi k„lki k ] belonging to the second part are equivalent to F[ki k„lki k„].For instance, Ps[hi k]
can be calculated by (3.5) and (3.9) except that electron h should be excluded from the summations.

' The present method can be extended to the case where basic atomic orbitals are not linearly independent. See Sec. IV (3) and
also Appendix 3 of paper I.
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The equation (3.5) can be expanded formally as

D FD lh]=1—XLh]+Xfh]' —XD]2+ ".
This expansion converges as long as &= pi

~
xi Lh]

~

(1 where xi th] is the expansion coeKcient of Xph]:

XLh]=g x Lh]U(Z).

(3.10)

(3.11)

This will be proved in the Appendix.
Similarly FLhlh2~ hlh2] is expanded as

FLhih2
~
hlh27 = (1+X(hlh2])-'

= 1—Xt hlh2]+ X/hih2]' —Xr.hlh2] + ' ' '
~

where

XLh h ]=(h, ~h, )&h, ~h, )U(h h )

+Q {(hi I kl&(kl I
h,)U(k,h,)+(h, ) k,)(k,

~
h, & U(k, h2) y &h2

~
k,)(k,

~
h, )(h,

~
h, )U(k,h,h, )

k1

+(h 1
~

k1 )(kl
~
h2)(h2 ) hl)U (h2k lhl) }F2,2,Lki

~
kl]

y g {(hl
~
k2) (k2

~
kl) (kl

~
hl) U (klk2hl)+ (h2

~
k2)(k2

~

k 1)(kl
~
h2) U(k lk2h2)

k1k2

+ (h2
~
k2)(k2

~
kl&(kl

~

hl&(hl
~
h2&U(klk2h2hl) y(hl

~
k2)(k2

~
kl&(kl

~
h2)(h2 ) hl)U(h2klk2hl)

+(hl
~
kl)(kl

~
hl)(h2

~
k2&(k2

~
h, )U((klhl) (k2h2))

+(h, I
k, &(k, Ih, &(h, I

k, )(k, I
h, &u(k,h,k,h, )}F„„t:k,k,

l
k,k,]

(3.12)

(3.13)

The matrices FLhi~ hi], Fphlh2~ hlh2], , obtained by (3.9), (3.10), (3.12), and (3.13), can be inserted into
replace (3.9) and (3.13).Thus the expansion develops further. These relations are more conveniently summarized by

and

Ffh(n)]= (1+X(h(22)])—'
= 1—XLh(n)]+XLh(22)]' —Xt h(22)]'+"

XPh (22)]=P P FPk (222)]F 2 1„1Lk (222)],

(3.14)

(3.15)

where h(22) and k(22) are abbreviations of letters appearing in brackets of the matrices F[hl h„~hl h ],
Xr hl h„], etc., and I specifies the number of letters involved.

So far we consider matrices of the form Ft hl . .h„~ hl h~]. More general ones FLkl k„~hl h„] introduced
by (3.1) can also be reduced to the standard form by repeated use of (2.23). For instance,

FLk ih] = (h i k&0(hk) FLhk
i hk]

+2'(hI kl)(kl I
k&U(kk, h)FLhkkl I hkkl]

+2 2 (h ( k2)(k2) kl)(kl~ k)U(kklk2h) FLhkklk2
~
hkklk2]

k2 k1

(3.16)

(b) Diagram DescriPti022

To proceed with the calculation in practice, it is
convenient to draw diagrams. Let us denote, by a solid
line starting from point h~ and ending at point h2, the
overlap integral (h2~ hl) and similarly, by a broken line
starting from hq going through h2, ~ . ~,Ig„and coming
back to hl, a cyclic permutation (h2h2 h hl). For

example, the expansion (3.9) of XLh] is shown in Fig. 1,
where, as a convenient way of explaining how diagrams
are built up, points are classified telrtporar2ly as the
following two kinds: a solid dot indicates the starting
point of X(h] and no line comes hack to this point any
more in the course of expanding XLh], while an open
dot O indicates that the expansion is not completed. at
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this point but a new F matrix starts from here. The first
term has one open dot and therefore Fa[ktIkt] will
follow. Two open dots of the second term show that
Fs[kiksI ktks] follows. Since broken lines for permuta-
tions are the same as the solid lines, we have omitted
them.

Similarly the expansion (3.13) of X[htks] is described
in Fig. 2. There we have omitted terms obtained by
interchanging h~ and h2.

To calculate Fs[ktI ki], Fs[ktksIktks], etc. , wefurther
draw Xs[kt

I ki], Xs[ktks Iktks], etc., starting from open
dots. For example, the second term in Fig. 1 includes
the series of diagrams in Fig. 3.

' V

Fxo. 3. Further expansion of the second term in Fig. 1.

kt ki kg

h h

FIG. 1. The expansion of XLkj described by Eq. (3.9).

kp

hl h(

k( kp
hl

hf

Fin. 2. The expansion of Xgk(k2j described by Eq. (3.13).

of h~ and k2. Therefore the broken loop in this diagram
illustrates the interchange (ktks) only. The second term
represents the quantity

Since (ktksht)(ktks)= (ktkt) is a different permutation
from the second term, it is important to remember the
order in which these loops appear in a diagram.

In order to calculate F[kIk] by (3.14), we need to
evaluate higher order terms X[k]', X[h]', This
will be carried out by multiplying diagrams we have
generated. For instance, X[k]' will be obtained from
diagrams in Fig. 1. In case permutation (ktkskt) ap-
pears first (on the left of X[k]X[k])and then permuta-

Solid lines can come into a point many times, but the
representation of electron permutations should be re-
duced into the simplest form so that we can distinguish
a permutation from others immediately. This implies
that within one diagram, any one electron should not
be shifted more than once, and hence a broken line can
come into a point only once and come out only once.
For instance, the second term in Fig. 3 represents the
permutation (ktks) (ktkshi) which shifts electrons kt, ki,
k2 to k~, k2, h~ and, after that, again interchanges k~ and
k~, but this process is equivalent to a single interchange

Fin. 4. The diagram of (k~ks)(ks)k()
X (k( i k)U(k(ksk) X (k i k()(k( ik)U(k(k).
This term comes from XLkg'.

Similar multiplication should be added in those
appearing in Fig. 3. Here we have drawn only
Xs[ktks

I
ktks] instead of Fs[ktks I ktks]. The expression

will become complete if we include higher terms such
as Xs[ktksI ktks]', X~[kiksIktks]', etc. The contribution
from Xs[ktks

I
ktks]' includes, for instance, the diagrams

in Fig. 5. The first one is obtained by multiplication of
the first and second diagrams in Fig. 2. The second one
is obtained from two of the type appearing in the
second term, but Ig~ and h2 are interchanged in the
6rst one.

I(n (3.14), odd powered terms X[A(e)]' +' carry
minus signs, which should also appear in diagrams. It is
possible to associate a sign with the number of loops in
a diagram. For instance, diagrams in Fig. 1 should have
minus signs in F[htI kt] since they are terms appearing
in X[ki]. In fact, each of them consists of one loop.
Those in Fig. 2 should also be minus. However, the fifth

r
(r

Fio. 5. Some of the (,r Oi
contributing terms 'J

from X(,Lk(kg~k(kg.

I I

tion (hikt) follows it [(ktkt) appears on the right of
X[k]X[k]], we obtain the diagram in Fig. 4, which
corresponds to the quantity

I
(k I ki& I

'(k
I
ks&(ks I ki&(kiI k&U(ktks) .

Since all diagrams in X[k] start from k, solid lines
come into JE many times after the multiplication and the
distinction between solid and open dots becomes ob-
scure. Therefore, we shall not make this distinction in
diagrams any more.
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/tt) Fro. 6. The diagram of (h(k&)(kg)h)U(kgb)
X (h(k, )&k, ~h)U(k, h).

term consists of two loops. This will be explained as
follows. The same diagram can be constructed from
X[h&h2]' by multiplying two of the type appearing in
the second term in Fig. 2, as we have already explained
in connection with Fig. 5. There are two ways to con-
struct the diagram by the multiplication and both
carry a plus sign. Therefore, the total sum is 2—1=1
in accordance with the proposed criterion. Matrix
X[hqh2h37 will include diagrams with three loops. How-
ever, the same diagram will be constructed from
X[hrh2ha]' 6 times with plus sign and from X[hrh2h&7'
6 times with minus sign. The total is —1+6—6= (—1)'.
We can test this rule further. Let us assume that, up to
( loops, total sum of all possible contributions to a
particular diagram with r loops is (—1)", where r~&t.
A diagram with t+1 loops is constructed by multiplying
a diagram with g loops by all possible diagrams with
total t—x+1 loops. By considering all possible ways to
construct diagrams each of which carries x loops and
by adding all possible cases starting from X=1 and
counting up to x=t+1, we obtain the total sum of all
possible contributions to the diagram with t+1 loops.

We can construct
I I

diagrams, each of which carries
&xp

x loops, while the total sum of all possible contributions
to a diagram with t—x+1 loops is (—1)' &+'. There-
fore, the total sum of all possible contributions to the
desired diagram carrying t+1 loops is

loop. A loop must never go through a point more than
once and always come back to the starting point.

(ii) By adding more loops, we can calculate terms
in high order. Loops appear by successive expansion
(Fig. 3) of F and by multiplication (Figs. 4 and 5)
of X. Number the loops according to the order with
which the loops appear and attach sign (—1)' to the
diagram, where t is the number of loops in the diagram.

(iii) After completing solid lines in a diagram, we
describe the electron permutation by broken lines. The
broken lines never go through one point more than once
in a diagram and always come back to the starting
point. If the line is equal to P, retain the diagram.
Otherwise discard it.

(iv) We can draw all different diagrams, including
differences in ordering of loops. If, however, loops are
commutative, we should take only one of the diagrams
we find by numbering the loops in di6erent ways. An
example of such a case is the second diagram in Fig. 5,
where we have already counted all contributions when

(—1)' was assigned to it. Another example is shown in
Fig. 6, which, in fact, appears only once in the
expansion.

(c) Accuracy of the Expartsiou Technique

In practice, the expansion described in this section
cannot be carried out indefinitely and it is necessary to
truncate the series. The upper bound to an error intro-
duced by such truncation of the series can be calculated
by using the inequality (A7) for sum J.„of absolute
values of the expansion coefEcients fp[h(ts)].

Let us consider, for example, the series in Fig. 1.
The first term represents

(h I kr&(kr I h)U(krh) F~[kr
I
kr].

This proves the criterion on assigning signs to diagrams:
We court the renumber t of loops iu solid limes ie a diagram.
The diagram should carry sign (—1)'.

Thus we have expanded the matrix F[hr ~ h„I hr h„]
in terms of overlap integrals and U(P). Comparison of
the expansion with (3.1) yields that

fp[hr h„I hr h„]

( 1)'~pP'p ~p—, (3 17)
t 1 P1P2 ~ ~ Pt

Suppose we do not pursue the expansion beyond point
k& any more. This implies that we approximate F&[kr I k&]

by 1, and hence it introduces an error to the series.
From (A7), it is easily found that the error is less than

P (hIk )(k Ih)[(1—0(hho)) —' —1].

From the second term in Fig. 1, we get an error of

p g (hI k,&(k, I
k,&(k, I h&[(1—o(aao))-' —1],

k1 k2

where P; is a cyclic permutation and Sp, fP,A*/rdv. —— .
represents a loop. The summation takes all possible
Pj, P2, ~ ~ ~ Pt under the condition P=PtPt j P~
and, at least, Pj will include some of h~h2 ~ h .

From (3.1/), we can calculate fp[hr h„Ihr h~]
for any P. The computation will be simplified if we
draw diagrams as follows:

(i) We start from a point in hrh2. h, and draw a

by not taking further expansion terms beyond k& and
k2, and so on. Here the factor [(1—0(hhe)) —17
will increase when m increases, and the first term
(1—0(660)) will eventually become dominant. Under
such circumstances, there is no reason to write the large
loop without further expansion, since the loop is merely
a minority term in the further expansion. They should
be neglected altogether. For instance, if we neglect, in
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the series in Fig. 1, the fourth term and higher, the section, we shall compute, instead of A&'~2~(R), the
error will be matrix A&1&(R) defined by

A'(1 —0(Ad, 3)) +d, '(1—0(663)) '
+A (1—0(AAo)) '+

A similar observation can be made for the series in
Fig. 3. If we retain the first term and neglect all the
others, the error will be

If we consider all diagrams that appear in Fig. 3 and
neglect the higher orders, we have to estimate the error
for each diagram one by one. This process is not so
difEcult. The 6rst two diagrams are complete and
therefore introduce no error. The next three carry an
error [(1—0(663)) '—1] times their values and so on.
In addition, an error will be introduced by not consider-
ing terms such as X3[k(2)]2, Xl[k(2)]', etc

In any case, it is possible to calculate the upper bound
to an error introduced by truncation of an expansion
of F.

A&'&(R)—=D 'U(R)D=Q ag &'~(R)U(P). (3.18)

In subsection (b), the matrix A&'"&(R) will be calcu-
lated by using the expansion coefficients &3&1'(R) ob-
tained here.

We shall proceed with the calculation of A&'&(R) by
observing from (3.18) that A&'& (R) can be expanded in
terms of matrices F and consequently &3@&'&(R) in terms
of f~. To facilitate the expansion of A&" (R) in terms
of F, we shall consider the Hermitian conjugate of the
expression (3.18), that is,

A&" (R ')t=DU(R)D '=+&31-'&'&(R ')*U(P). (3.19)

Let us first consider a case where E. is a simple
interchange (hlh2). Use of the expansion (2.21) of D in
DU(R)D ' decomposes the matrix A&'~(hlk2)t into a
sum of matrices of the type

(2) Calculation of the A Matrices (kl
~
kl) S[klk2

~
hlk2]U (klh2) D '. (3.20)

&3 Ewall&Jt30N o A&'& R
When the method used in obtaining the expansion

The calculation of matrix A&'"'(R) introduced by (3.16) is applied in S[klk2~hlk2], the above expression
(3.2) involves more dif5culties. In the present sub- is rewritten as

(kl
~
kl)(kl

~
hl)U(klkl) S[klk2kl

~
klk2kl]U (klk2) D

+Q (kl ( k2)(k2 ( kl)(kl
~
kl)U(hlklk2) S[klk2klk2

~

klk2klk2]U (klk2) D '

(kl
~
k3) (k3

~
k2) (k2

~
kl) (kl

~
kl) U (klklk2k3) S[hlk2k lk2k3

~
h14k lk2k3]U (klk2) D '

k3 k2

= (kl
~
kl)(kl ( kl)U(klklk2) F[klk2kl

~
klk2kl]

(kl
~
k2) (k2

~
kl) (kl

~
kl) U(k1klk2k2) F[klI32klk2 [ k 14k lk2]

+Z'"'Z'" (k [k )(k [k2)(k (k )(k [k )U(k k k k k )F[klk2klk2k3[klk2klk2k3]
Ic3 k2

(3.21)

Similarly D in the expression U(klk2)DD is expanded, where a term corresponding to (3.20) yields a series
similar to (3.21), but U(k14kl), U(klk2klk2), etc. , will appear instead of U(klklk2), U(klklk2k2), etc., in (3.21).
The matrix

(kl
~
k 2) S[klk1

~
klk2]U (k14)D

will also produce an expansion obtained from (3.21) by interchanging kl and 4.
By calculating all matrices appearing in the expansion of D and by taking the difference between DU(klk2) D '

I
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and U(hlh2) DD '= U(hlh2), it will finally be found that

A&'&(h, h, )t=D0(h, h, ) D-

=U(hlh2)+2 ((hl
~
kl)(kl

~
hi) —(h2

~
kl) &kl

~
h2)) [U (hlklh2) —U (h2klhl)] F[hlh2k1 ) hlh2kl]

+2' (&hil kl&&kll h2&&h2I »)—(h2
I
kl&&kll hl&&hil h2)) [U(h2kl) —U(hlkl)] FD lh2kl I hlh2kl]

+E & (&hllk2&&k2lkl)&kllhl) —&h2lk2&(k2lkl&&kllh2&)
k2 k1

X[U(hlklk2h2) U(h2klk2hl)]F[hlh2klk2~ hlh2klk2]

+Q"' Q (&hl~ k2)&k2~ kl)&klih2&&h2~ hl) —
&h2~ k2)&k2(kl&&kl~ hi)(hi~ h2))

k2 k1

X [U(h2klk2) U(hlklk2)] F[hlh2klk2
~
hlh2klk2]+.

((hl
~
kl)&k]

~
hl)&h2

~
k2)&k2

~
h2) (h2

~
kl)(kl

~
h2&&hi[ k2)&k2 [ h1))

k2 I&1

X[U (hlklh2k2) U (h2klhlk2)] F[hlh2klk2 ) hlh2klk2]

+2 P P (&hll kl&&kll h2&&h21k2&&k2I »&—
&h2I kl) &kllhi&&hll k2&&k2lh2&)

I(2 k1

X [U((hlk2) (h2kl)) —U((hlkl) (h2k2) )]F[hlh2klk2
~
hlh2klk2] (3.22)

By using the expansion technique of the F matrices
developed in the previous subsection (1), therefore, the
matrix A('&(hlh2) can be calculated. The inequality
(A7) ensures the convergence even if higher order
terms in 22 of F [h(n)] are neglected

Let us insert (3.1) and (3.17) into (3.22) and write
the series in terms of loops Sp and U(P) as follows:

A&'& (hlh2) t

=U(hlh2)+Q Q Q (—1)'C[(hlh2); PP]

By noting the relation SP*=S+-1, the above equation
can be rewritten as

aP (hlh2) ~(hgh2&, p

+Z E' (—1)'C[(hlh2); Po]*
PpP1 ~ ~ P~

XSP,-'Sp -' ~ ~ Sp -' (3.27)

where the summation Pp, p, ...p,
' takes all possible

Pp, Py' ' ' Pt under the condition
P t PpP1 ~ ~ P~ P=P '(h h)P 'P ' P (3.28)

XS»SP2' ' Sp~U(P), (3 23)

where the summation Qp, p, ...p, p takes all possible
POP& Pt which satisfy the relation

P=P,P, 1 P2P1(hlh2)PO, (3.24)

and C[(hlh2); P&&] represents a quantity in parentheses
in (3.22). For instance,

C[(hlh2); (hlkl)]= &hl) kl)(kli hi) —(h2) kl)(kl ) h2),

C[(hlh2); (hlh2k1)] = (hl
~
kl)(kl

~
h2)(h2

~
hl)

—(h2ikl)(kli hi)(hi ih2). (3.25)

Comparison of (3.23) with (3.19) yields that

ap-1('& (hlh2)*

=&(2112&,p-'+2 2 (—1)'C[(hih2); Po]
t PpP1- . Pt

XSp,Sp, . Sp, . (3,26)

The equation (3.27), however, is less convenient than
(3.26). To evaluate the electron permutation P as
given by (3.28), we have to start from the last loop
SP, and to count the cyclic permutations in reverse
order. On the other hand, computation of ap-~&1&(hlh2)*

by (3.26) and (3.24) is exactly the same as the expan-
sion (3.17) of fp[h(N)] and the electron permutation
P can be obtained by multiplying cyclic permutations
following the same order in which the loops appear.
lt is easily found that, after completing a diagram of
Ap-~("(hlh2)* by (3.26), a corresponding diagram for
Ap"&(hlh2) can be obtained by reversing the direction
of arrows in all solid lines as well as broken lines.

The calculation of A&'&(R) just described can be ex-
tended to any permutation R, and it will be found that

P
ap-'&'&(R ')*=l»2 p+g g (—1)'C[R;Po]

t PpP1 ~ ~ ~ Pt

XSplS p2 Sp, . (3.29)
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Diagrams for g~(') (R ') can be constructed from those
obtained by (3.29), by simply reversing directions of
arrows in all solid lines and broken lines.

The only problem here is to develop A&'&(R ')1 in
terms of F and get an equation similar to (3.22),
which, in return, gives explicit expressions of C[R; Ps].
This can also be carried out automatically by drawing
diagrams of C[R; P()] as follows: Let R be a cyclic
permutation R= (ktks k,) and consider all possible
permutations Po which start from a point on the loop
(klks k.). The permutations P() may consist of many
unconnected loops Pop, Pp2, ' ', Pp„but each of the
loops must have at least one common point with the
original loop (krks k,). The desired coeKcients
C[R; Ps] will be given by

C[R; Po]=Sr„SI„SI,„
—Sg-~p„&rSg-~p„g. .Sg-~p, „p, (3.30)

where PO=PO Po y
' 'Po2Poy.

In case R is a single interchange, we had the relation

possible relative positions of loops (k,k;) and (kfkt)
should be considered here.

This divergence of I.q(' will lead to difficulties in

proving the convergence of the expansion of A&'/'&(R)

as is seen in the following subsection (b). The origin of
the divergence is due to the fact that diagrams in
A&'& (R, ')t are not connected with solid lines (overlaps).
It is expected that, if the quantity S&s,A(')(R, )t is
considered instead of A&'& (R, ') 1, the sum of the abso-
lute values of the expansion coefficients Sg,g»(')(R, ')

&IS.,II., & & (3.33)

will converge and be very small. In fact, there is no
essential difference between A&'&(R, ')t and F[k(/s)],
and their expansion coefFici,ents are calculated similarly

by (3.17) and (3.26). Therefore the argument used in

Appendix for bounding F[k(/s)] will be applied to
A&'&(R ')t too.

(3.31)C[R; Pp]= —C[R; R 'PpR],
(b) Asymptotic Exp gr/sio/s of A('" (&).

The expansion coeflicients gp&')(R) obtained in the
(3 3 ) preceding subsection (g) are related to the desired ones

1/2)

which leads to factorizations of the type

C[R; Po][U(R 'Po) —U(PoR ')]

(3.36)

Ao) (R) = D—'/'D —'"U(R) D'"D'/'

as has been shown in (3.22). When R is a permutation
gp& R by

involving more than two electrons, the relation (3.31) "'( )=Z ""'( ) ""'(Q).
is no longer valid and each matrix U(R—'P()) may carry Q

a distinct coefficient C[R;P()]. Therefore A"'(R ')1
f (3 32)

T is re ation is prove as o ows

f h l (A7) (3 22) l d h
defined by (3.18) can also be expanded as

conclusion that the sum

L s' ' —E I
g~"'(ktks) —()(s s ),~ I

P
(3.33)

is also bounded and small as compared with unity as
long as 6 is small. However, the quantity

"'(R )—~..—,.l
(3.34)

will increase in proportion to the number s of electrons
involved in the permutations R,. This will be seen if
we calculate some of the dominant terms in A "&(R, ') t.
For instance, let R, be a loop (ktks k,) of equally
spaced s electrons in a crystal with translational sym-
metry. The matrix A"&(R, ') t will include s terms of
the form

C[R„(k,k;)]U(R,—(k,k;)), for i = 1, 2, , e,
whose s coefficients

CLR. ; (k'k')]= (k'I k')(k'I k') —(k„tIk')(k'Ik'+t),

are equal to each other. Terms of the form

C[R„(k;k;)(k;k;)]U(R,—'(k;k, ) (k,k;) )
will appear -,'s(s —1) times in A(')(R, ')1, since all

=P g o
(~/s) (R)D—)/sU (g Dr/s

=Z Z . (R) - "'(())0(P) (337)
p Q

Comparison of (3.37) with (3.18) yields (3.36).
gz&'/» (R) and g~(') (R) be RP elements of

matrices a("2) and a('), respectively, and rewrite Eq.
(3.36) in terms of the matrix representation as follows:

a(&) —a(&/2) a 0/2) (3.38)

Use of the orthogonality relation of the irreducible
representation matrices U(P) in (3.2) leads to""

g~(&/s) (R) = p (D—r/s)sk(p) U'~ (p) (R)
pAm+~

X (D)/s) (p) U (p) (P)+ (3 39)

"As we shall show in (4.1) and (4.2), it is always possible to
consider a representation where D is diagonal.

"The X!matrices U(P) introduced by (2.8) are representation

matrices of the permutation group. By choosing a suitable set of

X-spin functions 0; as basis, U(P) 's can be made irreducible. Let
U(» (P) be the matrix in the irreducible representation p. The km
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where f, is the dimension of the subspace (p). Since
(D '/s)ps&» and (D'/') &» are real, we 6nd the relation

g~0/s) (R) =gg0/s) (p)a (3.40)

To eliminate this difficulty, it is more convenient to
use an asymptotic expansion. Let us expand (1+re)'/'
in (3.45) in a power series of ri. The matrix a&'/'& is
then written formally as

Vta&') V= 1+op, diagonal, (3.41)

which shows that the matrices a&'~') and a(') are both
Hermitian. Hence, there exists a unitary matrix V with
which a('~') and a(') are simultaneously diagonalized
such that

a""'=V(i+km —kXsn'+kXsX (3/6)@'—
=1+-',b —-,'X-,'b'+-', X-,'X (3/6)b'—

where
b—= Vri Vt= a&'& —1.

(3.46)

(3.47)
Vta&'/') V= (1+r/)'/' diagonal. (342)

Kigenvalues 1+r/)r and (1+))x)'/' of matrices a&'&

and a&'~') are all positive, and there is no case where
(1+@)'/s on the right of (3.42) carries a minus sign.
This will be proved as follows. Let us introduce matrix
A&'/') (R) and the expansion coeKcients gz&' ' (R) by

A&'/') (R)—=D '/'TJ(R) D'/'= Q gp&'/') (R)U(P) . (3.43)

As before, a Hermitian matrix a('~') will be constructed
from the expansion coeKcients gi &'/4)(R), and the fol-
lowing relation between a('t'4) and a('~') will be found

a (&/2) —a 0/t4) a (&/4) (3.44)

This relation shows that a"~') is also brought into a
diagonal form by the unitary matrix V used in (3.41)
and (3.42), and that the eigenvalues are square roots
of eigenvalues of a('~'). This implies that, if some eigen-
values of a('I') carried minus signs, the corresponding
eigenvalues of a("') would have to be imaginary. This
is contradictory to the theorem that the eigenvalues of
a Hermitian matrix are real. Therefore, eigenvalues
1+r//r and (1+r//r)'/' in (3.41) and (3.42) must be all
positive.

Since off-diagonal elements g) &"(R) are small, the
relations (3.41) and (3.42) suggest that the perturba-
tion technique can be applied to calculate the eigen-
values 1+r/z and the unitary matrix V of a"&. The
desired matrix a('~') can then be obtained from

These equations (3.46) and (3.47) are written more
explicitly as

gi &'"'(R) =4/+s4z ——,'Xs Q 4qf qz+, (3 48)
Q

and
bz) =gp"'(R) —4)

Since bn/ is obtained by (3.29) and (3.49), the expan-
sion coeKcients gp&'/s)(R) can be calculated by (3.48)
provided the series converges.

In practice, there will not be any di6iculty in using
the expansion (3.48) for the calculation of g) &'/')(R).

This will be explained as follows: Since it is not possible
to calculate bgI for all R and P exactly, we need to
truncate and approximate the matrix 6 by neglecting
permutations involving s+1 electrons or more. Let b'

be the truncated matrix. The RP element bgp' is then
given by an approximate bgI when R and P are both
permutations of s electrons or less, while b~I' ——0 if
either R or P involves s+1 electrons or more. Here s is
chosen so that Is&') as defined by (3.34) is less than one.
This implies that

(3.50)

When all of b/rr in (3.48) are replaced by b/tr', the
series (3.48) converges and the quantities gi &'/s)&'&(R)

thus calculated satisfy the following inequality:

g ~
g) &'/') &') (R)

~
~(2—(1 e)'/'( —(1—e) '/' (3 51)

a&i/s) = V(]+r/)1/s Vt (3.45)

It turned out that this approach is not practical since
the matrix a(') has an infinite order of degeneracy. For
instance, diagonal elements g&s,.»,,)&')(h;k,), for i=1, 2,
~ ~, X, are all equal to each other, if we consider a
crystal with translational symmetry.

element of matrix A&'/') (R) in this representation is then written as

LA&'/')(R) ja &»—= (D '/')g, g&»Vi~&»(R)(D) &»

=& oq""'(R)U~ '"(Q) (1)

Because of the orthogonality relation of the irreducible repre-
sentation matrices

& (f.//y!)U~ "'(Q)Ui '"(P)*=s&)~, (2)
pkm

we will Gnd (3.39) when multiplying (1) by Uz &»(P)* and sum-
ming over p, k and m.

The relation (3.51) will be proved in exactly the same
way as (A6) has been obtained.

When the number s increases, however, the value of
Lg(') increases indefinitely, and the convergence of
(3.48) will not be proved easily by an exact language of
algebra. " Nevertheless, it is expected that the series
(3.48), multiplied by S)r

Szgr &i/s) (R)=Sr/4r+kSz'/)/r I
——', X-,'QS f) bq + . (3.52)

Q

converges, for the following reasons. Quantities such as
S/thrice or PqS)ibnq will be finite and small as we
have discussed in (3.35). Higher terms PqS/tb/rqbq/,

gq, gq, S/tbnq, bq, q,bq, ), etc., consist of connected dia-
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grams which build up over S ghee g. This implies the
convergence of the series provided the same diagrams
do not accumulate. When a diagram appears repeatedly,
we can count the number of times the djagram appears
as we did for the F matrix in Sec. III (ib), and it will

be 6nally found that they cancel each other in the
course of the summation in (3.52), so the net contribu-
tion is a small finite number.

The calculation of QqS~bzqbqz is, in fact, very
similar to that of S~„F[h(e)j described by (3.15) or
(3.9), where b~q corresponds to I [k(e)] and bqp to
Fs& I[k(m)$. S~„F[h(N)j may contain very large terms
Fs& &[k(m)$ when m is large, but those are connected
by Sg„l'[k(m)]. Large terms bq„p for large nz are also
connected by S~bg g . To evaluate higher terms

qgsqSgb gq bq q bq2p etc. , corresponds to expanding
Fs&„&[k(es)$ in terms of Fs&„&„& &[l(s)$, etc. As we have
discussed in. the Appendix, the value of Sn„F[h(n)&
vanishes when e becomes large.

The higher order contribution, for which Lq"& 1,
can also be calculated by combining a per turbation

k,
I' 1r I

I

h

+

k)
lg

I
+ 2 I

k2
k~

I
I

h

k,

I I
2

h = kg
k)

h kp

Fio. 8. The expansion of A&'&'&(hh&).

conjugates of the fourth and seventh diagrams become
equivalent to, respectively, the second and fourth dia-
grams in Fig. 9. However, those diagrams cannot
appear in F[hjh), since, to draw either of them, we
have to start from loop (kiks). All diagrams in F[h~hf,
however, should start from h.

On the other hand, matrix A&'Is&(hki) includes the
diagrams in. Fig. 8. Diagrams for A&"s&(hks) are similar
to those in Fig. 8 and obtained from them by inter-
changing ki and ks. If we multiply A&'&s&(hki) by the
second term in Fig. 7 and A&'&'&(hks) by the third, we
obtain the expression for S~, which is similar to the
series in Fig. 7, but the fourth and seventh terms are
replaced by those in Fig. 9, and matrix SN becomes
Hermitian.

The present example clearly shows that the matrix
A&'&'& (R) is essential for retaining the Hermitian prop-
erty of the energy matrix.

IV. DISCUSSION

(1) Evaluation of the Expectation Values

FIG. 7. The expansion of FLh
~
hj.

technique with the asymptotic expansion described here.
We shall not describe the details but we will again reach
the same conclusion that S~A"~s&(R) is expanded in
terms of connected diagrams.

According to the description in Sec. III, any matrix
containing an operator f(rs) or g(rs, rs,) can now be
evaluated by drawing diagrams. Let us denote an
integral of the form (k ~ f(rs) ) h) by a heavy line starting
from h and ending at k plus a wavy line indicating the
operator f(rs) as shown in Fig. 10, where the second one
corresponds to (h

~
f(rs) ~

h). The integral

(c) Role of A""&(R)

We have described the matrix A&'&s&(R) as being very
close to one and merely a correction factor of the F
matrix. Here we shall illustrate, by an example, an
essential role of A&'I'& in our calculation.

Let us consider a Hermitian matrix

(kiks)g(r. rs,) ~»hs)

which, according to (3.3), is expanded as

By using the prescription (i)—(iv) in Sec. III (1b) for
drawing diagrams of matrix F[h~h], we find that
F[h

~
hj contains among others the diagrams illustrated

in Fig. 7.
If we set A&"'&(R) =1 and hence a~&'~'& (R) =8~~, the

matrix S~ becomes equivalent to F[h~h] described in
Fig. 7, which is not Hermitian. For example, Hermitian

2

h kp h kj h .kp

Fn. 9. Terms appearing in the expansion of
SN=D 'I'SphlhjD

is also written by diagrams as in Fig. 11~ Here the
second one represents a Coulomb interaction, the third

S~=D 'lsS[h~h]D "', one an exchange interaction.
From (3.16) and (3.17) together with the discussion

at the end of Sec. III (2b), it is clear that any expecta-
S$7—D-'IsS[h

~
hjD—'&s tion value (f) or (g) given by (2.26) or (2.27) can be

written as a sum of connected diagrams. This provides
another indication that the nonorthogonality diffi-

P Q
culties do not appear and that the Heitler —London
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diagonal. If D is not diagonal, there exists a unitary
FIG. 10.Diagrams matrix V with which D can be brought into diagonal

«r &klf(rs)Ik) and form such that
&off(r~) Ik)

O'= VtDV= (e V) t(e V)dr. (4.1)

method can be used rigorously in calculating energy
spectra or other quantities.

The calculation can be carried out as follows:
(i) First, weshallwritean interaction term (k f f(r) fk&

or (ktks fg(ra, r») fktks& by using notations introduced
in Figs. 10 and 11.

(ii) The matrix D—'~'SLkfk]D —Us or

D '~'Sf k k lb k,]D "'

should follow the diagram just obtained in (i). These
matrices are expanded in terms of fpLk(ts)] and
g~ 0/s) (R)

(iii) Diagrams for fi Lh(ts)] are all constructed ac-
cording to the prescriptions (i)—(iv) in Sec. III (1b).

(iv) Before computing a~&'~'&(R), we need to draw
diagrams for a~u) (R). This will be accomplished accord-
ing to the instructions appearing between (3.29) and
(3.30).

(v) The desired coefficients a~"~'&(R) are computed
by the asymptotic expansion (3.48) and (3.49).

(vi) Finally, the matrix D i~'Sfkfk]D '~' or

D '"Sl kiksfkiks]D "'
is calculated by (3.3).

(vii) Repeat the process for all k. Thus, the calcula-
tion of (f) or (g), including the inverse of the overlap,
is now completed.

(2) Calculation of the Ground-State Energy

So far, our aim was to calculate spin-wave spectra
of the Heitler —London space. The wave function %'
defined by (2.3), therefore, was a vector in the complete
space G of spin waves, and the energy matrix had the
dimensions of the space G. This matrix representation
has introduced the matrices A&'"'(R), which are diffi-
cult to calculate.

If, on the other hand, we want to compute the
ground state of the Heitler —London method by assum-
ing a definite spin function 0'' for the system, ss we can
bypass the difficult calculation of A&'~'& (R) and we need
to compute the F matrices in one dimension, only.

The 2~ wave functions 4'; defined by (2.3) can be
regarded as orthogonal and the overlap matrix D as

This implies that, instead of %', we should use the
orthogonal wave functions %'V defined by

%'V= (&V!)
—'~' g (—1)~E"X(r,,r„,r~)

P

X&'&(~t,~s, ,~x)V, (4.2)

and, instead of 0, spin functions OV should be used
as basis.

Use of the diagonal matrix D in (2.26) and (2.27)
leads to

(j&,,=& (kl j(r,) Ik&SLklk], ,D,,—

+P P'(k
f j(rs) fk&Sf klk], ;D,,—', (4.3)

and

(C&"= s Z Z' 2 2' (ktks I a(r.,r») f ktks&
h1 h2 &1 Ic2

XS[ktks
f kgks]jjD jj y (4 4)

where S(k fk];;D,;—' and SLktksfhtks];, D;;—' are di-
agonal elements of FLkfk] and FLktksfktks]. This
shows that, to calculate (f);, and (g&;,, we need to
compute the F matrices only.

The overlap matrices D and S introduced by (2.7)
and (2.18) can be regarded as if they are one dimen-
sional. Hence matrices F and X introduced in Sec. III
are all one dimensional and U(P) is a number defined
by (2.6) where i= j. The description of drawing
diagrams of the F matrices in Sec. III (1b) is now
applied to this "one dimensional" case, and the calcu-
lation will be simplified considerably.

(3) Intra-Atomic Terms

As we have remarked in the end of Sec. I, our method
can be applied to a case where each of the atoms carries
more than one electron. We need to make only two short
remarks for this case.

Since atomic orbitals centered at a nucleus are
orthogonal to each other, overlap integrals between
them vanish and we need to draw lines between those
belonging to diferent atoms. It is convenient, therefore,

"For a ferromagnet or an ionic crystal with closed-shell struc-
ture, the spin function for the ground state is known and we can
use this simplifIed method without introducing further approxima-
tions. For any other type of ground state, we have to assume a
model function 0' for the spins to compute U(E), since the exact
function 0+ is not known. This introduces an additional approxi-
mation to the wave function 4' deQned by (2.3). In (2.3), we have
speci6ed the product A of atomic orbitals, but 0 can, in principle,
be obtained by solving the spin Hamiltonian of the type (1.2).

hl hP

FIG. 11.Diagrams for

&elks lg(r»r») l»ks), &h~h2 lg(r»r») lhik2)
and

&I»kil g(r~ rs ) lb~km).
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FIG. 12. An example of dia-
grams for arrays of many-
electron atoms.

\
0 I

I Atom I

Taking the sum of absolute values of (x[h(n)] )~, we
find that

Zl(xP(n)]")~l &~[Zlxo[h(n)]I] =~ (A4)

4 i Atom R
Inserting (A4) into (A2), we obtain

f.l h(.)]&~-+ +"+ =~-+ (1- )-'. (A5)

to group electrons belonging to a single atom and draw
lines only between groups as is shown in Fig. 12. Of
course heavy lines introduced in Figs. 10 and 11 repre-
senting interactions can connect electrons belonging to
one atom.

The second remark concerns the case where two elec-
trons occupy the same orbital with up and down spins.
Here the overlap matrix D no longer has an inverse
when the entire space 6 is considered. As we have
discussed in Appendix 8 of paper I, however, there is a
smaller space in which D ' exists and our method can
be used without any further difhculty. The smaller
space is in fact a complete space of spin wave spectra
for this case. We also do not need to consider X!
permutations but take one out of those generated from
each other by simply permuting electrons in the same
orbitals. For example, we need to consider only one of
the diagrams in Fig. 13 when h~ and h2 are the same
atomic orbital. Detailed discussion of such techniques
will be found elsewhere'4 and therefore we shall not
discuss it any further.
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and also
Z lf~[h(n)]l & (1—~) ' (A6)

L„=max on h's of Elf'[&&'''h Ihx'''& ]I ~

P

~=max on h of Pl(jib)l,
jQh

A, =max of I(jlh)l,
and

1 46AO 1.3- 4660 -'
O(~a, )= 1+- +

1 —a 4(1—a)' 4.6 (1—&)'

(AS)

(A9)

(A10)

(A11)

Here we shall show brieQy how this theorem can be
proved. The expansion formula (2.23) of matrices S
leads to

F[ .hl . h]

These results prove the original statement. If we trun-
cate the series after the mth term of (3.14), errors in
f~[h(n)] and F[h(e)] will both be smaller than
&m(1 &)

—1

In the forthcoming paper, we shall introduce the
theorem that the sum I.„of absolute values of the ex-
pansion coeflicients f~[h(N)] is bounded as

[1+0(660)] "&L„&[1—O(AEO)]-" (A7)
where

= F[ 4&~+~
I

' ' 'h~&~~]

+P&+ &q, lh, ~,&F[."gJ I".P„y~,], (A12)

APPENDIX: EXPANSION OF (I+XLh(n) j) '

In this Appendix, we shall discuss the convergence
of the expansion (3.14) or (3.10). First, it will be shown

that, if the inequality
F[ he&l ' 'h 1

e=glx~[I (n)]l &1 (A1)
=(h. lb~, )F[ h„+,a„l p„a~,]

++'"+"(hlh.+,)F[ h~~&l ' ''h h +~], (A13)is valid, the series (3.14) converges.
Both sides of (3.14) can be expanded in terms of

U(I') and it will be found that where in the square brackets indicates h&h2 h
When the matrices F in (A12) are expanded in terms
of fJ and U(P), the equation is converted into a set
of 1V! equations for fz as follows:.

fp[h(n)7=&s~ —(x[&(n)])p+(x[h('+)] )& ' ' ' (A2)

where

(x[h(e)] )g f [ "a I" a]
2 xo,[h]xo.o [h] "»o. ,-'[I] -(A3)

Q1 Qm;1 &.&.+, I

24 M. Kotani et al. , Ref. 18, also see T. Arai, J. Phys. Soc.
Japan 18, 718 (1963).

+Q'"""(hlh~+g)f~[ h~hl h~h~+g], (A14)
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IO~
'~

0

since the second term on the right of (A13) vanishes.
From (2.19), it is clear that F[ 4 il . .hip i]
=F[ ~ hg ihyI hii ibad], andhenceLy i Ly.——This
implies that (A22) is written as

D
( h2
\ lgh) r

a o,&

h)

F«e. 13.An example of a case of two equivalent diagrams. Here
electrons h& and A, 2 occupy the same atomic orbital with up and
down spins. We need to consider only one of them.

~w ««&~OLx «. (A23)

Since ho is smaller than 0(hhp)/6, the above relation
proves the inequality (A20) when n=X—1.

Let us assume that (A20) is valid for n=np. Use of
(A20) in (A18) and (A19) yields

(A24)

l,'& [ho+0(hho)]L„,+i.

From (A24) and (A25), we obtain

l,'& [ho+0(hho)][1 —0(hhp)] 'L„,. (A26)Elf.[ "h-I ~ "h-]I

for all I'. By taking absolute values of each term in and

(A14) and summing over N! permutations I', we ob-
tain that

&Elf~[" h-hail" h-h~i]l+2'""'I(hlh~i)l Inserting the expression (A11) for 0(hhp) into (A26),
we will Gnd that the coeKcient

Xgl f [ .h hl . . h„h„+ ]I. (A15) [&o+0(&&o)][1—0 (d,6o)]—'

where

on the right of (A26) is equivalent to 0(hho)//A.
Since the above inequality is valid for any h's, we find Hence (A20) is also valid for n=n, 1This show—s
that that (A20) is valid for any n Thus .the present theorem

L„&L~i+Dl~i') (A16) is proved.
Use of the inequality (A7) in (3.9) leads to

l„=max on h's of Rifi'[ ' h.hl "h-h +i]1 (A17) .=Pl*,[h] [
&ao(1—0(~~o))-'

and h is not involved among h«h„h~«.
Similarly transposition of (A12) leads to

L~i &L„+hi~i', (A18)

+LV(1—0(hho) )—'

+~'(1—O(~~o))-P

(A27)

and, from (A13), we also find. that

4'& ~oL~i+ ~@+i'
If the relation

(A19)

4r i'& ~oLx, — (A22)

t~, '& [0(~~o)/~]L~, (A20)

is valid for any m, the present theorem will be proved.
In fact, use of (A20) in (A16) and (A18) leads to

[1+0(hho)] 'L„&L„+i&[1—0(hhp)] —'I.„(A21)
for any n. If n becomes zero, the matrix F becomes
DD '=1 and Lp 1. Inserting thi——s result in (A21)
when m=0, we 6nd the desired bound for L«. Repeated
use of (A21), by increasing n one by one, will lead to the
expression (A7).

The relation (A20) will be proved by an inductive
unraveling process as follows. When e=Ã —j., Eq.
(A19) becomes

Therefore, the inequality (A1) is satisfied when n=1
and the expansion (3.10) is valid as long as 6 is small
as compared with one.

Use of the inequality (A7) in (3.13) will lead in the
case m=2 to the same conclusion and it will be found
that the series (3.12) converges. If, on the other hand,
n increases, the upper bound (1—0(hhp)) and p in-
crease indefinitely and therefore the expansion (3.14)
is no longer valid. However, it will be found that, in
calculating an expectation value (f) or (g), the matrix
F[h(n)] appears in the form Sip„F[h(n)], which van-
ishes when n increases indefinitely since

Sip„F[h (n)]&6"(1—0 (Ado) )—"—& 0 (A28)

as long as 6 is small as compared with unity. Here R„
is a cyclic permutation with which electrons h«, h2,
h «,h„are shifted to orbitals h2, h3, ,h, h«and S~ is
an overlap of the type j'E„A.*A.dn.


