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The theory of a previous article, dealing with two types of two-level systems coupled to a loss mechanism
(LM), is extended. The first extension consists of the consideration of the most general type of two-level
system (TLS), in which the dipole moment is expanded in terms of the three Pauli spin matrices and unit
matrix, the expansion coeKcients being vectors (dipole vectors). The second extension consists of the addi-
tion to the thermal-reservoir type of LM of a large number of systems identical to the TLS under considera-
tion. The TLS is described in terms of the time development of the Pauli matrices and differential equations
are obtained for their expectation value in the presence of arbitrary driving 6etds. The 31och equations
for a magnetic dipole of spin q are exhibited as a special case of these equations, corresponding to a particular
combination of the dipole vectors. All other combinations describe electric dipole systems. Equations for two
simple special cases of such systems are presented, one treated in the previous article and the other having
permanent dipole moment. The frequency of oscillation of a freely decaying TLS is derived and shown to be
shifted by an amount that depends on the relationship between the dipole vectors. It is pointed out that
the commonly held belief that any TLS can be represented as a magnetic dipole of spin ~s is only approxi-
mately correct in the presence of dissipation. The conditions under which the differential equations for the
expectation values of the dynamical variables of the TLS can be converted into difFerential equations for
macroscopic variables are discussed.

INTRODUCTION
' "N a previous article, ' it was pointed out that there are

many important physical problems which may be
considered, with some simpli6cation, as that of a two-
level system (TLS) coupled to a loss mechanism (LM),
and a study was made of this problem. The LM was a
thermal reservoir type of system, and two types of TLS
were considered, the magnetic dipole type and the
electric dipole type without permanent dipole moment
that couples to its environment through one dynamical
variable only. In the present article the analysis of I will

be extended in two aspects. One extension is the con-
sideration of the most general type of two-level dipole
system, of which the two types considered in I are
special cases. ' The results will produce, on the one hand,
a uni6ed method of treating all two-level systems, and
on the other hand, an explicit and systematic exhibition
of differences among two-level systems. The other
extension is the consideration of a more complicated
LM, one which consists not only of a thermal reservoir
but also—in addition to the reservoir —of a large
number of systems identical to the TLS under considera-
tion, loosely coupled to it, and surrounded by the same
environment. (In the language of magnetic resonance,
coupling of the "spin-spin" type as well as the "spin-
lattice" type will be considered. ) Part I and part II
contain the erst and second extensions, respectively.
Some consequences of the results and several special
cases are discussed in part III.

The defining property of a dipole system may be given

by the form of the interaction energy of the system with
an electric or magnetic held,

P,=-d E, -d H,

respectively, where d, the dipole moment, is an operator
referring only to the system under consideration. Since
our system is a TLS, the components of d, that is d, rf„,
and d, are 2X2 Hermitian matrices, and for the most
general TLS, these are arbitrary. Now, any 2X2
Hermitian matrix may be written as a linear super-
position of the Pauli spin matrices together with the
unit matrix. We may therefore write

4

d=.p P a.o. , (2)
a=1

where o.4 is the unit matrix, o.1, o.2, and o.3 are the three
Pauli spin matrices, p is a quantity having the dimension
of dipole moment, and the a's are four real 3-dimensional
vectors (determined by 12 real numbers, as many as
determine three Hermitian 2)&2 matrices) which deter-
mine completely the dipole moment operator of the
TLS. The three Pauli spin matrices obey the well-known
properties

a,s=1, (o;,o;) =0, I
o.p,o)5=2io

where i', ( ) is the anticommutator bracket, and k,
E, m stand for the cyclic permutation of 1, 2, 3. The a s
may be normalized by the requirement that' L R. Senitsky, Phys. Rev. 131,282/ (1963);hereafter referred

to as I.
~The electric dipole TLS is far richer in possibilities than the

magnetic dipole TLS, since the latter&hs restricted by the special
properties of angular momentum. All cases other than the t
considered in I are electric dipole types.

d'(—=8.d) =np'
wo

[the right side of Kq. (4) is to be considered multiplied
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by the unit matrix] which gives

4

P 43.2=n, ,

where n is a number of the order of unity chosen for
convenience in the particular case under consideration.
The representation of the 0's is such that the energy of
the TLS is given by —,'Acro-3. For an electric dipole system,
nothing more can be said about the a's without addi-
tional information about the system. For a magnetic
dipole TLS, however, the proportionality between
magnetic moment and angular momentum requires
that a4 ——0, and that a&, a2, and a3 be perpendicular to
each other and equal in magnitude.

The TLS is subject to fields produced by the LM and
to externally imposed fields, Ez,M and E,„,, respectively,
for the electric system, and H1M and H, 3 for magnetic
system. We introduce the notation

03 Pm(431mgmC32 C32mgmCT1) y

P'„=—(i/A)[F, H ],
H„=—(i/2)Q a „o(H,F.„].

The last two equations may be combined to give

(10c)

(10d)

(10e)

a 0

XLF (t),LF (ti),H (ti)]~.(ti)], (11)

(This separation of Hz, M was not indicated explicitly in
I, but is implicit in t,he argument used there. ) The
equations of motion for the TLS and LM, obtained
from Eqs. (8) and (9), are

Crl CO&2+Km(C32mgmCT3 C33m5m&2), (10a)

cr2=co&1+Q (433 Q &1—cii Q &3), (10b)

F= —(2/333)tcELM, f= —(2/A)tcE, ,

for the electric dipole case, and

(6a)
which may be rewritten as an integral equation

Fm(t) =F„"(t)+ (1/2h)p a~m dti dt2 Vm(t —ti)
F= —(2/A)tcHLM, f= —(2/f3)tcH. „3 (6b)

for the magnetic dipole case. The Hamiltonian may
now be written, for either case, as

where
H=HLM+-2'Acoo3+-2, A Q cr a

@=F+f.

(7)

where the vectors have been resolved along Cartesian
axes labeled 1, 2, and 3. As in I, we consider F3, Ii 2, and
Ii3 to act independently of one another; we assume that
they refer to three independent but identical LM's.
Correspondingly, we write

HLM H1+H2+H3 ~ (9)

Comparison of Eq. (7) with Eqs. (I.60) and (I.70)
shows that the electric dipole case in I corresponds to
a =8„1 and the magnetic case corresponds to a1=9,
a2= it, a3 ——i, a4 ——0, 9, g, s being unit Cartesian coordi-
nate vectors.

A TLS can have only three linearly independent
dynamical variables, since each variable corresponds to
a 2)&2 Hermitian matrix and, as mentioned previously,
there are only three such linearly independent matrices
possible, aside from the physically uninteresting unit
matrix. In the present analysis, (as in I), the TLS will
be described by the three Pauli spin matrices. Once we
have these, we can obtain the dipole moment, the
energy, and any other variable. The LM will be de-
scribed (likewise as in I) by Hi,M and F.

The expression for the Hamiltonian, Eq. (7), may
be rewritten as

4 3

H=HLM+2'5o)o3+-'2lc p Q o ci„g
ex=1 to=1

a 0

XLF (ti),LF (t2),H-(t2)]~-(t2)]~ '(t —ti) (12)

where
f/(r) =expL(i/&)H (o)r] (12a)

and where F & i(t) is defined by

F„&"(t)=F„(0),
F «&(t)= —(i/A)LF„&»(t), H (0)].

(12b)

(12c)

The important properties of F«& (t) needed for present
purposes, and derived in I, are the following:

(F„&»(t))=0, (13)

= 5„„(2/2r) dco'$2t(co') cosco'(ti —t2)

where
—i&(co') sinco'(ti —t2)], (14)

t(co') =-'22rkZ '8 (co') L1—exp( —t'ico'/kT)],

2t (co') = -'22r SZ '8 (co') L1+exp( —Aco'/k T)],

(14a)

(14b)

dEp(E) exp( —E/kT), (14c)

&(co') = dEp(E+Aco') p(E)

XP2 (E+Iico', E) exp (—E/k T), (14d)

p(E) being the density of energy states of the LM,
F2(E;,E3) being the average over small ranges of E; and
E3 of

~
F;3«&

~

', and T being the LM temperature. Both
2J (co') and g (co') are assumed to become vanishingly small
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as ~' approaches zero, and approximately constant in
the neighborhood of ~'=co, the values in this neighbor-
hood being denoted by 2& and $ (without argument)
respectively. The expression (F")(»i)p &" (»2)) will occur,
in the present analysis, as a factor in an integrand, the
integration being over t~, or t2, or both. Consider the
expression

for»»o& '. Substituting from Eq. (14) into (15), and
interchanging the order of integration, one sees that if
(o(»i) is approximately an oscillating function with
angular frequency co", the main contribution to the
integration comes from the neighborhood ~' cv". The
same argument applies if the integration in (15) is over
»2 [with (o(»2) instead of p(»i) j.We may therefore write
for use in subsequent integration

(p ((&) (» )p (3) (» ))

Substituting from Eqs. (18) and (19) into (17), we
obtain

F„(»)=F„&'&(»)—(3i tos(»)+as„po. i(»). (20)

This expression for F (») may now be substituted into
Eqs. (10a)—(10c), the equations of motion for the TLS.
Before we do that, however, it is convenient to rewrite
the products of g and o in these equations as sym-
metrized products. (Note that [F (»),o (»)j=0.) Then,
by substituting from Eq. (20) and utilizing the proper-
ties of the o's given in Eq. (3), we get

~i= —~~2+2 (2&32~($~"',~3}
m

—2&33~($„"),a2}+at„(33~$), (21a)

o2 o&or+a (2(33m{pm pol}

-(8-"), }+ - -5), (21b)

Os + [2 (31m( gm qO2} 2 (32m

(gal

qO1}

i
= 2 r»(o&") l&(»i —»2) ——$((o"), (16a) where

—(~i-'+~2-') 8, (21c)

(3)=p ((&)+f,„
and

((F&') (»i),F&'& (»2) })=4r»(o&")(&(»i—»2) . (16b)

t

p (i) (») =—
25 0

d»i d»2U (»—»i)

XLF-(» ),Lp-(» ),&-(» )j -(» )j
X U„-'(»—»,) . (17a)

By use of approximations based on the fact that the LM
is affected only slightly by the TLS, it is shown io I that

F -"'(»)= —l"(»), (18a)

F..("(»)=4 (»), (18b)

where $ is a (c-number) function of » which is zero at
»= 0 and approaches the constant f in a time large corn-

pared to co ' but short compared to the time during
which secular changes (in the TLS) take place. It is also
shown in I [Eq. (1.76)] that

Ps (i) (») =0 (19a)

and by an identical argument' it can be shown that

F4„&'& (») =0. (19b)

' Equation (19a) follows from the fact that 0.3(t) is a slowly vary-
ing function /while o.&(t) and os(t) are approximately oscillatory
functions with (angular) frequency or/. Equation (19b) follows
from the fact that 0.4 is the unit matrix and does not vary at all.

The values of ~" to be encountered in the present
article will be only ~ aDd 0. For the latter value, it is
clear that (F&'&(» )F("(» ))=0.

Equations (12) may be written as

P-(») =F-")(»)+Z- ~-F-")(»), (»)
where

Equations (21) contain as unknowns, dynamical vari-
ables referring to the TLS only. F(s) is a "prescribed"
field, and so is, of course, f. F&" is the quantum-
mechanical version of a stochastic force. With g replaced
by f, and with f=O, Eqs. (21) are of the type referred
to in I as the Langevin equations for a TLS.

It should be noted that, while F (») and o- (») com-
mute, F (3) (») and o. (») do not. The commutation rela-
tions between the latter two operators may be obtained
from Eq. (20), utilizing the fact that [F (»),o, (»)j=0;
the result is

[oi,F (s))=23(»i )os,

[o 2&pm ]= 22(32~&'3 p

[o,,p„' j=—22&((»i o.i+as„o2) .

(22a)

(22b)

(22c)

The problem may now be considered as formally
defined by Eqs. (21)—Eqs. (22) being part of the pre-
scription for F&')—with initial values for the r s given
by (their usual description when the Schrodinger picture
is used)

»0 1') I'0
(0)=I I, (0)=(&10' 2 0'

(1 0)
~3(0)=

I

0 —1

(23)

I'rom Eqs. (21) and (22) it can be shown, in a manner
similar to that employed in I, that the solutions of
Eqs. (22) subject to the initial conditions (23) are true
spin operators, satisfying Eqs. (3). These solutions, of
course, are operators both with respect to the TLS and
LM. It is easy to see that this satisfactory state of
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0 i(t) = —(OO.2(t)+C 1(t),

02(t) =Cool(t)+C 2(t),

03(t) =C 3(t),

we obtain, as equivalent integral equations,

(24a)

(24b)

(24c)

affairs is due to the fact that $ vanishes at t=0, since
F(0) and 0 (0) are taken to be the uncoupled operators,
and the coupling between TLS and LM is assumed to
begin at 3=0.Having shown the consistency of the for-
malism, we now replace P by 3, as approximation for
compulational purposes.

A solution, of Eqs. (21) that is an operator in both
TLS and LM spaces has not been found (even when all
a s but al vanish, as in the electric dipole case in I). In
order to make progress with Eqs. (21), we take expecta-
tion values in LM space. This does not simplify the
situation automatically since expectation values of
products, ((F &'&,a. )), occur, and they are certainly not
equal to the product of the expectation values. The
evaluation of expectation values of these products will
involve a signi6. cant approximation.

We consider g&'& (that is, both F&'& and f) to be a
small quantity (compared to cv) of first order. Equations
(21) can be rewritten as integral equations for the 0's in
which the kernels are of 6rst order. De6ning the symbols
Cl(t), C»(t), C3(t) by rewriting Eqs. (21) as

where use has been made of the fact that (F &3&0 &3&)LM

=(F N&)0 "', and of Eq. (13).'The significant approxi-
mation consists of ignoring the noncommutativity of
0. and F &') and replacing the product of the LM
variables by its expectation value, both operations to
be performed only in terms of higher order than the 6rst.
(See I for a discussion of this approximation. ) Utilizing
Eq. (13) and the Kronecker delta of Eq. (14), we obtain,
with the above approximation,

((F "&,01))LM

dh ((F-"&(t)F-"&(t )))

X (03(hl) Lalm sin% (t tl)+ a2—m costa(h —tl) $

—a3mL01(tl) sin0&(t —tl)+0.2(tl) cos0&(t—tl)]) . (27)

The considerations related to Eqs. (15) and (16) may
now be applied. 03(tl) is a slowly varying function of tl,
so that Eq. (16b) with &u"=0& must be used for the
integration associated with first square bracket in Eq.
(27). The second square bracket is shown in I )Eq.
(I.81); note that 01 and 02 approximately oscillate with
frequency 0&j to be itself a slowly varying function of tl,
so that Eq. (16b) with cv"=0 must be used for the
integration associated with the second square bracket,
and the contribution of this integration vanishes. The
result is

01=01 + «1 COSM(t tl)C'1(tl)

dhl sino&(t —tl)C 2(tl), (25a)

((Fm )01))LM 2a2m'g(03) LM ~

In an entirely similar manner, one obtains

((Fm 102) )LM 2alm'g(03)LM I

and

(28a)

(28b)

t

0.3
——0.3"&+ dtlC 3(tl), (25c)

where the o.")'s are the solution for the free TLS satisfy-
ing the initial conditions. A substitution is now made
from Eqs. (25) into all products (F &3&,o. ) occurring in
Eqs. (21). Thus

((Fm (tl)101(tl) ) )LM

=2K

dhl(pal�

„sino& (t—tl)

+a2 cos(o(t—tl)$(F ' (t), (1'&„' (tl),03(tl)})
—a3.(F "'(t),{Q."'(hl), 02(hl))) cos0&(h tl)—
—a.(F-"'(t),(6-"'(t ), (h)})

Xsin0&(t —tl))l,M, (26)

02 = 02 + «1 COS0&(t tl)C 2(tl)
0

+ dtl sin03(t —tl)C'1(hl), (25b)
01 ( ~+ ai ' a2&&) 02 a2 &&01+331' aPI (03 00)

+a2 ~ f03 —a3 f02, (29a)

02 (&0+331'$2&&)01 al &&02+ R2'a3f/(03 —0'0)

+a3 fo.l—al f03, (29b)

03 (al +a2 )&&(03 00)+al'f02 a2'f01,

where the notation
03= —

f/2&

(29c)

(29d)

is used, and where LM expectation value brackets are
omitted. (Since these are operator equations in TLS
space, 0.0 is to be understood as being multiplied by the
unit matrix. ) It is easily seen that the results of I for
the magnetic and electric dipole cases treated there are
obtained by setting a; =8; in the former case and
a, =B,l&I 1 in the latter. Equations (29) describe the

Where brackets are used to indicate expectation value with
respect to the LM, the subscript "LM" will be added if the en-
closed expression refers to both the TLS and LM, while no sub-
script will be used if the enclosed expression refers only to the LM.

((Fm )03})LM 22& (aim(02) LM a2m(01) LM) (28C)

Substituting from Eqs. (28) into Eqs. (21), we have
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behavior of the most general TLS coupled to a thermal-
reservoir type LM.

We can take expectation values with respect to the
TLS in Eqs. (29). This leaves the equations formally
unaltered, and the 0-'s now stand for their respective
expectation values in both LM and TLS spaces. Hence-
forth, Eqs. (29) will be understood to refer to these
expectation values. Discussion of the physical signi6-
cance of these equations will be postponed until the
second generalization has been carried out.

where IILMj. and IILM2 are the energy operators of LM&
and LM2, respectively, F"' and P&" are the coordinates
through which LM& and LM2, respectively, couple to
the TLS, and B&" contains the coupling term of LM2
to any other systems, the energy operators for those
systems, and the coupling term of LM2 with prescribed
external forces; that is, H&') refers to everything that
couples to LMq except the TLS under consideration.

We pass now from the Heisenberg picture, which has
been used in the preceding discussion, to the interaction
picture. All the operators are transformed into primed
quantities in the manner

W'= URDU*, (31)

' It should be noted that the interaction picture is obtained here
by starting with the Heisenberg picture. This accounts for the
order of the factors in the right side of Kq. (31a), the opposite of
that used when starting with the Schrodinger picture.

The second generalization refers directly to the LM
rather than to the TLS. Instead of assuming the LM to
be only a thermal reservoir of given temperature, we
consider the LM to consist of two parts: The first part
(to be referred to as LM1) is the same thermal reservoir
considered heretofore; the second part (to be referred to
as LM2) consists of a large number of two-level systems
identical to the TLS under consideration, situated in a
similar environment, and loosely and randomly coupled
to our system and to each other. The individual two-
level systems of LM2 are thus coupled (in addition to
the coupling to each other and to the TLS under con-
sideration) to a thermal reservoir and to external forces.
The thermal reservoir may be LM~ itself, but since the
possibility of the transmission of effects through LM~
will be excluded, it is simpler to consider the systems of
LM2 coupled to a thermal reservoir that is identical to
LM~ but independent. In the notation to be used, LM2
consists of the mutually coupled two-level systems only,
the thermal reservoir and external forces being described
separately.

The Harniltonian for our problem is obtained by
adding several terms to the expression in Eq. (7), the
result being

H=-2'&&2o&as+2'A Q„o- a . (F&'&+F&2&+f)

+HLM1+HLM2+H y (30)

where U is a unitary operator satisfying the differential
equation and initial condition

2AU(t) = U(t)H 12& (f), (31a)

U(0) =1. (31b)

All the primed operators now satisfy the equation of
motion

iM'= LA', H' H'2&—' j+2A(BA'/Bt) (32)

in other words, the effective Hamiltonian that enters
into the equations of motion for the primed operators no
longer contains any reference to the inQuence of external
systems or forces on LM2. Formally, LM& and LM2
appear equivalently in these equations. In this trans-
formation, the effect of the external influences on LM2
has been removed from the operators and transferred to
the state vector, which becomes

e'(f) = U(f)e. (33)

+=O'TLS4'LMlif'LM2 p (35a)

(this implies that the coupling is turned on at t=0),
which is the same as

0'(0) =&TLS (0)g'LM1 (0)fLM2 (0) ~ (35b)

Consider H'2&(t) to be obtained from H&" (0) (by means
of the Heisenberg equations of motion) by neglecting

It should be remembered that 4 is independent of the
time and would be the initial state if the Schrodinger
picture were used; Eq. (33) may be written as

(34)

Now, if there were no coupling between the TLS and
LM2, Eq. (34) would yield the entire time development
of LM2, and leave aI1 the other systems to which refer-
ence is made in the Hamiltonian of Eq. (30) unaffected,
that is in their Heisenberg (initial) state. The presence
of the sho a F&2& coupling term affects Uonly indirectly
through the time development of H&2&(t) )note that
H&2&(0) does not contain this coupling term) and does
not produce lowest order effects. The difference between
4'(/) and the corresponding state in which there is no
coupling between the TLS and LM2 is due only to the
effect on LM2 of the TLS, and is slight. We approximate
by ignoring this effect in 4'(t) and consider 4'(f) to
denote the state in which the TLS and LM~ are un-
affected while LM2 has developed under the inQuence of
those systems (and external forces) explicitly entering
into H&2&. (This approximation is similar in spirit to
approximations previously made for LMj„where LM
variables in interaction terms were replaced by their un-
coupled values. In the present instance, LM2 may be
uncoupled only from the TLS but not from the effect
of B&2). This is the essential difference between LM~
and LM2.)

Analytically, the approximation just performed may
be described as follows: Set
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where
ic&LM2'(&) =Z2—' exp) —HLM2/k2'(&') j, (38)

Z2(t) =Trace expL —HLM2/kT(t)). (38a)

T(/) is left unspecified for the time being, but we assume
that it changes slowly compared to exp(icot).

Now, LM2, like LM&, is a large system with many
energy levels closely spaced. It may therefore be treated,
in the analysis of its interaction with the TLS, in the
same manner as LM~, but with cognizance of the time
dependence of the temperature. (It is to be noted that
the temperature enters into the analysis only through
the density matrix. ) Our problem thus reduces itself to
the analysis of the interaction of a TLS with external
fields and with two LM's, one of which has a time-
dependent temperature.

Before this problem is considered, it is useful to look
at a simpler situation, one in which there are two LM's
with different, but Peed, temperatures. Very little
analysis is required to notice that the change required

6 Since LM~ is composed of two-level systems, its temperature
may assume negative as well as positive values, depending on the
average energy of the two-level systems.

the F&2& term in Kq. (30). Then H&2&(t) and, therefore-
as is evident from Eq. (31a)—U(t) contain only LM2
variables. Thus,

+ (~) &it'TLS (0)4'LM1 (0)U(~)fLM2 (0)
1&t'TLS (0)QLMl (0)QLM2 (I) ~ (36)

Since LM& and LM2 are large and incompletely de-
scribed systems, we will describe their initial states, as
has been done previously for LM&, by ensemble aver-
ages. For this purpose, it is more convenient to use
density matrices instead of state vectors. We therefore
write, in place of Eq. (36),

&'(&') =pTLs'(0) pLMi'(0) pLM2'(&), (37)

where P is the density matrix for the combination of
systems, and the p's are individual density matrices.
Both It LM2'(t) and pLM2'(t) describe the development of
LM~ in the absence of coupling to the TLS under
consideration.

We come now to the essential aspect, and significant
approximation, of the analysis of LM2. LM2 is obviously
not a thermal reservoir, since the individual two-level
systems of which it is composed can interchange an
amount of energy comparable to their own energy with
the thermal reservoir and external forces to which they
are coupled. LM2 cannot, therefore, be described. by a
fixed temperature. We assume, however, that the
randomness associated with LM2 (due, mainly, to the
random coupling among the individual two-level sys-
tems) is sufficiently great so that at any given time LM2
may be described by a temperature, this temperature
being, in general, a function of the time. According to
this assumption, the density matrix for LM& is given by

in the results obtained for a single LM is the replace-
ment of 2I by &I&'&+2&&2&, and the replacement of $ by
$&'&+(&2&, where the superscripts (1) and (2) refer to
LM1 and LM2, respectively, and pc'& and»c'& are defined
for each LM in the same manner as p and 1&, respectively,
by Eqs. (14a) and (14b). From Eq. (29d) we have

cro(c& — ](O/2&(c& ~ (39)

thus Eqs. (29a)—(29c) remain valid provided we set

2&
=

2& (1)+&&(2) (40a)

exp (—&2co/k T c'&) —1
0- (~)—

exp (—I&co/k Tc2&)+1
(41)

This is the expectation value of the energy, in units of
~Puo, of a TLS of the type under consideration when it is
in thermal equilibrium with a reservoir at temperature
T&'~. We may therefore regard ap&) as the average
energy (at time t) of the two-level systems that con-
stitute LM2. Since these two-level systems are identical
to the TLS under consideration and are situated in a

(o (1&2&(1)+~ (2&~(2)) (~(1&+~(2&)—1 (40b)

We return now to situation in which T( ) is time-
dependent. This time dependence a6ects several calcula-
tions that lead to Eqs. (29). First, there is the computa-
tion of expectation values of LM~ variables. The ex-
pectation value of an operator A'(/) referring to a single
time (and uncoupled from the TLS) poses no problem
since it is given by Trace pLM'(t)A'(t). The expectation
value of an operator of the type {Ai'(ti),A2'(/2)),
referring to two different times, requires, in general,
another method of evaluation. In the present analysis,
however, this type of expectation value is needed only
in cases where the result is negligible unless t& is very
close to t2. LSee, for instance, Kqs. (14) and (16).j Bear-
ing in mind that Tc2& (t) is a slowly varying function, we
can use previous results for this type of expectation
value, with )&2& and 1&c'&—which are functions of T&'&-
evaluated at either t~, t2, or an intermediate value. Then,
there is the question of time integration where )c2& or
2&

&2& is part of the integrand. LSee, for instance, Eq. (27).j
Here too, no formal modification of the 6nal result is
necessary, for in this integration the main contribution
comes only from a very small neighborhood of a definite
time, so that $ "& or 2&c2& may be evaluated at that time
and taken outside the integral. It is seen, therefore,
that Eqs. (29a)—(29c) and (40) remain formally un-
changed, but with q&') and Op&') being considered now
functions of t (the same argument as that of the o's
and f).

Our 6nal task is the evaluation of T&'), or, more
directly, of 0-p&') and p(2), through which the behavior of
the TLS depends on T~2&. From Eqs. (39), (14a), and
(14b), we have
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As far as g(') is concerned, no such simple consideration
applies. The best that can be done within the scope of
the present analysis is to observe that p~" is not as
StrOngly dependent On 7&2& aS oo&2& (Or &(2i)—aS Can be
seen from Eqs. (14)—and to approximate it by an
average value.

From Eqs. (29a)—(29c), (40), and (42) we finally
obtain

01 ( &0+rial'a2)02 '9&82 01+'gal'a8(08 00)

ya2 f08—a, f02 (43a)

K2 —(&0+'var a2)%1—
8&21 02+'ga2'as(08 00)

+a8 foi —ai fo.s, (43b)

08= —(&88'+&82')Tf(08—OO)+ai. f02—as foi, (43c)

where
( +rf& rf= rf ', 0—8=—Oo( (43d)

In summary, these equations describe the behavior (in
terms of expectation values) of a general TLS subject
to external fields and coupled both to a thermal reservoir
and a large number of systems identical to itself. The
dipole moment is given in terms of the 0's by Eq. (2),
and the energy is 2Acog-3. Two relaxation constants, p
and Tf (with rf being a better "constant" than T), which
may be regarded as depending to some extent on the
energy of the TLS) and an equilibrium energy O.o enter
into these equations. The equilibrium energy is that
associated with the temperature T~ of the thermal
reservoir, and is obtained by replacing superscript (2)
wltll Sllpelscllpt (1) lil Eq. (41).

A few special types of TLS are of immediate interest.
As mentioned previously, the magnetic dipole type has
at=8, as ——i&I, as ——z, a4=0. Equations (43) become

0'z = &00'8 T)ITz+fzOz fz&rzz'—
08 &NTz 7JOV+ fz0 z fz&Tz ~

0,= 22)(o 8 Oo)+f.o „—f„0,.— —

(44a)

(44b)

(44c)

"Strictly speaking, there is an approximation involved in this
statement, since LM expectation values are averages both with
respect to a thermal (canonical) ensemble —implicit in the density
matrix employed —and a quantum-mechanical ensemble, while
TLS expectation values are averages only with respect to the
latter.

Equations (43), involving two dissipation parameters, zi and zb
are more general than the LM considered in the above discussion.
More general loss mechanisms may be obtained by replacing LM&
with several thermal reservoirs at diferent temperatures, some of
these temperatures being, possibly, prescribed slowly varying func-
tions of the time. Equations of the form of Kq. {40) can then be
used to obtain new values for the two dissipation parameters with
Eqs. (43) remaining formally unchanged.

similar environment, this energy is also equal to 08(f).
Thus, we have the important result

0o&"=08(f) .

These are essentially the Bloch equations, ' with (221) i

being the longitudinal relaxation time T~, and q
' being

the transverse relaxation time T2. If the spin-lattice
coupling is regarded as coupling between the TLS and
a thermal reservoir, and spin-spin coupling as coupling
among identical two-level systems, then Eqs. (44) and
(43d) show the contribution of each type of coupling to
the relaxation process. It should be noticed that it is not,
in general, correct to refer to T2 as the spin-spin relaxa-
tion time (as is often done) unless rf& & is negligible com-
pared to rf&@. If rf&2& is zero, Eqs. (44) reduce to the
results of I LEqs. (1.84)j.

As far as the electric dipole TLS is concerned, there
are many possible types, depending on the choice of the
a's. a4 does not enter into the equations of motion and,
therefore, does not affect the behavior of the TLS. a4 and
a3 determine the "permanent" dipole moment, or the
nonoscillating part of the (expectation value of the)
dipole moment of the free TLS, for only 0.3 can have a
nonoscillating value different from zero when f=r)
=Tf =0 in Eqs. (43). Sin.ce a4 plays no dynamic role, we
will ignore it henceforth, and refer to the constant part
of 08 (times pa8) as the permanent dipole moment. A
case in which the dipole moment has a particularly
simple appearance is that in which a2=a3 ——0, so that
d=f8ai08. This is the electric dipole case treated in I.
Taking &882=1, ai f=—f, Eqs. (43) become

0'y= —G)02 ~

0'2 =&00'8 —'gO 2 fitT8
&

08= q(08 0O)+—f02, —

(45a)

(45b)

(45c)

which, for Tf&@=0, reduce to Eqs. (I.67). A permanent
dipole moment may be added to this case, while still
maintaining a relatively simple form of the equations,
by considering a2 ——0, as ——eai. (Here, the permanent
dipole moment has the same spatial direction as the
oscillating dipole moment. ) The result is

Oy= —M(72 —sos, (46a)

02=OO08 2102+efOi —f08 z (46b)

08= rj(08 0o)+f02—, — (46c)

where Eq. (46a) has been simplified in appearance by
substitution from Eq. (46c).

It is not the purpose of the present article to present
equations for large number of special cases, although
there are many others than the above three particularly
simple ones that are of interest. Neither is it the purpose
of the present article to discuss the solution of the above
equations for given driving fields, which will be done in
a forthcoming article. Ke will, however, discuss the
solution of the equations in the absence of a driving field,
that is, the free decay of a TLS from given initial
conditions. For the sake of simplicity, we consider only

8 F. Bloch, Phys. Rev. 70, 460 (1946); R. K. Wangsness and
F. Sloch, ibid 89, 728 (1953)..
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the case in which aa is either perpendicular to both a~

and as, or is equal to zero. From Eqs. (43) we have,
under the above conditions,

0'1= ( co+'gart as)o 2 fi+2 o t (47a)

os (~+tlat'as)o 1 '9+1 os (47b)

s(„-sg„s)j (51)

in accordance with the results of I.'
One encounters occasionally the statemeot that any

TLS is equivalent to a system of spin —,in an appropriate
magnetic Geld." While this statement is true in the

' A comparison might be made between Eqs. (47a) and (47b) on
the one hand, and equations for the coordinate and momentum of
a harmonic oscillator with dissipation on the other. If both coordi-
nate and momentum couple to the loss mechanism, then the
equations of motion for the harmonic oscillator variables (in
appropriate units) are

P = —
Cog

—gIP, Q =COP —g2g.

It is seen that if aI and a2 are orthogonal, 0-2 and aI correspond to
the coordinate and momentum, respectively, of the harmonic
oscillator. It can also be seen readily that the oscillatory frequency
of the freely decaying harmonic oscillator is equal to co only if
pI =g&. Comparison with the dissipation terms in Eqs. (47a) and
(47b) shows that this corresponds to our requirement (in addition
to that of orthogonality) that a12=ap.

"N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37 (1964);
A. Abragam, The Princi ples of lVuclear Magnetism (Oxford
University Press, New York, 1961),p. 36.

o s ———(~P+~s')g(~s —~o) . (47c)

The last equation may be solved immediately, the result
being

os = os+ Le s (0)—a o) expL —(ass+ass)rtt]. (48)

Equations (47a) and (47b) yield the same equation for
both og and 02.

o 1,2+ rl (+1 ++2 )o 1,2

+ {GP+rP[at'as' (at as)—'])rt, s=o. (49)

The solution of Eq. (49) is

o't= expL —ri(at'+as )tjLat cosQt+Bt sinQtf, (50a)

o's= expL —fl (at'+as )tjLas cosQt+Bs sinQt), (50b)

where A, and 8; are constants determined by the initial
conditions, and

Qs =co'(1—(g'/(os)L(at as)s+4 (ass —ass)s)) . (50c)

We see that 03 approaches exponentially its equilibrium
value, and that 0 & and a-& undergo exponentially damped
oscillation. The frequency of oscillation 0 is of interest.
For a~ and a2 equal in magnitude and perpendicular to
each other, 0 is equal to co, the frequency of the free
TLS; otherwise Q is less than co. Equation (50c) puts
into perspective the results of I, where it was found that
the frequency of the undriven damped oscillator was
equal to that of the free oscillator for the magnetic
dipole case but not for the electric dipole case. It is seen,
now, that the magnetic dipole TLS has just that com-
bination of a s which yields 0=co, but the electric dipole
TLS treated in I has a2=0, a~' ——1, giving

absence of dissipation, it is only an approximation when
the TLS is coupled to an LM, as the above frequency
consideration reveals, and as can be seen from the
dependence of Eqs. (43) on the type of TLS considered.

It was shown previously LEqs. (44)) that the Bloch
equations are a special case of Eqs. (43). The Bloch
equations were developed originally for macroscopic
matter. They also apply to the expectation values for a
microscopic system, and, in this sense, correspond to a
special case of Eqs. (43). One might ask how the present
theory applies to macroscopic matter, or to a large
number of systems identical to—but possibly, with
different orientation than —the TLS under considera-
tion. Can one, as in the case of the Koch equations,
regard a linear combination of the (four) o's as the
component of dipole moment along a given direction for
macroscopic matter containing E systems similar to our
TLS 2 The macroscopic dipole moment D is given by

N 4

D=g d(i)=P P a (2')o (2'l

j=l 0.~1

where the superscript j refers to the jth TLS. The above
question is equivalent to asking if 0- &&' is independent
(except for a multiplicative constant) of j. It is clear
that if the systems are all oriented in the same manner,
then a &&'=a, 0 &&'=r,

D =nasl, (53)

and the answer to the above question is, obviously, in
the aflirmative. If the microscopic systems are not all
oriented similarly, then the coefficients a, &'& f in Eq.
(43a) are different for differently oriented systems. If,
because of symmetry conditions, the solutions of Eqs.
(43) are essentially unaffected by a particular distribu-
tion of orientations, then the answer is still in the
afhrmative, but if no such symmetry exists, then Eqs.
(43) cannot be regarded as equations for macroscopic
polarization. The macroscopic result must be obtained
through Eq. (52), that is, by solving first the microscopic
problem, and then superposing the solutions.

The essential aspects of the orientation of a magnetic
dipole TLS are determined by the field that is respon-
sible for the level separation. If this field is the same for
all the two-level systems, Eqs. (43)—which reduce in
this instance to the Bloch equations —may be regarded
as equations for macroscopic polarization. Such is the
case for macroscopic matter in an external (laboratory)
field. If, however, the held responsible for level separa-
tion is an internal 6eld and has different orientation for
different dipoles, the above equations may be applied
only on a microscopic scale.
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