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The electronic thermal conductivity of superconductors is discussed without recourse to the quasi-
particle approximation. The Kubo formula for the thermal conductivity is used as the starting point. This
is first examined in the Hartree-Fock approximation in the Nambu space. It is shown that in the Eliashberg
approximation of neglecting the momentum dependence of the electronic self-energy, the calculation of the
thermal conductivity is reduced to a quadrature, involving however the complex energy gap and renormaliza-
tion functions which are solutions of the Eliashberg gap equations at finite temperatures. These equations
are given in an Appendix. The problem is also considered in the ladder approximation in the Nambu space,
and a generalized Boltzmann equation is derived which includes corrections to the Hartree-Fock approxima-
tion corresponding to the replacement of the scattering by the transport cross section. It is shown that the
standard Boltzmann equation for superconducting quasiparticles is obtained in the weak-coupling limit.
No numerical calculations are performed in this paper, but a clear scheme for such calculations is outlined.
Reasons for believing that such calculations will explain the anomalous drop in the electronic thermal con-
ductivity of superconducting lead are given.

I. INTRODUCTION

~ XPERIMENTS on the strong elemental super-
conductors lead and mercury show that the elec-

tronic thermal conductivity of these materials divers
markedly from that of typical weak superconductors
like tin or indium. For lead and mercury the ratio,
E./E„, of the thermal conductivity in the supercon-
ducting and normal states when plotted against the
reduced temperature T/T, shows a steep positive slope
of about 5 near T=T,. For tin' and indium, ' on the
other hand, the experiments yield a smaller slope of
about 1.6.

A theory of the electronic thermal conductivity of
superconductors based on the quasiparticle approxima-
tion and the Boltzmann equation approach of Bardeen,
Rickayzen, and one of the present authors4 has been
carried through previously. ' The results obtained are in
substantial agreement with the data on tin and indium.
The lack of agreement between the theory given in I
and the data on lead is not surprising since, as shown in
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Soviet Phys. —JETP 14, 816 (1962)j.

the work of Schrieffer, Scalapino, and Wilkins, ' the
strong electron-phonon coupling causes the quasi-
particle picture to be quite meaningless over much of
the energy spectrum.

It therefore seems reasonable to study the thermal
conductivity of lead on the basis of the strong-coupling
theory used by Schrieffer et al. ' in explaining tunneling
characteristics. This is the aim of the present paper. We
use the method of thermodynamic Green's functions~
and thereby avoid the quasiparticle approximation. We
expect that in the limit of almost stable excitations our
theory will reduce to the theory developed in I, and this
expectation is realized. In this paper we carry the theory
as far as we are able to without using numerical methods.
We expect to use the formulas obtained here as the
basis for further calculation.

Our starting point is the Kubo formula in which the
thermal conductivity is expressed in terms of the corre-
lation function of two heat current operators. ' For the
superconducting state it is convenient to use the two
component space introduced by Nambu. ' In Sec. II the
problem is treated in the Hartree-Pock approximation
which means that the correlation function is factored
into two Nambu matrix Green's functions. The mo-
mentum integration in the expression for the thermal

J.R. SchrieRer, D. J. Scalapino, and J.W. Wilkins, Phys. Rev.
Letters 10, 336 (1963).

7 Several references on the Green's function method are now
available. A reference in which the treatment is similar in style
and notation to that of the present paper is V. Ambegaokar, 106Z
Braudeis Lectures (W. A. Benjamin, Inc. , New York, 1963),Vol. 2.
Other references are given here.

YVe use the form given by J. S. Langer, Phys. Rev. 128, 110
(1962). See also Ref. 7.' Y. Nambu, Phys. Rev. 117, 648 (1960).
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II. HARTREE-POCK APPROXIMATION

If we neglect the entropy Qow and measure energies
with respect to the chemical potential, " the Kubo
formula for the thermal conductivity E may be written
as follows (we use units in which 5=1):

E= Im
3VT

d4&s

d'std'xs(nixes)0)

n(xs, fs)). (2.1)

I G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 960 (1960)
LEnglish transl. Soviet Phys. —JETP 9, 1385 (1959)7.

u G. Baym and L. P Kadanoff, Ph. ys. Rev. 124, 287 (1961).
'2 J. S. Langer, A. A. Maradudin, and R. F. Wallis, Proceedings

of the International Conference on Lattice Dynamics, 1963 (to be
published).

"See L. P. Kadanoif and P. C. Martin, Ann. Phys. (N. Y.) 24,
419 (1963), for a discussion of this point.

conductivity can be carried out if one makes the weak-
momentum approximation introduced by Eliashberg, "
that is, if one neglects the p dependence of the re-
normalization function Z„(~) and the gap function
A„(~). In contrast to the result of the quasiparticle
approach, the thermal conductivity is expressed as an
integral over all excitation energies rather than over all
momenta. The integrand contains the complex functions
Z(ar) and h(co). These functions have to be determined
from the generalization to finite temperatures of
Eliashberg's gap equations. The generalized gap equa-
tions are given in Appendix A. In the limit of zero tem-
perature these equations have been solved for lead by
Schrieffer et al. However, for the problem of the thermal
conductivity one needs the solutions near T,.

In Sec. III the problem is treated in the more general
ladder approximation in the Nambu space. This is the
approximation that must be used with the super-
conducting approximation to the single-particle self-

energy operator in order to preserve conservation laws"
or, equivalently, Ward identities. To facilitate the treat-
ment of this approximation we use a method introduced
recently by Langer, Maradudin, and %allis" in discuss-
ing optical absorption by anharmonic crystals. The
integral equation for the vertex part is simplified by
using a double spectral representation (derived in
Appendix B) for the vertex function. The resulting
integral equation for one of the spectral functions corre-
sponds to a generalized Boltzmann equation in which
this function essentially plays the role of the non-
equilibrium part of the distribution function. The
integral equation simplifies if one makes an Ansatz for
the vector part of the spectral function which corre-
sponds to Sloch's Ansatz in the elementary theory, and
further, if one again uses the weak-momentum approxi-
mation. In this way one obtains an integral equation in
the energy variable alone which represents the generali-
zation of Bloch's equation for thermal conductivity to
a strongly coupled superconductor. In the limit of weak
electron-phonon interaction the equation reduces to the
Soltzmann equation used in I.

Above V is the volume of the system, T is the tempera-
ture, and u is the heat-current density operator at the
space-time point 1= (xr,ft). The brackets denote an
average in the grand canonical ensemble. For the inter-
acting electron-phonon system u has the form u=u, ~

+nnh, where

ue)=
1 f r) r)

Zl &t'+,&t lp-'(1')4'. (1)It-t (2 2)
2tis & Er)1t Rr

(2.3)

where T is Wick's time ordering operator. In the stand-
ard way we make Fourier transformations in the
spatial and imaginary time difference coordinates, so

"In a continuum Debye approximation this has the form given
by K. Baumann, Ann. Phys. (N. Y.) 23, 221 (1963).

"Because the phonon lifetimes contain the small quantity
(m/3f)'~' where 3II is the ionic mass, the quasiparticle approxima-
tion is valid for the phonons. I See Ref. 10 and A. B. Migdal, Zh.
Eksperim. i Teor. Fiz. 34, 1438 (1958) /English transl. : Soviet
Phys. —JETP 14, 816 (1962)7.) By using the methods of the
present paper one can recover a Boltzmann equation for the
thermal conduction by phonons as limited by electron scattering.

is the heat current for the electronic system. It includes
that part of the electron-phonon interaction energy
which is due to electronic charge fluctuations. LThe
operators lf, t (1') and f, (1) create and annihilate
electrons with spin o at 1' and 1, respectively. ]

The detailed form of the phonon part of the heat-
current density operator" is not needed for the purposes
of this paper. It suffices to note that the correlation
function of unh with itself gives rise through Eq. (2.1)
to a thermal conductivity which may be interpreted as
the thermal conductivity of the lattice as limited by
electron scattering. "In the normal state this contribu-
tion is proportional to T' and is too small to be observed
in a pure system. In the superconducting state the
lattice thermal conductivity is increased relative to that
in the normal state because the energy gap in the
electronic spectrum leads to an increase in the relaxation
time for phonons. However, because of the smallness of
the lattice term, the electronic contribution (though
rapidly falling) will dominate the thermal conductivity
just below T, which is the region of interest to us. The
cross terms in the expression (2.1) between n, & and uph

describe "phonon drag" effects which are totally
negligible for heat conduction because the electronic
heat current is odd with respect to reflections in the
Fermi surface. In what follows, therefore, we take (2.2)
as the expression for the heat current operator and drop
the subscript "el." In the language of conventional
transport theory we are assuming that the lattice is
always in equilibrium. The contribution to the thermal
conductivity of the processes by which the lattice does
in fact achieve equilibrium are, as we have seen, small in
the region of interest to us.

Let us introduce the correlation function
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P(1,2) =
d g —P P(q, v„)

(2zr)z P vm

+ 6&

Xexp{z[q (xr —xs) —v (t&—t&)$) . (2.4)

Here v = 2zrzrzi/P, nz runs over all integers, and
P= (knT) ' with kn Boltzmann's constant. In terms of
P(q, v ) Eq. (2.1) becomes

1E=— —{Re[P(q,v ) I,„=, ;o']) I
. (2.5)

3T dv g=0

It is convenient to use Xambu's two-component field
operators defined by

(~tt (1))

«tz'(1)&
'

In terms of these and the Pauli spin matrices v; the
correlation function may be written as follows

1ta a
P(1,2) =

I
v&'+

4zzzs (ritz citr'

(ci 8
& '+,& )( s) "( s)"

(atz at, '

X (T[P,(1)it g, (2)g,t(2')P;ti1') j) I, , „. (2.6)
2' =2+

In writing the correlation function in the form (2.6)
we have neglected certain discontinuity terms that arise
from the time derivatives acting on the time ordering
operator. These terms make no contribution to the
thermal conductivity.

In this section we shall derive the expression for E in
the Hartree-Pock approximation. This is defined by

{T[$,(1)ps(2)p(t(2')It, t(1')j)~ B,)(12')Bp;(21'), (2.7)

where B,~ is Nambu's matrix Green's function

Fze. 1. Diagrammatic representation of the Hartree-Fock
approximation for the heat-current correlation function of super-
conductors. The solid lines on the left of the equality sign represent
Nambu matrix propagators g. The equivalent diagrammatic repre-
sentation in terms of Gorkov's normal and anomalous Green's
functions is shown on the right. In the present formalism the terms
on the right arise from taking the trace Trgrzgrzg7.

" da a(p, (o)
B(p,l-) =

2zr f ~
ra—

(2.10)

into (2.9) and carry out the sum over i ~ Intro. ducing the
result into (2.5) one finds24m'PENT'

d pdM
p's)' sech'(-,'p(u)

(2zr) 4

XTr{r z(ap, co)rsa(p, ~)) . (2.11)

The Nambu matrix propagator B(pg~) with l q continued
to the complete complex s plane has the form

sZ s+e rz+ s rrv() . 4v()
BP»=

s'Z '(s) —e.'-4 '(s)
(2.12)

where e„=(p'/2zrz) —tz. The renormalization function
Z„(s) and the gap function P„(s),both complex, have to
be determined from the Nambu-Kliashberg self-con-
sistency condition. We now make the weak-momentum
approximation introduced by Eliashberg, that is we
neglect the p dependence of Z„(s) and @v(s). Then the
integration over p& or ev, in Eq. (2.11) can be done. The
spectral function a(p, &u) is obtained from (2.12) from
the relation

a(p, u)) = 2 ImB(p, a)—i0+)

=(1/)[B(P —'o+) —B(p + o')j (2 13)

The integrals over e that are then needed are

B'~(12)= —z{T[0'(1)A'(2)j). (2 8) de Tr(r, B(p, o)—zO+)rsB(p) co—z0+))

Then we obtain from Eqs. (2.6), (2.7), and (2.4) =0 (2 14)

P(q, v„)=
4m'

d p z and
—2 e "&"D ~(Iz+a)+ (i ~+ v-)8'

(2~)zP r~ OQ

X»(r B(P+q, l ~+v )r B(P i ~)) (2 9)
de Tr{rzB(p, a&—iO+)rsB(p, a)+i0+))

where i ~
——(2l+1) izrP/and t takes on integral values.

The Hartree-Pock approximation for the heat-current
correlation function is represented by the diagram in
Fig. 1.

We now insert the spectral representation for B(pgq),

I
Im(Z(a&) [a)'—5'((o)j'")

I

~'—
I ~(~) I'

XI 1+ —
I (2.15)

gs(ze)
I
j
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frequency which contributes maximally to E, but in a
numerical calculation it is probably no harder to use the
exact form (2.17).

FIG. 2. Integral equation for the vertex function in the ladder
approximation, represented in terms of diagrams. g and D denote
particle and phonon propagators, respectively.

III. GENERALIZED BOLTZMANN EQUATION

We now wish to obtain a Boltzmann-like equation for
the correlation function P(1,2). It is convenient first to
rewrite the expression for this quantity as follows:

~ Tr f 2.2I(„(1,2, 1')}I r 2+, (3.1)

The integrations are straightforward and are sketeched p(1 2)
1 $8 8

in Appendix C. The complex functions Z(M) and D(M), 2rr2(gi, ())4,
' )

the latter being the complex energy gap parameter, are
related to the functions occurring in (2.12) by

Z(M) =Zr(M)+iZ2(M) =Z(s=M —i0+);

5 (M) = 14cr (M)+262(M)
=y(s=M —i0+)/Z(2=M —iO+) .

The thermal conductivity K is now given by

e M2 sech'(-,'PM)

(2.16)

E=
Smk~T2

I
Im(Z(M) LM' —A'( )3'"}

I

M2
I A(M) I

2

XI 1+
I
. (2.17)

I

'—~'( )I&

ee M2(M2 g 2++ 2)1/2

d(d

IZ2(M —Ar +A2 )

Xeech'(-,'(1 )(1h ~

. (2.18)
IM' —~i'+A2'I

8mkgT' p

To first order in D2 and Z2 the expression in the de-
nominator of the integrand in (2.18) reduces to MZ&1',

where I' is one-half the decay rate for a quasiparticle as
calculated in II. Equation (2.18) is thus somewhat more
general than the quasiparticle approximation. In the
case of lead it would appear that the condition A2A~

(M2—A 2+622 is reasonably well satisfied for fre-

quencies below 2 or 3k&T„ the latter being roughly the

Above e is the density of electrons. Near T=O the
factor in the large brackets becomes zero for 07(.dp,
where A()=Ah(Ao) is the gap edge, since A2 vanishes for
Go &5p. At finite temperatures the existence of thermally
excited phonons may cause 62 to have a small nonzero
value for or &Ap.

If for those frequencies ~ that contribute pre-
dominantly to the integral in (2.17) the inequality
26262(M2 —Ai2+622 is satisfied, the following approxi-
mate formula for E obtains

where the three-point function I(;(1,2, 1') is defined by

1 i
P(q, v„)=—

22&2p r(

d'p
LO (+v-)p+i )(p+q) 1

(2~)2

Tr(r24(.'lp+q t &+v i P i l)} ~ (33)

In Appendix 8 we have derived the following double
spectral representation for g (see also Ref. 12)

K(p+q i (+v P|))'
"dM dor f("(p+q or p o) )

- = (2~)'- (i( Mi)(v- —M2)—
(P+qe» 1 Pe M2)

(3.4)
&m —&y ~m —2—

The explicit forms of the spectral functions f"' and f('&

are given in Appendix B. We insert Eq. (3.4) into Eq.
(3.3), perform the sum over t ), and introduce the result
for P((t, v ) into (2.5). The result for E in terms of f('&

and f"& is then found to be

I
In writing (3.1) we have again neglected, for the same

reason as given below Eq. (2.6), terms arising from the
nonzero commutator of the time derivative and time-
ordering operations. $ Because of the homogeneity of
space and time g depends only on two space-time coordi-
nate differences, so that I(„=g(1—2,2—1'). Since, further-
more, this quantity has periodicity properties along the
imaginary time axis, one may make Fourier integral and
series expansions in both space-time arguments. %e shall
denote the Fourier transform by I(.(p+q, f'(+ v; p, l )).
Inserting the Fourier expansion for g into (3.1) one
obtains the following expression for P(q, v ):

E=-
12mr

d' pdor
p Tr -'2pM sech2(2'pM)2. 2fv(2&(M, O)

(22r) 4

—((,(2"+1) r r2(f (r&(M, O)+f2(2&(M, O))+2Mr2 —(fv(r&(M, v)+f2(2&(o)+v v)) I„(), (3.3)
Bp
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Here we have used the abbreviation f, "&(o&,v) =f&'&(y,o&,p, v), i= 1, 2.
To proceed further we must determine the spectral functions f&" and f"' in some approximation. We consider the

integral equation for g in the ladder approximation which is represented by the diagrams in I'ig. 2 and is given by

1 1
1&(p) t i+v„; p) t s) = —p(2t i+v~)&d(p) i i+v~)rsvp(p, t i)+ pLB(p) i i+v~)rs+rsg(p, t i)i

2ns 2~

g(p, i &+

v~)rsvp(p

—k, t &+ v —&s„; y —k, t i Is„—)rs&o(p, t i)D(k,y„) . (3.6)
(2sr)'

Here D(k, &s„) is the phonon propagator (&s„=27rssi/P with rs an integer) which has the spectral representation

D(k,Is„)=
" dv &II(k, v)

oo 2'' p~ P
(3.7)

Introducing this spectral representation as well as those for b and g into (3.6) and doing the sum over ss we 6nd

do&i&fo&s fv (o&i&o&s) fv &'& (oa, ,o&s)

(2sr) - (t i o&1) (vm o&2) (fi+ vm o&1) (vg~ o&s)-

P
(4&+v )2'

&fo&i&to&s a(p, o&i)1 sa(p&o&s)

(2~)' (ti+v=~i)(t& ~s)

(P,o&i) rs rsa (~,o&i)

+
2sr Et i+v„o&i —f'i —or& ~

&ask

(2ir)s

d VyJP28V 38@,]IIJ,2
Lf(—&si)+X(vs) jd(k, vs)

(2sr) s

a(pqvl)rs fp—k (Ply&ss) fp-k Qiq&&ss) rsa(p~vs)
X + . (3.8)

l i+ v vi fi—Is i-vs —f—i+ v Is i —vs (—v —-ws) (f l vs)

The Fermi and Planck functions are abbreviated by f and X, respectively. From Eq. (3.8) we can derive two
coupled equations for f&'& and f&'& by calculating first the discontinuity across the real t & axis at t i o& for ——fixed
imaginary v and then the discontinuity across the real v axis at v = v, or by carrying out these operations in the
opposite order. The two equations are

fs&' (o&, v) = —(p/2m) (2o&+ v) a(p, o&+ v) rsa(p o&)+ (27r) &Pkdvidvsdvsd&«id&sst f(—&i i)+1V(vs) /d(k, vs)

and

Xa(p, vi)rs(fs k&' (pi,ps)2 ImL(o& —vs —pi —i0+) '(o&—vs —i0+) ']
X2 Imk(o&+v vi s0+) '(v —

&tss
—s0+) ')+fs k&'&(&si)ps)2'&&(o& —v,)

X2 ImL(v Iss i0+)—'(o—&+v vi —i0+)—'(o&+v —vs —&si
—i0+) 'j)rsa(p, vs), (3.9)

fv&'&(&d, v)+fv& &(oo+v, v)=(2ir) &1 kdvidvsdvs&flsiEf( Isi)+N(vs) jd(k,—vs)a(P, vi)rs

X(fs „&'&(P„v)2 Imt'(o&+v —v,—i0+)-'(o&—vs —Pi—i0+)-'(o&—vs —i0+)—'j+f k&'&(&s v)

X2 1m)(o&+v —vs —&tsi
—z0+) '(o&+r —vi —i0+) '(o&—vs —s0+) '1)rsa(P, vs). (3.10)

We note that the second and third terms on the right of Eqs. (3.6) and (3.8), which are discontinuity terms of the
type we have previously omitted, do not in fact contribute to the double spectral functions of physical interest. Let
us now consider Eq. (3.10) in the limit v —+ 0. We make the Ansatz

f "'(~ o) = (p/~)g"'(sv)~) ) (3.11)

and obtain from (3.10) an equation for g&'&+g&s&. On the right-hand side of this equation there occurs the angular
factor (p—k) p/P', which may be replaced by 1 if one neglects terms of order k+T/Is and k J&T/cpv (where c is a
typical velocity of sound). The d k integration may now be transformed into integrations over k, or the phonon
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frequencies cv&, (k), where X designates the phonon branch, and over e, &. Since the latter integral runs over practi-
cally all e~ ~, we introduce the functions

g&o((g) = JEg& &(E,M) (3.12)

and integrate both sides of the equation for g&" (e,co)+g&'& (e,cu) over all e. The result can be written in the form

g&'&(~)+g& &(a&) = (2n) dedv&&Ev2dv3&f& & P &Ea»F&(co&)&E&,(v&„va)ff( —p&)+IV(va)fa(e, v&)

Xrs/g&'&(& i)+g&'&(& 1))TBu(e,v~)2 Im/(&d —vi —x0+)—'(&d —va —p&
—s0+) '(a& —v2 —s0+) 'j. (3.13)

Above we have followed Schrieffer et al. in characterizing
the phonons by frequency distributions F&, (~&,) and
spectral functions d&, (cu&„v) which are of the form

d&, (co&„v) =2~+&2(~g)[b(v —~&)—B(v+(u&)j, (3.14)

where n~ measures the strength of the electron-phonon

coupling. All of the constants arising from transforming
the variables of integration are contained in n~.

The functions g"&(~) are matrices in the Nambu

space. %e make the decomposition

g
"&(~)= go "&(~)1+v "&(~)r &

+g2&'&(~) r,+g3&'& (~)r3. (3.15)

On the left side of (3.13) we are interested only in the

73 component because only this enters the integral for
the thermal conductivity. One finds that the terms
containing g2&'& on the right of (3.13) do not enter the

g3 component of the equation. The terms proportional
to gp('~ and gy|') make no contribution to the ra compo-

nent when integrated over e since the integrands are odd
in e. We are then left with a homogeneo us i' tegral
equation for g3 "&(&v)+g3&'&(&u). We may now explicitly
do the e integral and perform the sum in the Nambu

space. When this is done one finds that the right-hand
side is sero because there occurs an integral we have met

with in Sec. II, namely,

de Trfr3g(e, ~—i0")r3g(e, ~—iO"))=0. (3.16)

(See Appendix C for the evaluation. )
We have thus shown that

1
dip Tr(raLfv&'&(~, 0)+fv&2&(~,0)$)

2p =
g3&

"& (~)+gs "&(~)=o (3 17)

Hereafter we shall write

gs"'(~) = -g3"'(~)=—g(&d) (3 18)

One can also show, using time reversal invariance and
(3.17), that in our approximation we may take g(~) to
be real (Appendix 8).

Using (3.17) in the general expression for the thermal
conductivity (3.5) we see that the second term in this
last equation does not contribute. The third term on the
right-hand side of (3.5) also does not contribute. To see
this we take the derivative of both sides of Eq. (3.10)
with respect to v and then set v=o. We now remove the
vector dependence by an Ansatz similar to (3.11) and
integrate the resulting equation for scalar quantities
over all e. The procedure is identical to that described
above Eq. (3.13). We then take the r3 projection and
find that the right-hand side is zero either because of
oddness in e or because of (3.16) and (3.17). In other
words, in our approximation we have

8
dep Tr r,—Lf, &'&(a),v)+f, &'&((o+v, v)g~„, =0.

Bp
(3.19)

We therefore see that the thermal conductivity (3.5) is
entirely determined by the ra component of 1& fv&2&(a&,0)
or equivalently, through Eqs. (3.11), (3.12), (3.15), and
(3.18), by the scalar function. g(&u). To determine this
function let us consider Eq. (3.9) in the limit v=0. In
the curly bracket on the right of (3.9) there are eight
terms which arise from explicitly taking the imaginary
parts. It is convenient to increase this number from
eight to ten by adding and subtracting the term
4s'f, &,

&'&
(p&,&«2) l&(a)—va —&«&) I&((u—vg) &&((o—v&) b(p2) in the

curly bracket. The resulting equation for fv&'&(~,0) may
be written in the form

f,&'& (a&,0)= —a(p, o&)r3r (1&,(o) r3a(p, (o)

+(2~)—' &f'kdvff(v —co)+2V(v) jd(k, v)-', Lg(p, cu —i0+)raf, &, &'&(&d —v, 0)r,&&(p, &0+iO+)

+b(p, ~+iO+)r3fv &, "(&0—v, 0)egg(p, ~—i0+)j +f,'((o,O). (3.20)
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(The occurrence of the +i0+'s in the arguments of the Green's functions in the curly bracket will be important
in what follows. ) In (3.20) I"(p,a&) describes the corrected vertex associated with the ladder approximation and is
given by

d'kr (p, to) = a) (p/m) rs-
(2rr)'

Ipyd @28ps

{Lf(—Vt)+&(»)]d(&,vs)Lf, -k"'(l r,~s)+fv-k"'V r,~s)]
(2s-)'

XRer (a& v—s fr
—t i—O+) '(—p—s i—0+) ']—}. (3.21)

The function f» (~,0) consists of four interference terms. The explicit form is

fv'(co, 0)=2
(2') s

dp, ylp3 1
Lf(—pr)+X(vs)]d(k, vs)P LReg(p, ~—ZO+)]rsff, s&'&(pr, 0)+f k "&(y 0)]

(2w)' (0—p3 —py

)& r,LImg (p, (o—iO+)]—2
(2s-) '

dp, 2d p3 r1i
tJ(vs —(o)+X(vs)]d(k, vs)Pi —

i

(2s-)'

)(, (LImg(p M —20 )]Tsf k (M vs, jl2)TsLReb(p, (0 'LO )]
+/Re@(P, a&—iO+)]rsf, k "& (a&

—vs, ps) rsPmg(P, cu —r'0+)]} . (3.22)

r (p,cu) = r, (cu+ v, v) i „p, (3.24)

We shall return in a moment to f'. However, let us first
consider the vertex corrections (3.21). In general, we

may define the Fourier coefhcients of a vertex operator
by the relation

2!(p, «+v 'p, «)
=(1/2 )LS(p, f+ -) + S(p,r)]

—g(P, «+v )&,(«+v„, «)g(P, it). (3.23)

The function F(p, co) is then related to the analytic
continuation of the Fourier series coefficients by

r(p, ) (0/m) (3.27)

In a more exact treatment one would have to include the
eBective mass and wave function renormalization
corrections implied by (3.26).

We now return to Eq. (3.20), remove the vector
dependence, and integrate both sides of the resulting
equation over all e. The 7-3 component of this equation is
then found to be

Ke notice that in the Eliashberg approximation of
neglecting the momentum dependence of the self-energy
operator the vertex correction is zero. We may therefore
make the replacement

I'v(~+ v ")= s ( I v 0 &+v «) I r = —o"
um =f —io+

+&v(t'~+v- «) l r, =.+;o } (3 25)
vm =v+&0+

It is straightforward to verify that I'(p, &u) as defined by
(3.23)—(3.25) is in fact given by (3.21) in the ladder
approximation of (3.6).

There exists a %ard identity, rejecting the conserva-
tion of energy density, for the vertex function intro-
duced above. This Ward identity has been discussed
with great clarity by I.anger, ' and it is therefore not
necessary to give the derivation here. The result in
terms of Fourier series coefficients is"

I.,(r,f ) = 1- V,g'—(P,l )-
= —«V,[t &

—((p'/2~) —p) rs —&(p, t'&)]. (3.26)

"In Langer's result (Ref. 8) there occur additional terms due
to the nonlocality in space of the Coulomb interaction he considers.
Such terms do not occur for the electron-phonon interaction. For
the direct Coulomb interaction it is in any case consistent with the

g(~) =—

1 8p
X 1—— —P &~gF), (~g)d), (~g, v)

2' 27/

&&I:f(v —~)+&(v)]g(~—v) }+g'(~), (3 28)

where g'(&u) comes from the interference terms f' given
in (3.22). Whereas in the other terms of (3.20) the rs
component on the left is only coupled to the v-3 compo-
nent on the right, g' turns out to depend only on g2. The

Eliashberg approximation to neglect such terms. It should also be
remarked that since the Ward identity (3.26) follows from the
strict conservation of energy density it requires the inclusion in the
vertex function of the heat current u~h introduced above Eq. (2.2)
and then rapidly discarded. This means that in using (3.26) we are
including a part of the "phonon-drag" thermal conduction. Since
we have already argued that processes of this type have a negligible
effect on the thermal conductivity, their inclusion here is of no
consequence.
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explicit form we find is

iso) Imk
g'(~) =

I
ImZ((P —g2)'~~II(g —/2I

g(~) =— 7IM
t

CO

I
1+

I
ImZ(cu' —5')"'I E,

spectral function (3.14) we then obtain

X 1 (2R) f ( CO)p dldgXi (Ni)Pi(~g)

F& '(4b)A(»„&)
XZ &~g

'
Lg, &'&(&,)+g, ~ &(p,)j

(~—~—s i),

Jp&IJ, 2+ I f(v —(o)+x(&))
(2m)'

&&, (~&.)d& (~~,~)
Xg

(& 2)~

XI:f(~~—~) (1+&(Mi))g(~—~i)

+f(—»—MP (~~)g(~+~~)) . (3.30)

It follows from (3.30) that g(~) is odd in a&, which one
also expects on general grounds. Further one sees that
near 7=0 g(co) =0 for co(60. From (3.5) and our sub-
sequent analysis we see that the thermal conductivity
IC is determined once g(&o) is known by the quadrature

XI:g '"( —,
& )—g "'( —,

& )j (329) E= ——
4nskgT2

00 —~ sech'(-', P(u) g ((u) . (3.31)
2'

The coupling between the 73 and the v2 components,
though physically interesting, appears to be of negligible
importance for our problem. In the first place, an
examination of Eq. (3.13) shows that the r2 component
on the left is coupled only to the 72 component on the
right. In other words, g2&'&(o&)+g~&'& (co) satisfies a linear
homogeneous integral equation. Therefore this quantity
can at most be nonzero for certain values of the electron-
phonon coupling constant, an unphysical possibility
which it seems safe to ignore. In comparing the remain-

ing term in Eq. (3.29) with the homogeneous term in
(3.28) we encounter the ratio LImh(&0)/M). From the
numerical results of Schrie6er et a/. we see that for the
frequencies of interest, i.e., co& iokT„ this factor is less
than 0.1 at T=o and consequently exceedingly small

just below T= T,. Thus, barring the occurrence of other
large factors, the second term in (3.29) is also negligible.
An order of magnitude comparison of the integrands of
this term and the homogeneous term in (3.28) yields the
ratio I'(~—&)/(~ —»), where I'(o&—v) is a typical width
at frequency (~—»). Although this factor is not small
over the entire region of interest, it is never large. It
therefore seems safe to conclude that the terms in g' are
of no significance. These terms evidently describe weak-
relaxation processes peculiar to the superconducting
state which involve the motion of condensed pairs
relative to the single-particle excitations. '~ Ke plan to
study these processes further.

Since the coupling between different components in
the Nambu space came solely from g' in (3.28), none
remains when this term is omitted. On introducing the

'VThis is a situation reminiscent of the collective excitation
which occurs in the response of the superconductor to 6nite
frequency and wave number e1ectromagnetic disturbances.

The Hartree-Fock result (2.1'I) is recovered if we
approximate g (cu) by the inhomogeneous term of
(3.30). In the small width limit

I
ImLZ(co' —5')'~~1

I

' -+
(co' —Ai2)'~'/~I'. If one introduces instead of g(~) a new
function G(ca) defined according to

g(~) = —~ sgn~(~ —ai')"'I 1+, IG(~), (3.32)
I

Cd —6 I)

one obtains an integral equation for G(a&) which is
identical to the integral equation. obtained previously
from the Boltzmann equation. LEssentially Eq. (2.18)
of I if the differences in phonon spectra used are taken
into account. j

If the width is not small, (3.30) is the most con-
venient form for numerical calculations. The complex
functions 0 (co) and Z(a&) have to be determined from the
set of integral equations given in Appendix A.

IV. CONCLUSIONS

In spite of some anfractuous analysis, we have been
led to a relatively straightforward scheme for calculating
the electronic thermal conductivity of strongly coupled
superconductors. The Eliashberg approximation of weak
momentum dependence is essential for much of the final
simplicity. %e have found ln this approximation that
the thermal conductivity is determined by an integral
of the expression co sech'(-,'&3')g{a&) over all excitation
energies cu. The function g(~) plays the role of the
deviation from an equlibrium distribution and satisfies
the generahzed Boltzmann equation (3.30).

If one neglects the difference between the transport
and the scattering cross sections, or equivalently keeps
only the inhomogeneous term of the integral equation
(3.30), one recovers the result of the Hartree-Fock
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approximation of Sec. II. In this case, for frequencies
not too far above the gap edge g(~) becomes approxi-
mately equal to —2z. (a&' —Biz)'t'/I'(&o), where I"(po) plays
the role of a width parameter and is in the weak-coupling
limit identical with the reciprocal of twice the quasi-
particle lifetime as calculated in II. The expression for
r(~) is r(~)= IZ, (~ —ai) —Z,a,a, ~~- . The renor-
malization function Z(~) and the gap function A(a&)

have to be determined from the Eliashberg gap equa-
tions given in Appendix A.

The gap equations have been solved for lead by
Schrieffer et u/. in the limit of zero temperature, but not
for temperatures near T, which are of interest here. %'e

can therefore only speculate about the manner in which
the great reduction in the thermal conductivity of super-
conducting lead might. be explained by our theory. The
calculations in I have shown that in the small width
limit the decrease of E,/E„with decreasing temperature
is mainly due to the increase of d~ in the factor
(oP—his)'t' in the integrand of K„while T'F, ' (as a
function of Pcs) is relatively insensitive to changes in
temperature near T,. Let us assume that this is also true
for lead. Then it is important to note that near T,
energies up to about co = 10k~T, contribute to the heat
current. This means that the 6rst peak in the curve for
D&(~) calculated by Schrieffer et u/. which occurs at
co~'=4.4&(10 ' eV=10k~T, occurs roughly at or . If
the shape of the Ai(cu) curve were preserved at tempera-
tures near T, or, more precisely, if the ratio h&(po)/&p

were nearly independent of T, then the effective gap ~&

for the excitations predominantly carrying the heat
current would clearly be much greater than the gap edge
6p. This would lead to a substantial reduction of E,/E
compared to the value obtained in the small width limit.

To go beyond the Hartree-Fock approximation one
must numerically solve the integral equation (3.30).
From the experience of the calculations reported in I,
it is not expected that this more exact treatment will

drastically aBect the thermal conductivity. Neverthe-
less, without a solution of the integral equation it seems
diKcult to estimate the errors introduced by the
Hartree-Fock approximation. It is worth noting that
the most complicated. part of the integral equation
(3.30), which depends on the solution of the gap equa-
tions, is the Hartree-Pock value of g(cv) which occurs as
a factor in both the homogeneous and inhomogeneous
terms. It should also be noted that the same electron-
phonon coupling strengths, n&, and phonon frequency
distributions F&, (poz) occur in the integral equation for
g(po) and those for A(~) and Z(M).

In the small width limit, i.e., o.), ~ 0, we have indi-
cated how (3.30) may be transformed into the Bloch-
Boltzmann equation for the supercond. ucting state. A
byproduct of the analysis given in the present paper has
thus been the justification of the use of this equation, as
in I, for example. In our extreme long-wavelength low'-

frequency limit the only validity criterion for the use
of the Boltzmann equation is that well defined quasi-

particles exist in the thermally excited frequency range
below roughly 10k~T. This criterion also applies to the
normal state, and when it fails one must resort to the
more general approach described in this paper.

APPENDIK A

In the Nambu representation the superconductive
approximation to the electronic self-energy operator has
the Fourier coeKcients

1
&(p i t)= —2

P rm

Here

d g

(2sr)'

Xg(p —
q, i t v)rpD—(q, v ). (A1)

g-'(p, s) =s—e„—Z(p, s)

and the Nambu Ansatz for Z(p, s) is

(A2)

Following Eliashberg we neglect x the even in frequency
component of the diagonal (in Nambu space) part of Z
as contributing only a shift in the chemical potential.
Then g ' has the form given in Eq. (2.12), namely

8-'(p, s) = sZ(s) —er p
—y(s) ri, (A4)

where Z(s) =1—f'(s). The functions P and Z have the
properties

Z(s*)=Z*(s); Z(—s) =Z(s),
(AS)

4 (z*)=4*(z) '
4 (-z) =4 (z).

Z(s) is even because zf (s) is the odd component of the
diagonal part of Z. The fun. ction P(z) may be taken to
be even in s for s state pairing because of spin-rotation
invariance, time-reversal symmetry, and spatial-in-
version symmetry. 'P Using (AS) it is easily seen that the
spectral function u(p, ~) defined by Eq. (2.13) has the
properties

T [ (p, )]=T L (p, —)],
(A6)

Tr[r;a(p, po)] =—Tr[r,a(p, —(g)].

Now we insert the spectral representations for g and D

"Questions of symmetry are very carefully considered in
P. Nozieres, Theory of lrsteraetelg Fermeort Systems (W. A.
Benjamin, Inc. , New York, 1963).
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de(2(e, (u) = —22r Re

[Eqs. (2.10) and (3.7)) into (A1) and perform the sum
over s . We then make the weak-momentum approxi-
mation for @ and Z and perform the integral over dtq in
the manner discussed in Sec. III. The integral of (2(e,co)

over all e which is needed here is given by

M Z(co)+$(M) ri
(A7)

where ei is the root of c2+ttt2 (~)—((2) —i0+)2Z2 ((0) =0
which lies in the upper half-plane. [For real argument
co, tt2 (cu) and Z (a&) are given by (2.16).) After perforining
the steps outlined above, w'e decompose the integral
equation for Z (s) in the Nambu space and equate
coefficients of 1 and r3 on the right and left sides. The
symmetries (A6) may be used to simplify the equations.
The final equations are

~( )=
Z (s)

s[1—Z(s)) =

( )
d~i(2i'(~i)F), (~i)

g2( ))i/2

X{[&(~),)+f (—~i)][(~i+~).+s) '+ ((di+~i —2) ')
—[&(~))+f(~i)][(—(02+~i+«) '+ (—~i+~i—s) ')},

(AS)

d~i(ti'(~i)Fi (~i)
[~ 2 tt22(~ )]1/2

X{[+(&&)+f( ~i))[(MI+G&i+«) (G&1+My 2) )
+p (tdi)+f(~i))[( &i+&—i+s) (—td—i+&i «) )}

The physical values of 6 and Z are obtained by setting
«=&v

—i0+ in (AS). The sign of the square root in (AS) is
to be determined by Im{Z(aP —6')'/'} (0.

APPENDIX 8
The spectral representation (3.4) for the object

g .2(ti, t2, t3) —=TQ, (ti)u (t2)p; (t3)} follows from its perio-
dicity properties for imaginary times. (We suppress the
spatial arguments for brevity. ) Consider the region of
time Reti, t2, t3 ——0; 0)Imti, t2, t3) p ir—, an=d let T
order the operators from right to left in order of
increasing negative imaginary time. ' Then measuring
energies with respect to the chemical potential, and
using the cyclic invariance of the trace operation con-
tained in the ground canonical ensemble average, one
finds the periodicity properties

t(,'„(O,t„t,) = —X;;(r,t„t,),
X;,(ti,O, t3) =+X,, (ti, r, t3),

tt'„t;(titt220) = —Kt,.(titt22r) .

As a result we may make the Fourier series expansion

X "(t,,t, ,t,) =—p X,, (t2, m, t)e 'r."e '""'—te '«"— (8—2)
3 tmn

where f'„= (2n+ 1) /r2, rv =22rm/r, f3= (2l+ 1) 2rr/. Be-
cause v( (ti, t2, t3) = 1((ti—t2, t2 —t3) we expect g (rtml) to be
zero unless f„+v +gt =0 Inverting .the Fourier series
w e have

f,;(') (art, (02) = dtt
~ dt2

and

X({[u ( t ), P—,(0)), P, t (—t )}}
Xet~2 22/(~2 22 (B5)

To do the integral we break up the domain of integration
into six regions corresponding to the six time-ordered
constituents of g. In each of these regions the time
dependence of the Heisenberg operators can be dis-
played and the integrals trivially performed. One verifies
that 1( (ttml) is indeed zero unless the condition written
above (B3) is satisfied. It is convenient to take as
independent variables i i and v and to introduce

g(f3+v, ft) = ry. (1+m, ——m, —I—1) so that the Fourier
expansion reads

1
X,;(ti—t2, t2 —t2) =—Q X, (i+tv, t't)

7-2 tm

Xt t(rtv+vvv)(tl 22)S tent(—2223—) '(p-4)

After explicitly carrying out the time integrals in (83)
in the manner indicated above, one finds that the
Fourier co scient g (l t+v, i t) can be written in the
form (3.4). The spectral functions f(') and f(') obtained
explicitly in this way are sums of products of three
matrix elements, and two delta functions involving the
frequencies co& and ~2. After some rearrangement one
finds that the spectral functions may be written com-
pactly in the form

X,;(22,m, i) = dt,
0

dt2K;2 (titt22t2)

Xet tttvirv2m2t2Sirttt (p3)

f2/ (Nit(02) dti dt2({[u(—t2), p;t(0)], p, (ti)})
Xsv)vttts ivvttt (B6)'
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Above, the curly bracket indicates the anticommutator
and the square bracket the commutator.

We now wish to substantiate the remarks made after
Eq. (3.1S) about the reality of g(&v). If one uses time
reversal invariance on the closed forms (85) and (86)
one 6nds the relation

f,;&' &(Ml)Mz) = —(rz);afta"'( —(oz) ~z)*(rz) (;. (87)

Consider first Iz. We have using (2.12)

Ck TrLz.zg(e, co z0—+)rzg(e) a) —z0+))

ao ~2Z2+ ~2 y2

Cy

(G1)

Further from explicit complex conjugation of (85) and where e= +e& are the roots of
(86) one finds

f;;&'& ((uz)(o2)*= —f;;&'& ((oz, —(vz) . (BS)

From (87) and (BS) we can derive the exact identity

TrLf~ &(cuz,cuz)rz7= —TrLf (&oz, —+Q)rz]'. (89)

In the ladder approximation we have proved that

~2Z2 ~2 )t)2 0 (C2)

~2Z2 p2
Ig= 4xi +—=0,

461-
(C3)

We choose +ez to lie in the upper half-plane. Then by
contour integration

d'y Tr( zLf ' (")0)+f ' (~)0)1)=0. (810) where the last step follows from (C2) The integral j
on the other hand, is given by

It follows from (89) and (810) that in our approxima-
tion de Trgr zg (e, o& z0+)r—zg (e, a&+z0+) 5

day Trtzzf&'&((o, 0)j ~z/Z)z+~z —]y)z

day TrLz. zf&'& (~,0)] . (811) 6—6], C 6] 6—6]

-~z/Z/ z
[y/ z+~ z ~2) Z/ 2

fy/ 2+. (~ @)2-
I2= 4n-i

Since t.~ is in the upper half-plane, so is —t.~*. By a
Using the definition of g(M) contained in Eqs. (3.1S), straightforward contour integration,
(3.15), and (3.11) we see that (811) implies that this
function is real.

APPENDIX C
8ie~ Ime~ Re&~ 8i Res~ Ime~ e~*

(C5)
Here we sketch the evaluation of the integrals Ij and

Iz given in Eqs. (2.14) and (2.15).Although the evalua-
tion is straightforward it seems worth presenting,
particularly because (2.14) plays an important role in Using (C2) and the relation h(~)=)&))(~)/Z(a&), (C5)
Sec. III. may be put in the form given in (2.15).


