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Theory of the Surface Photoelectric Effect for One and Two Photons*

I. ADA'
Battelle iVemorial Institute, Columbus, Ohio

(Received 2 December 1963)

The theory of the surface photoelectric eGect for the absorption of one and two photons is discussed
systematically using Green's functions. The asymptotic form of Green's function leads naturally to the in-
coming wave solution used previously by Makinson. By exploiting a commutation relation between the
operators of momentum and Green's function, one can express the amplitude of the electron outgoing wave
in a series which involves explicitly the force and the potential acting on the electron. In the Q'entze},
Kramers, Brillouin, and JeBreys (WEBJ) approximation, valid for a slowly varying potential, the leading
term of the series gives the major contribution. In the other extreme, where the potential varies rapidly in
an electron wavelength all terms can be approximately evaluated. In particular, for the square-well poten-
tial the results are immediate. Other simple examples are given to illustrate the method. A discussion of the
second-order photocurrent is given and our results are compared with earlier work. Finally, the equivalence
of two models used in surface problems is discussed. It is shown that the Qnite plate model reduces to the
semi-in6nite model if one takes the average of the wave function, and not its square, as the plate thickness
becomes inanitely large.

I. INTRODUCTION

HIS paper deals with a systematic theoretical
study of the surface photoelectric effect in solids,

for one and two photons. In the surface photoelectric
effect an electron absorbs photons as a result of the
variation in the potential which the electron sees near
the surface of the metal. This mechanism is to be
distinguished from the volume photoelectric effect
which takes place directly by interband transitions, or
imdirecrly when a third system such as a phonon or an
impurity participates in the interaction of an electron
and a photon.

The model we shall analyze is rather simple and
idealized. We consider an electron gas which is free,
except for a general surface potential, which does not
depend on the electron energy. The pioneering work of
Sardeen' on the nature of the surface potential in
metals indicates that this potential is a function of the
electron wave number k, and some theories of the
photoelectric effect'' have made use of this result.
However, this early work of Bardeen ought to be
reconsidered in the light of recent work on the theory of
the electron gas. The work of Bohm and Pines, 4 and
others, suggest that the exchange and correlation effects
are reduced as a result of the screening of the Coulomb
interaction between the electrons. This would tend to
justify the approximation that each electron sees the
same potential. The radiation Geld will be quantized,
and the interaction of electrons with the incident wave
alone will be considered. '

*An account of this paper was presented at the American
Physical Society meeting at BuQalo, New York, June, 1963. See
I. Adawi, Bull. Am. Phys. Soc. 8, 432 (1963).' J. Bardeen, Phys. Rev. 49, 653 (1936).' R. E. B.Makinson, Phys. Rev. 75, 1908 (1949).' M. J. Buckingham, Phys. Rev. 80, 704 (1950).

See D. Pines in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1955), Vol. 1,
p. 367.

'A rigorous theory of reQection and refraction is far from
complete at the present time. The work of L. I. Schiff and L. H.
Thomas, Phys. Rev. 47, 860 (1935); and R. E. B. Makinson,
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In Sec. II we shall discuss our approach which is
based on the methods of Green's functions and the
form, al theory of scattering. ' ' This approach is general
and systematic. It allows one to single out the terms
which are relevant to the calculation of the photo-
electric current. The amplitude of the photoelectron
wave, far outside the metal, follows directly from the
asymptotic form of Green's function. The "incoming
wave" used by Makinson' is thus obtained in a natural
way. We shall, however, point out that the factorization
of the transmission coeKcient by Makinson is somewhat
arbitrary. We shall find occasion to give a new and
simple derivation of the famous "incoming wave"
solution which is used in computing scattering cross
sections. ' This derivation will hold in any number of
dliTlenslons.

The one and two photon matrix elements are cast
in a convenient form by exploiting a commutation
relation between Greens function and momentum.
The potential and the force acting on the electron occur
explicitly in the matrix elements. For a slowly varying
potential, the calculation of the first- and second-order
photoelectric current reduce, approximately, to the
evaluation of only single integrals. For a rapidly vary-
ing potential, such as a square weH, the results are
immediate.

In Sec. III we calculate the photoelectric eQect
using simple surface potentials, namely, a linear and a
square-well potential. We shall see how the results of
Smith" on the second-order photoelectric effect, which
happen to contain some unfortunate errors, can be

Proc. Roy. Soc. (London) A162, 367 (1937), might offer a good
starting point.' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 {1950).

7M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953).

8 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Tzvo-Elect7on Atoms (Academic Press Inc. , ¹wYork, 1957),
Sec. 9.

9 See G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954)."I.Adawi, Am. J. Phys. 32, 211 (1964).
u R. L. Smith, Phys. Rev. 128, 2225 (1962).
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correctly derived from our formulas in a few steps.
It is also possible to obtain useful approximations
without resort to numerical integrations.

We shall discuss two models which have been used
in the study of the photoelectric effect," " and other
surface problems. " I rohlich" and Sommerfeld and
Bethe" have used a finite plate model which has two
surfaces. Mitchell, '4 and latter workers, on the other
hand, have used the semi-infinite model which has only
one surface. The aim of the discussion, aside from
illustrating our methods, is to bring out clearly that
the two models, as used, lead to different results, even
when the width of the finite plate approaches infinity.
Indeed, Mitchell might have realized the difhculty
and the need for reconciling the results of the two
models. However, he made no effort to settle the
question, and since then the problem seems to have
been forgotten. We shall resolve the difhculty in Sec. IV
by describing a limiting procedure by which one can
pass from a model with two surfaces to the semi-infinite
model with one surface.

There have been so far no experimental reports on
two-photon photoelectric effect. It is hoped that future
experiments with optical masers would succeed in
disentangling this effect from other possible effects,
as our understanding of the various interaction mecha-
nisms improves. It is of interest to observe that Makin-
son and Buckingham" have anticipated a second-order
surface photoelectric effect long before optical masers
were known. Their work forms an obvious extension
to Makinson's' earlier paper, and their method, as they
state, applies only when the first-order effect is absent.
In contrast our method holds regardless of the absence
or presence of the first-order effect, and our point of
view is entirely different.

II. DERIVATION

A. General Considerations

Take the x axis normal to the surface of the solid, and
let the static potential U, in which the electron moves,
vary only in the x direction. Restricting the discussion
to a single electron band, the electron motion in the
y and s directions is separable and can be described by
the wave function expi(k„y+k, s) normalized to one
particle per unit surface area and satisfying cyclic

"H. Frohlich, Ann Physik?, 1.03 (1930)."A. Sommerfeld and H. A. Bethe, in IIundbuch der Physik,
edited by H. Geiger and Karl Scheel (Julius Springer Verlag,
Berlin, 1933), 2nd ed. , Vol. 24, p. 467.

'4 K. Mitchell, Proc. Roy. Soc. (London) A146, 442 (1934).'~ The same two models were used in the study of the surface
eftect in secondary emission from metals. E. M. Baroody, Phys.
Rev. 92, 843 (1953) uses the semi-infinite model; while W. Brauer
and W. Klose, Ann. Physik 19, 116 (1956), use the finite plate
model. We shall treat this problem in a forthcoming paper LI.
Adawi, Phys. Rev. (to be published)g."R.E. B. Makinson and M. J. Buckingham, Proc. Phys. Soc.
(London) A64, 135 (1951).This paper,"was brought to our atten-
tion after the major portions of our paper were completed; we had
however anticipated it.

boundary conditions. The unperturbed Hamiltonian
Ho of the problem consists of the electron Hamiltonian
H, describing the electron motion in the potential
V(x), and the free radiation Hamiltonian H„:

Hp ——H +H„= p +V(x)+Pp GptGp5Qlp, (2 1)
27m

Let

P+=
~
tsp, yo)+ Hrf+.

Bp—Hp+ie

&+=Ps+4't+6
A=pprsp' '(np 1, @r), —
p =vp'j~p(~p &)j"'I"—p 2~ )—

(2.3)

(2.4)

It follows that the first- and second-order electron
states are given by

$1 G1D4'0 (2 5)

A= GsDGrD4 p, (2.6)

where the one electron Green's function" 6„is defined
for r= 1, 2, by

G„=(E, H,+ie) '—
(2.7)E,=Ep+rAcop.

'7 See, e.g. , %V. Heitler, Qzsantzfm Theory of Jladhation (Oxford
University Press, New York, 1954), 3rd ed. , Sec. 13 and 14.

'g It is customary to write G,+instead of G, for outgoing waves.
Since we shall not discuss here other types oi Green's function
the + sign will be dropped.

where a@t and up are the creation and annihilation
operators for the radiation oscillator P of angular
frequency cop, and p, and m are the electron momentum
and mass.

In the nonrelativistic approximation the electron-
photon interaction H~ consists of a linear and a quad-
ratic term in the vector potential" A. To the extent
that we neglect retardation and restrict the calculation
to the absorption of one and two photons, the 2' terre
is of no interest. The only term of interest is given by

ek Zrrk'l'" cl

Hr=Zpi —
I (ep x)e =Xi—vppD, (22)

5$ Rp I Bx

where e is the electron charge, ep is the polarization
unit vector parallel to Ap, and 9 is a unit vector in the x
direction. The parameter pp is defined by Eq. (2.2) in
which D is used, for convenience, instead of ci/cix. The
radiation field has been quantized in a unit volume.

W'e shall now use the steady-state method of scatter-
ing theory' —' which is, of course, equivalent to the time
proportional transitions method. In the initial state

leap,

let the electron be in state gp with H.go=Ego, and the
occupation numbers np. of the radiation oscillators
are all zero except ep. The initial state is conven-
iently written as fo= ~ep, pp) and the initial energy
Bo——Eo+ephcup. The final state g+, for outgoing waves,
is a solution of the scattering equation:
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The energy scale is such that an electron at rest at
x= ~ has zero energy, or alternatively V(oo) =0.

In the photoelectric eGect one is interested in the
amplitude of the outgoing electron wave. This is
determined in Eqs. (2.5) and (2.6) by the asymptotic
behavior of G~ and G2 in the position representation.

g(x, y)=gs(x, y)+ ge(x, z)U(z)g(z, y)d"s, (2 g)

where gs is the free space (U=O) Green's function.
Since,"
g (x,y)=(4i) '(q/(2 Ix—yl))'" ""

&&H(.ts)-t"'(ql» —yl), (2 9)

we have for large x and finite y,

g, (x,y) (2iq) '( iq/27rx—) &" '&t'-e"*e cs s, (2.1'0)

where q is parallel to x. Use (2.10) in (2.8) and substi-
tute the symmetry relation g(y, z) =g(z, y) to obtain the
asymptotic formula,

g(x, y)~ (2iq) '(—iq/2srx) &" " 'e"*tt(y), (2.11)

s(y) = e '&'s+ g(y, z) U(z)e
—*&'d"s. (2.12)

u, as defined by (2.12), represents an incident plane
wave moving in —x direction plus an ONtgoieg scattered
wave, and satisfies the wave equation (q'+6 —U)v=0.
Alternatively, e* represents a solution of the wave
equation corresponding to an incident plane wave
moving in the direction of observation x and a scattered
imconsieg wave.

For a general perturbation B', the perturbed problem
requires the solution of an equation of the type (2.5),
namely, g=GH'Ps tsgH'Ps. The ampl——itude 8 of the

B. Asymptotic Behavior of G(x,y)

The one-dimensional case will be treated first as a
special case of Green's function for the wave equation
in any number of dimensions. This slight diversion is
made to give a rigorous but not laborious derivation of
the famous "incoming wave" solution. ' Let tt= 2stt/ttt',

G= pg, U= p V, q'= pE, where E is the wave energy, and
let 6 be the Laplacian in n dimensions. From the
operational identity,

1
g= =— —+U g

qi+6 U+zc q +6+se g

=gs+gsUg ~

we obtain

dIs e(sst/f't'qs) y——p'stp (tsp 1)
I

M's
I
', — (2.16a)

~ =Z ('IDI~;)8;IDI~.&(E —E,+')-'
=(»'I DGtDI eo) (2 16b).

The total current element" dI is the sum of dI~ and dI2.
dI,. is zero if E„is negative.

outgoing electron wave follows from substituting (2.11)
into this equation and we have

y(x) ~ get&&= ( j—sN/ftsq) ( —jq/2srg) (& t—)&s

X(s*IH'Igs)e'& . (2.13a)

In the transition matrix element, (s'
I
H'

I Ps), the
potential V is treated exactly while B' is treated to
first order. The simplest version of the Born approxi-
mation neglects the integral term in (2.12) correspond-
ing to the scattered wave and thus replaces e by a plane
wave. The particle current dI in a solid angle element
dQ„at x is given by the current density (Aq/sts) I

SI'
multiplied by the area element x" 'dQ„, namely,

dI = (sts/tttsq) (q/2sr)
"—'dQ „I

(v*
I
H'

I ys) I
'. (2.13b)

This is precisely what one would obtain from the time-
dependent approach~ for the transition rate to the
plane-wave states e''i', where g )ies in the solid angle
element dQ centered at x, and in the energy shell of
thickness 88 centered at K The factor multiplying

I
(s'

I
H'I gas) I

' in (2.13b) is simply (2sr/h)p(E). Since the
final states have been normalized to one per unit volume,
the density of final states p(E) is the volume in q space
divided by (27r) "8E, namely,

p(E) =dQ„q" '(dq/dE)(2x-) "
=dQ (q/2sr)" '(m/2ni't'q).

For one dimension (2.11) gives the asymptotic
formula,

G„(x,y) (tt/2iq, ) exp(iq~)v, (y), (2.14)

whose application to Eqs. (2.4) and (2.5) yields the
first-order photocurrent element dI j.

~I= (/fq)I~pl pl~I (215)
(2.15b)

Equations (2.15a,b) are a special case of Eq. (2.13b)
in which we set st=1, dQt ——1 (the total solid angle in
one dimension being 2, one for each direction), and
H' =ypep'I'D.

The second-order photocurrent element dI2 is simi-
larly obtained by applying (2.14) to (2.4) and (2.6). We
notice that Gras in (2.6) plays the role of P, in (2.5).
Expanding Gt in terms of the eigenfunctions p; of H„
namely, Gt(x,y)=g; P, (sc)P (y)/Et E,+is j ', where—
H,P;=E,P;, we obtain

~ In calculating the current element we use the usual formula,

dI=(ebs/2ms)(P*(BP/Bg) tt(Bt/'/Bx)), —(e'/mc)(tt x A—(t)P),„,
where the average signs imply an integration over the radiation
coordinates. Here, |p is used for 4'+ of (2.4) and the vector potential
is expressed in terms of the creation and annihilation operators in

"Equation (2.9) can be derived by remembering that n
~
x ~" '

= —4n"~ (B) x1'/( —',n —1) for n&2 and n 1ng=2n for n 2, and=
examining the behavior of Hankel's function for small values of
the argument. See, e.g., E. Janke and F. Kmde, Tables of Iiuygc-

tions, (Dover Publications, Inc. , New York, 1945), 4th ed. , p. 133.
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We shall now exploit the simplicity of the one-dimen-
sional model itself. For positive energy E the wave
equation has in addition to the solution v(x) another in-
dependent solution N(x) where u corresponds to a wave
incident from the left, rejected, and transmitted to the
right. The solutions e and e are best described by their
asymptotic behavior using the scattering matrix S.
Let the propagation constants of the wave at x= ~
and x= —~ be q and k, respectively, i.e., q'= pE and
k'= pfE—V (—~)$. For the finite plate potential
model q=k, since V(—oo) =0, but q/k for the semi-
infinite potential model for which V(—oo) approaches
a negative constant —Vo. The amplitudes of the
scattered waves (nse '"',nte"*) are related to those of
the incident waves (ass'o*,ate 'o') by the matrix
equation:

implied by the summation in (2.16b) over the inter-
mediate states p;. This set of functions is more suitable
to use in the variation of the constants method than the
set used by Mitchell. " The details are given in the
Appendix.

GD= GDPE— H.+—ieJG
=GL—V'+ (E H,+—1'e)DJG
=DG —GV'G, (2.21)

where —t/"' is the force on the electron. "Observing that,

C. Results and Discussion

We shall now cast the functions $1 and ps in a
convenient form using the following commutation
relation in (2.5) and (2.6):

(2.17) Gyo ——(rh(op) 'yo, (2.22)

G1Gs= (fuop) '(Gi —Gs), (2.23)

With this notation, in which the comma separates the
behavior of the function for x= —~ and ~, we write
the asymptotic equations:

ro(x) (e'o*+Ssse +', Stse'"), (2.18)

e(x) (Sste 'o', Stre'"+ p '"). (2.19)

we obtain the basic equations:

(A p)y, =y, '—G,V'y„

(&& p)4s=G14o"+ f~r

fs —GsDG——1V'yo,

(2.24)

(2.25)

(2.26)

From these de6nitions, the Wronskian W(w, N) = 2iqSis
and Green's function can be written down

G(x,y) = (i1/2iqS»)Lu(x)o1(y) and e(y)N(x)$
for x (y and x)y. (2.20)

Eqs. (2.18)-(2.20) give immediately (2.14).
The procedure followed by Makinson' amounts to

writing our function e as S2~X. Using x instead of e in
(2.15) and (2.16) Makinson' concludes that the
photoelectric current is proportional to the transmission
coeflicient of the potential since ~Ssr~'(k/q) is the
transmission coefficient. This reasoning is open to
question, for equally well we could define a new function
x by writing u=S»p where

X ((S21/Sll) p c + (1/S11)p ) ~

Using x instead of e we would conclude that the photo-
current is proportional to

~ Sit ~' which is the reflection
coeKcient of the potential. The correct conclusion
seems to be that the characteristics of the potential
enter implicitly the matrix elements M~ and M2 which
determine the photocurrent, but it hardly serves any
useful purpose to factor out a transmission or a reQec-
tion coeKeient in the manner just described.

The functions I and u are orthogonal and can be
properly normalized. They form with the bound states
a complete set of functions. It is such a set which is

the Heisenberg representation. If both EI and E2 are positive, we
have in addition to the terms dII and dI2 an interference term, due
to A, between &1 and &2 which oscillates with the radiation
frequency and has an average zero. However, in the Gnal state,
Pl+ $2y the photoelectron and the photons By apart and are
spatially separated. The vector potential A at the position of the
electron is then small, and the interference term must be negligible.

(hoip) fr = DG1V'Po+—DGs V'Qo

+GsV'(Gr —Gs) V'Qo. (2 27)

To illustrate this compact notation we give an example:

DG1 V'rtio = (8/Bx) Gi—(x,y) V'(y) Qo (y) dy. (2.28)

Equations (2.24)—(2.27) will now be used to derive
and discuss more convenient expressions for the matrix
elements Mt and Ms than those given by (2.15) and
(2.16). The procedure is the same as before; we use
(2.14) to examine the asymptotic behavior of
r=1, 2, and set the amplitude of the outgoing wave

exp(iq„x) equal to (Ii/2iq, )M„In (2.24. ) the term go' 0
since go is a bound state, and the term &1 —G1V go/
(Aa& p) yields

Mi ———(AMp) '(5]')V'(Ifo). (2.29)

The form (2.29) for Mt might be more convenient
to use than (2.15b), since the range of integration is
limited only to the region where the potential is
variable. The three dimensional version of (2.29) is well

known although less practical than the dipole matrix
element. " It is possible to derive (2.29) from (2.15b)
by considering the matrix element (ot'

~ $D,H,) ~
Po) and

using the commutation relation fD,H,j=V'.
If Ei is negative Mt is zero and G1Vgo 0 and

DG1V Qo 0 in (2.2'7). If Ei is positive G1V'po is a free
state; however, for the integral G DGsV'g1wohich

o' The relation (2.22) can also be derived by operating on both
sides of the differential equation, (E—H.)G(x,y) =&(x—y), by
(B/Bz+B/By) and carrying out some elementary manipulations.

~~ See Ref. 8, Sec. 59.
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defines fs in (2.26) to exist, a convergence factor
(cutoff) must be applied to the function GiV Qp. With
this in mind the function DGi V Pp is to be assigned the
asymptotic value zero in (2.27). The remaining terms
in (2.25) and (2.27) give asymptotically an outgoing
wave of the form exp(iqsx) which is what we would
expect from energy conservation, since the physical
process corresponds to an electron absorbing two
photons. The matrix element M2, for positive E2,
consists of the contributions of the three terms which
contain Gsgp, DGsVgo and GsV (Gi Gs)V&p and
these we shall denote by M2', M2', and 3f2', respectively.
By definition,

Ms ——Ms'+ Ms'+Ms'.

With the aid of (2.14) we find that

Ms' ——(A(os)
—

'&ms*
I

O'
I @0),

which can be written as

(2.30)

(2.31)

Ms'=1(a~s) '&so*I Vlgo) (2 32)

using Schrodinger's equation and the orthogonality
of » and &0. Similarly,

Mss=iqs(Atop) '&»'I V'Ipo), (2.33)

Moo= P~i) ' Zi (»'I V'Ie, )&4il V'I&0)

X I (E& Ei+se) (Es Ei+ie)] '. (2.34)

Ms as given by (2.30)—(2.34) is, of course, equivalent
to (2.16b), but it is not possible to derive Eqs. (2.30)—
(2.34) from (2.16b) alone (without introducing Go)
since (2.16b) does not contain Gs in full and we have
no longer access to the commutation relation of G2 and
D. If in (2.16b) we use the commutation relation of Gi
and D twice, remembering that (»" IGi ———(fnvp) '&so*I,

we see that (2.16b) gives exactly the same thing as
(2.30)—(2.34) provided that

&ss*lDI V 40)=&qs&»*l V'lbo& (ps*I VG&V lg&0) (2 35)

(2.35) is an identity which follows from the asymptotic
form of the comniutation relation (2.21) when G=Gs.

For situations of practical interest U, A~p and E2 are
of the same order of magnitude, namely, a few electron
volts, and we shall not distinguish between these
energies in the following estimates. Assuming U'

0(«U), where 0 is an order of magnitude symbol, we

see that Ms" Ms'-1:«/qs. The matrix element Mo'
can be given. the estimate,

Moo-Ol (hco 0)
—

'&v,
'

I
(V')'

I yo)], (2.36)

and consequently Mss: Mo' 1:«/qo. If the relative
change in the potential over an electron wavelength
is small the parameter «/qs is small, and the term Ms' in
(2.30) is dominant while Ms' and Ms' are first- and
second-order corrections. This situa, tion obtains in the
semiclassical limit described by the Kentzel, Kramers,
Brillouin, and Jeffreys (WKBJ) approximation, and to
first order in «/qs we have

Ms=Msi+Mss. (2.37)

1 /q
—k 2k

S=
g+ik 2r k —q)

(3.1)

—2
—I/ (Sikoz+g pe ~kox g pe—pox) (3 2)

G(x,p) = i'(k+q)—'(e '",e'-0*)- (3 3)

where the comma in (3.2) and (3.3) now separates
negative and positive values of x.

3 A solution for I determines S12 and -S22. The relations gS12
=kS~I, and S11S12 +SI2S22 =0, discussed in the Appendix
determine SI~ and S21.

'4 All energies E&—Vo are allowed and there are no true bound
states in this model. Since the matrix S has no poles for negative
Z(q=ip), as can be seen from (3.1) we can nse this matrix to
describe all energy states.

To this approximation, the evaluation of M2 requires
evaluating only single integrals as is the case for M~
which occurs in the first-order effect. It is of interest
to observe that the matrices M~ and 3f2' have the same
form which makes 6rst-order calculations partially
useful for second-order calculations. The zeroth-order
approximation, 3f~ =M2, is equivalent to setting
E;=Eo in (2.16b) as can be seen from comparing
(2.31) to (2.16b).

If, on the other hand, the potential varies so rapidly
in an electron wavelength that V' behaves like a delta
function, the integrals for 3f2' and M2' become trivial
and the integral for 3f~' can be evaluated or estimated.
We shall see from the examples of Sec. III that the three
terms of (2.30) are comparable in magnitude, and Eq.
(2.36)—which holds in the opposite extreme —still
gives a reasonable estimate of 3EI2. We are led to conclude
that Eq. (2.36) gives a good approximation for a
slowly varying potential and a reasonable estimate for
a general potential.

The formulation of this section will 6nd applicability
in discussing effects of third order or higher, however,
we must then include in the perturbation the quadrati"
term in the vector potential. We remark also that by
superposition we can treat the problem for any initial
state of the electron gas and the radiation field. Such
an initial state may be written as a coherent superposi-
tion of states of the type $0 which has been here
considered.

III. EXAMPLES

A. Semi-Infinite Square Well (SSW)
In this model V(x)= —Vp for x(0 and zero for

x&0. For a general positive energy we can determine
the scattering matrix 5 by solving for the wave func-
tion" u or s of (2.18) and (2.19). Since we shall be
concerned with electron states of energy E„, as defined

by (2.'7) with r now taking the values 0, 1, and 2, we
shall denote the corresponding 5 by 5". The negative
energy states, or "bound" states, are of the form u,
except that q is replaced byip where p'= IiE, and the-
function e is divided. by V2 which normalizes I to one
in a unit length. '4 We easily find
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Since V'= Vol(x), it follows immediately from the
defining equations that:

Mt= —(A(up) 'Vpui(0)(f)p(0), (3.4)

Mss=iqs(tuu p) sVpus(0)yp(0), (3.5)
Ms' ——(Acup)

—
'Vp'us(0)yp(0)t Gt(0,0)—Gs(0,0)$

= —'(A ) 'V (0)g (0)I k —
q

—(k — )j, (3.6)

where the relation a Vp ——k„'—q„' has been used in (3.6).
The matrix 3f2' reduces to evaluating the integral,

us (x)yo(x) dx,

which will be performed using the Wronskian of the
two functions. Multiplying the wave equations,

us"+ (qs' —U) ps ——0,
@o —(Po'+ U)go=0,

by gp and us, respectively, and subtracting we obtain:

(d/~x)~(usA'o) (q& +po )~2'tt'0 2pAMp&24'0

2pkcop nest pdx= ns(0)yp'(0) —us'(0)yp(0) . (3./)

Since (2.19)and (3.2) give us'(0) = iksus —(0), us (0) =Ssi',
@p (0)= —Ppgp(0), and gp(0) =Stop/K2, we can write:

Ms' ——-', Vp(Acpp)-'u, (0)yp(0) (—sks+ po),
iv2 Voq2kp

3f2= (ks —2ki+2qi —iPo) (3 8)
(A(op)'(qs+ks) (kp+ipo)

If E&(0, qi in (3.8) is replaced by iP&

A comparison of (3.5), (3.6), and (3.7) shows that
the three second-order matrix elements are all of the
same order of magnitude, except near the threshold
where q~ is small and 3f2' becomes negligible, which
supports the arguments presented in the previous
section. Also, the identity (2.35) can be easily verified.

Equations (3.4) and (3.8) are now used in (2.15) and
(2.16) to obtain dIi and dIs. The total current densities
Ij and I2 are obtained by summing over the initial
states. In general, an appropriate summation over the
initial radiation states must be performed; however,
we shall restrict the discussion here to one radiation
oscillator, and sum only over the electron states.
Appropriate to an electron gas in a metal at zero
temperature, we multiply dI„, r=1, 2, by 2(dkp/or)
X (dk„dk, /4n') and integrate over the hemisphere
ko'+k„'+k.'=kr', kp)0, where kr is the radius of the
usual Fermi sphere. It must be emphasized here that
the quantization of the electron motion in the x direction
does not follow from the semi-infinite potential model
itself, it is rather a supplementary condition added to
the model. In contrast, the finite-plate potential model
has discrete bound states; and in the continuum limit,
the number of electron states in the interval dko per
unit length, and for a given spin direction is given
precisely byss dkp/rr. This difhculty will disappear when
we describe in Sec. IV a limiting process by which the
semi-infinite model is deduced from the finite model.

Using the fine structure constant e, the speed of
light c, the Bohr radius u~, the electron density X, and
the radiation wavelength (divided by 2u) 'Ap, and
defining the energies y 'kp', Aa&p, and Vo, by e|, Qf, and

r)i, respectively, where f is the Fermi energy p 'kr', we
deduce the following transparent formulas for the
current densities

I,=n4(asks)s(6s-1Vec) (npXps) (ep *")'Ji,

1 ((e+0)'"—(e+0—n)'"&
J,=— (1 —e) (e+Q—ri)'I'e'~'I Ide,

2 k(e+0)»+(.+0 ~) t&

Is n'( ankr) ——s(3s'1Vec)(tsp(r-sp 1)Xpp) (e—p x)'Js,

(3.9)

(3.10)

(3.11)

1
J2——

2

((e+20)'"—
i e+20—r))"')

(1—e) (e+20—~)'"""I
((e+2Q)i/s+ (e+2Q —r))&~sf

&&
I
(e+2Q)"'—2(e+0)"'+2(e+0—q)"'—i(r) —e)'"I'de. (3.12)

The lower limits of integration in the integrals J„
r=i, 2, are determined by the condition q„&0 or
e+r0 rf)0 If e+—0—rf(. 0 in (3.12), (e+0—ri)'I' is
replaced by i

I (e+0 r))'~'I . N—ote that naok&=Akf/(~c).
Useful results can be derived near the threshold

where the photoelectrons are excited from the vicinity
of the Fermi surface. Defme the energies ~„and Q„by
the relations, e„+rQ—

rf =0, and 1+r0„—g =0 for r = 1,
and 2. The lower limit of integration in J„becomes e„

and the integrals can be approximated by integrating
only over (1—e) (e—e,)'I' and setting e= 1 in the

"This follows easily from Bohr's quantization rule. Mitchell
(Ref. 14) has left out a factor 2 by using (dk&/2s) instead of
dko/s. The factor 2 was restored by Makinson (see Ref. 5) but
its origin became unclear after Makinson attributed it to the spin
in his footnote on p. 3'7l. The resolution of this rather trivial
point is the following: states of negative k0 are identical to those of
positive ko, and consequently the Fermi sphere of free electrons
becomes in the presence of the surface a hemisphere with the
spectrum twice as dense in the po directjon as it is in the k„or 0,
djrectjong.
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B ' B—xl, II . I, (3.»)
k —A ' A /E —ik)

remaining terms. We have the equations and D are given by

Jk= (2/15)(1 —et)' 'L(1+Q)'t' —(1—ek)' '$ (C) 1 (iq —1) (A+ B+)

Jp = (2/15) (1—e )'t'L(1+2Q)'t' —(1—es) ts$

y L (1+2Q)'to+ (1+e,)'tq —'
I
(1+2Q)'ts —2 (1+Q)'ts

+tL2 (st —Q—1))to—(si—1))tsj
I

& (3.14)

Is ~ (Q—Qs)'t'Q '. (3.16)

From (3.14) we see that Jp can be of order 10 '. For
mphil' ——1 which corresponds to ep ——10" cm ' and
Xe= (2sr)10' A, Eq. (3.11) shows that for ordinary
metals Is 10 ' A/cm'.

The current density lj is the same as given by
Mitchell" (except for the factor 2). Equation (3.8) is
equivalent to Eq. (43) of Smith" when the quantity
—2P), in that equation is replaced by +2Pt, . The
material which follows Eq. (43) in Smith's paper
suffers from many unfortunate errors, which we believe
to have corrected here.

B. Linear Potential

which imply that for 0 near the threshold frequency
0„, the photocurrent dependence on frequency is given
by

(3.15)

where the Wronskian" W(A, B)=(tsVp/2n u)'ts. The
scattering matrix is given by:

Stk= (D/C)e "" (q/k)Sts ——Ssk= e '"+"'/C,
S22= —(S21/Sst )S11 P (3.20)

which completes the information necessary for a
calculation of 3f~ and 352'. No numerical computations
will be given here, since we hope to return to this
problem in the future and discuss the first and second
order matrix elements in the WEBJ limit.

C. Finite Square Well (FSW)
In this model, "" V(x) = —Vp for lxl &u, and

V(x) = 0 for
I xl )u. We shall derive Mt for this model

to introduce the discussion of Sec. IV. The symmetric
bound states itp' and the antisymmetric states pp

contribute the matrix elements 3f~' and Mj, respec-
tively. If we define a symmetric, and an antisymmetric
Green's function by

Another simple potential for which the evaluation
of 3f~ and M2' is immediate is defined by:

G'(x,y) =G(x,y)+G(x, —y),
G'(x y) =G(x y) —G(*, —y),

(3.21)

V(x) = —Vp, x& —u,
= (Vp/2u)(x —u), lxl &u
=0, x&a. (3.17)

and use (2.24) we obtain

@, (x) —Gk'(x, u)Voto'(u)(ho)t)) ',
y, (*)--G.(., )V~"( )(~e)-', (3.22)

I rom the Wronskian property used in evaluating M2'
in Sec. IIIA, we have

(..'I V'IOo) = Vp(2uprhcoe) 'I W(o„,gp) j . (3.18)

which shows that 3E~ and iV~' are determined from the
values of the wave functions and their derivatives at
the points x= &a. These values are given in terms of
the elements of the scattering matrix; for the wave
functions have the same form as those discussed in
Sec. IIIA with the comma now separating the regions
x&a and x&a and thus apply at the points x= +a.

The scattering matrix is determined by solving for
the wave function,

(e ik(x+e) C—e—iq(x a)+De( p(x—a—))

In the region lxl&u, the solution is written as a
combination of the Airy integrals Ai(s) and Bi(s),
which we shall denote simply by A (x) and B(x), where
x and s are related by s= (tsVp/2u)'t'(x —u —2uE/Vo).
Denoting the values of A(x) and B(x), and their
derivatives A'(x) and B'(x) at x=+u by A~, B~,
2+', and 8+', we find by elementary methods that C

where pt" (x) and Gt* '(x,u) have the same symmetry.
It is evident that, for positive x,

G'(x, u) =p, (iq cosku+k sinku) '
X (coskx, coskue'« '), (3.23)

G~(x,u) =ts(iq sinku —k cosku) '
)& (sinkx, sinkue(«e- )),

where the comma separates the ranges 0&@(a, and

x&a, and symmetry considerations determine G' and
G' for negative x. The poles of G' and G~ for q=ip are
given by: k sinku —p cosku= 0, and k cosku+ p sinku =0.
These poles determine the location of the symmetric
and antisymmetric bound states, respectively, and it
follows that' pp'(u) or ito'(u)=au ' pkolko+ipol

~6 We use the Airy integrals as de6ned in H. JeRreys, Phil. Mag.
M, 451 (1942). In this de6nition, W(Ai(s), Bi(s))=1/m. and thus
W(A (x),B(x))=(1/n. ) (ds/dx). See also H. Jeffreys and B.
Jeiireys, Methods of Mathesaatscal Physics (Cambridge University
Press, New York, 1956),p. 508.

~7 The propagation constants k0 and p0 are, of course, different
for the symmetric and antisymmetric states. Here, these con-
stants should be taken to mean the appropriate constants for the
state under consideration.
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To within an unimportant & sign, we find from (3.22)
and (3.23) that

Mi' '———2kpqiVo(her//a'/'
~
ko+oPo

~ ) '~i'",
3lIi'= p sinkia(&qi »nkia —ki coskia) ',
~1'=i coskia(&qi coskia+ki sinkia)

(3.24)

For comparison, we write M~ for the SSW taken from
(3.4) after renormalizing gp to one in the length 2a,
namely,

~

ORi"
~

' we obtain by a contour integration that

(I ~i'I') =(I~i I')= Lqi(qi+ki) j ', (3 28)

which is a factor (qi+ki)/qi larger than the SSW value
(qi+ki)-'. The current density Ii based on (3.28) is
given by (3.9) with Ji of (3.10) replaced by

1

i— (1 e) el/oL(e+g) i/o (e+g r/)1/o)dp. (3.29)
2

V' f~ ai/2(k +&p ) (q +k )$
—I (3 25) Near the threshold (3.29) and (3.10) give

First of all, if a and Vo are of order unity in atomic
units, or, more precisely, if (p, Vp)'/'a is not a large
number, the FSW has a small number of bound states.
The normalization constant a'" in (3.24) should be
replaced by the exact factor (a+1/pp)'/', and the
matrix elements M~' and M~' are used in the usual way
to calculate currents or cross sections. Evidently, in this
limit, the FSW and SSW models are quite different.

However, we are interested here in the limit of very
large (/iVo)'/'a which will permit a comparison of the
two models. The essential differences are that 5R~

(used for ORi") of (3.24) is replaced by (qi+ki) ' in
(3.25), and that ORi and ~ORi ~' are periodic in kia, and
as kia —+ ~, neither DRi nor ~ORi~' tend to a definite
limit unless the limit is taken in the Abel sense. The
Abel limit for a periodic function f(x) as x —+ pp is
given by

00 1 2"
lim f(x) =lim p e '*f(x)dx= f(x—)dx, (3.26)
X-+oo e-+0

0 2'7l {)

where the last equality follows from expanding f(x)
in a Fourier series. The Abel limit is thus obtained by
taking the average of the function, (f). We have two
possible interpretations based on averaging 5K~ or
lm, l

o.

If we apply (3.26) to BRi and make the substitution,
e'~' =s, we obtain that

(m, )= (2')-' mZ, (s)ds/s,

J —i (1 pi)PL(1+@)i/& (1 pi)i/&j (3 30)

I,~ (n —n )'0- (3.31)

IV. EQUIVALENCE OF MODELS

An examination of Eqs. (2.24)—(2.27), or (2.5)
and (2.6), shows that the averages (Mi) and (Mo)
are strongly related to the averages (Gi(x,y)) and

(Gi(x,y)G&(y, s)). We shall now investigate the average
(G(x,y)) for the finite plate potential defined by

in contrast to (3.13) and (3.15) of the SSW. The results
given in Eqs. (3.28)—(3.31) agree with those of Sommer-
feld and Bethe,"except for some minor differences.

We shall argue that the first limiting procedure which
deals with the average of the matrix element itself, and
not its square, is the correct procedure. This pro-
cedure is essentially based on cutting off the "spatial"
oscillations in the amplitude of the outgoing wave,
expiq(x —a), in Eq. (3.23). Such oscillations, being in
essence a "memory" of the surface barrier at x= —a,
can not survive as the separation of the two surface
barriers becomes suKciently large. This, in spirit, is not
different from the cutoff applied to the "temporal"
factor exp( —iEt///i) in the wave function as t -+ ~ pp.

Indeed such a cutoff was used in the derivation'~ of
the basic equation (2.3). We shall now proceed to
generalize the results of the equivalence of the two
potential models to more involved potentials than
square wells.

where the contour of integration C is the unit circle.
For real qi, ORi is analytic in s for

~ s~ &1, and we have

V(x) = —Vo,
= Vi(x)
= V, (—2a—x),

—2g&g&0,
x&0,
S(—2Q ) (4.1)

(BR,') = (m;) =mt, (0)= (qi+ki) —', (3.27)

which is precisely what we need to establish the
equivalence of the FSW and SSW matrix elements. In
this sense, the SSW can be looked upon as a FSW for
which k~u~ ~, and hence the two models share the
quantization rule of the FSW which reduces in the
continuum limit to the rule previously discussed in
Sec. IIIA. Thus the difhculty of the bound statesin
the SSW model is removed.

If, on the other hand, we follow Sommerfeld and
Bethe, "and insert ~Mi' ~' in (2.15a), and then average

where the origin has been chosen for convenience, near
the surface from which electron emission is observed,
and where the two barriers, V& and V2, which need not
be the same, rise to zero in a distance much less than a.

The problem will essentially reduce to identifying
certain averages as elements of the scattering matrix
for the semi-infinite potential obtained from (4.1) by
setting V2 ———Vo. Let us denote this matrix by Z, and
reserve the symbol S to the scattering matrix of the
potential V itself. Denoting the two solutions of
Schrodinger's equation for the potential V„(x), r= 1, 2,
which behave asymptotically as e"*and e "~ by f„(x)
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and g„(x), respectively, we can write Z for future
reference, in terms of the values of f~, g~, and their
derivatives f&' and g&' at the origin, namely, "

fg'(0)+ikfg(0)

—ikg, (0)—g)'(0)
X

22/

2ik

-f,'(0)+ikf, (0))

A. Symmetric Potential

Let us begin the discussion with the symmetric
potential for which V,= Vp in (4.1), and the line
x= —a is a line of symmetry.

(F(z))= (2~i) ' F(z)dz/z=F(0). (4.8)

Using (4.5), (4.8), and (4.2) we have

(cosk (x+a)/A, ~)

we have to concern ourselves only with the aver-
age (P' '/A. ..*). From (4.5) the averages needed are
(cosk (x+a)/A, *), (A. ../A. .."), and (sink (x+a)/A. *).

These averages are performed using the unit circle
contour of Sec. IIIC. For positive energy (real q) the
functions to be averaged are analytic functions of the
complex variable, z= e'"', for

~

z
~
(1.If F(z) represents

any of these functions we have the simple result,

The symmetry of the potential imposes that we work
with symmetric and antisymmetric wave functions
and Green's functions, and that these functions need
be dehned only over the range x & —a. It is clear that,
for example, the term GpV'GiV'4p in (2.27) can be
written as,

2g

2'
e ikxz 1+—eikzz— ds

f,'(0)(z+z—')- ikf, (0)(z—z—') z

=2iq[fq'(0)+ikf~(0)j 'e "*=Zp~e '"', (4 9)

Gp'(x, y) V'(y) G~ (y, z) V'(z) 4 p'(z) dydz, 27ri

gg'(0) (z+z—') —ikg, (0) (z—z
—') dz

fg'(0) (z+z—') —ikfg(0) (z—z
—') z

or (4 3) And similarly,
(4.10)

Gp (x,y) U'(y)G&'(y, z) V'(z)Pp'(z)dydz,

depending on the symmetry of the bound state, where
now

G' (x,y) =G(x,y)+G(x, —2a—y),
y,' (x) = ay, ' (—2a—x).

(4.4)

For positive energy we can define symmetric and
antisymmetric states by

y'(x) = (cosk(x+u), A,fg(x)+A, 'g j (x)),
P'(x) = (sink(x+a), A.fg(x)+A, 'gg(x)),

A,.= (i/2q) [gg'(0) coska+ kgb (0) sinka j,
A, = (i/2q)[gq'(0) sinka —kg, (0) coska], (4.5)

where the comma is at the origin, the star denotes as
usual the complex conjugate, and g&(x)= f&*(x) for
real q. The bound states correspond to the zeros of
A. ..* for q=ip, and have the form (4.5) multiplied by
the normalization constant a '~'.

G' is now constructed from the functions I of
(2.18) and Q' ' of (4.5), and the result is

G'. (x,y) = 6/2'qA. ..*5'»)[& (x)N(y) and &"(y)N(x)g
for x(y and x)y. (4.6)

Since I/5» is determined completely by the semi-
infinite potential (SIP) and can be written as

N(x)/S, p
——(1/Zqp) (e'"*+Zp,e—'"*,Zopf, (x)), (4.7)

(sink(x+a)/A, e) =Zpge-'~*,

(A./A. *)=Z„.
(4.11)

(4 12)
Thus,

(A. .'-'~"(*))=(~"-" & f (*)+g (*)) (4»)
where the right-hand side is the function z(x) for the
SIP, and we conclude that

(G' ~(x,y)) =G(x,y) for the SIP. (4.14)

It is important to observe that the averaging process
removes the distinction between G' and G, and
eliminates the incoming wave e'~' in (4.9) and (4.11)
which amounts to neglecting the wave reflected from
the boundary at the left.

For negative energies (q=ip), f~ and g& are real and
two simple poles appear in the integrands of (4.9)
and (4.10) corresponding to the zeros of A~, which are
given by zP= —[fq'(0)+ikf~(0) j[fq'(0) —ikf~(0)j '
and which indicate the appearance of two bound states.
Similarly, two poles appear in the integrands of (4.11)
and (4.12) at z,'= —zP. Since these poles lie on the unit
circle ~z

~

= 1, the path of integration has to be modified
for n.egative energies. The definition G= (E H,+ie) '—
assigns a small negative imaginary part to the poles of
G, and consequently the values of k corresponding to
the bound states, namely, ko ——k~&", ko&", etc. , must be
understood as ko—ie. The transformation s= e' ' pushes
these poles slightly outside the unit circle. Therefore,
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the contour C in (4.8)—(4.13) must be dented, if
necessary, to place outside the contour of integration
any poles such as z, and z, which occur at lzl =1.With
this modification in. the path of integration C, Eq. (4.8)
becomes the fNndamental eqstaiiots of eke averagieg Process
for negative arid positt've ettergies. Equations (4.9)—(4.14)
apply now to all energies.

Ke shall now extend the results of Sec. IIIC to this
model. In taking the average of the matrix elements
Mi' ' and Ms' ' (contributed by @s' ~) we must leave
the bound states intact" and average only the Green's
functions. Since (Mi"') involves only (Gi' ~) we obtain,
using (4.14), the results of the SIP. Similarly, the terms
in (Ms' ') which contain only (Gs'~) reduce to the
corresponding terms of the SIP, and we must deal with
those terms in M2' which contain tw'o Green's func-
tions, namely, GsV'GiV'po which has been given
explicitly in (4.3), and GsV'GsV'ps of (2.27). Now
G2' and G~' are periodic in k2e and k~a, respectively,
which can be treated as two independent variables for
averaging purposes, and we simply obtain that the
average of the product (Gs' . Gi' ), reduces to the
product of the averages, namely, (Gs' ):(Gt'~) which
brings us back to the SIP; the colon here denotes that
an operator such as V' separates the two Green's
functions.

From the symmetry of the problem the term
GsV GsV @p brings the product G&'. G, which is
periodic in the variable k2a. Performing the average
in the complex plane of e'" we find using (4.8) that
(Gs'. Gs') = (Gs' ):(G, ' ~) which is equivalent to the
SIP result.

Thus to second order, the results of the symmetric
and the SIP models are identical, and in fact the results
can be extended to higher order. "

B. General Potential

The potential is now defined by (4.1) with Vs/ Vi.
The relevant Gi(x,y) is given by (2.20) and we must
now solve for the functions si(x)/Sit and v(x). We find

by elementary methods that

u(x)/5 is A fs (x+2u)+——8g, (x+2a),
~cise+.Pc isa f —

(x)

28The exact location of the bound states, namely, the exact
values of k0 and p0 are of no great interest in the continuum limit,
only the density oi states as given by the rule dko/w is important.
In both the finite and the SIP models @0 has the same behavior at
the barrier and that inQuences the matrix elements in the same
way.

"This conclusion has to be somewhat qualified, for in consider-
ing the average (G, :G, ~. ~ .G~) it is possible that for certain
bound-state energies an angle, say, k u is an integral multiple of
another angle k a, and, hence, these two variables are no longer
independent, and the average of the product may fail to yield
the product of the averages. This possibility arises, the earliest,
in trfth order, for if k'/p =ha&s/3 we have kqu= 2kqu. Using (4.9)—
(4.12), and performing the average in the complex plane s =e'"~',
it is simple to show that for the symmetric potential we will obtain
(G~":G~")=(G~''):(G ''). However, we have not succeeded
in extending this result to the general potential of Sec. IVB.

for
x& —2a, —2a& x&0, x&0,

5=
—8*/A c-""/A

c ""/A (8/A) e '"&'/—

v(x) =A—'g, (x+2u),
ye'"*+be—'"*, St,fi(x)+g, (x),

(4.16)

(4.17)

for x& —2a, —2a&x&0, x&0, respectively; the coeffi-
cients p and 8 are given by

7= [gs'(0)+skgs(0)][2skA j 'c""
8=[—g, '(0)+ikg, (0))[2ikA$ 'e ""'. {4.18)

We are now ready to discuss the averages (Mi) and
(Ms) for this model. From (2.29) or (2.15b) we see that
(Mi) depends only on (vi). Applying (4.8) to (4.17) we
have:

b)=(1/A)=0,

(4kg) [—g, '(0)+skg, (0)]
(~)= .

(2sk) [gs'(0) —
zkgs (0)j[fi'(0) +ikfi (0)1

(5'») = —(Il*/A)

[g '(0) —ikg (0)g[g '(0)+ikg (0))

[gs'(0) —ikgs(0) j[fi'(0)+ik fi (0)j

(4 19)

which means that (vi) is zero for x(—2a and coincides
with the SIP function for x& —2a. Letting a —& ~,
(Mi) assumes the SIP value.

To discuss (Ms) it is simplest to work with the defini-
tion (2.16b) which gives the average (vs(x): Gi(x,y)).
Averaging vs(x) first introduces a cutoff in x for x(—2a
which means that (Gi (x,y)) has to be considered, only for
x)—2u. This amounts to leaving the function ei/Sts
intact and averaging only" vi which introduces again a
cutoG now in y for y( —2a. The barrier V2 has thus
been eliminated and as u —+ ~ we are left with the SIP
model with one barrier, namely, t/'~. Clearly, the
procedure applies to higher order matrix elements"

~ For negative energy, A has four zeros on
l
s

l
= 1 as can be seen

from (4.15).Eqs. (4.19) remain valid when the path of integration
is modified as in Sec. IVA.

respectively, where

A = (4k') '{[gs'(0)—ikgs(0))[fi'(0)+ikfi(0)fe "
—[gs'(0)+ikgs(0)$[fi'(0) —ikft(0) je"" ),

&= (4k') '{L—f '(0)+skf (0)j[f '(0)+zkf (0)lc ""'
+I f s'(0) +ikf&(0)hl fi'(0) —ikf&(0))c""'}, (4.15)

o.= (2sk) '[ft'(0)+ikft{0)),
P= —(2ik) '[fi'(0) —ikft(0) j.

The scattering matrix S and the function v(x) can now
be written down":
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and the equivalence of models extends to other
perturbations.

In brief, two surface barriers are necessary to intro-
duce the correct quantization rule; but as the separation
of the two surfaces becomes large, each surface displays
surface phenomena characteristic of its own barrier and
independent of the other surface barrier, a result which
is taken for granted in the SIP model but which we And

hard to justify without resorting to the averaging
procedure we have discussed. "

The method of the variation of constants, as used by
Mitchell" and others, is essentially equivalent to
expanding Green's function in eigenfunctions of the
electron Hamiltonian II,. The perturbation is turned
on adiabatically at time t —+ —~, and the amplitudes
of the eigenfunctions are examined at t=o. We have
for the usual time integral the relation,

e " '""dt= (F. H.+—s)e'= G——(A4)
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APPENDIX

The orthogonality of the functions u and e of (2.18)
and (2.19) follows directly from the properties of the
scattering matrix S defined by (2.17). The time reversal
symmetry (complex conjugation of the wave equation),
and the conservation of current yield the relations
SS~=I, and qS»= kS», where I is the identity matrix. "
Using these properties, and the relation, 8 (k —k')
= (k/q)5(q —q'), we have:

(N(q) ~.(q ))=~LS»S»*S(q—q')+S»S»*~(k —k')]
= vr (SS*)isb(q —q') =0,

which is the desired result. Similarly, we obtain:

Expanding G in eigenfunctions of H, using (A2) and
(A3), we have the asymptotic relation,

te q
"N(q', x)N*(q', y)

G(x,y)-—— dq'
27r k p q' —q"+ie

"e(q,x)~*(q y)
dq' . (AS)

q' —q"+ie

e"e(q' q"+—ie) '= i— ——i(q2—q'2) (t+x/q')+i(q2/q') ddt

—i(q2—q'2) ~dg s(q /q') s

2irifi (q' —q")e"*—

However, for large x, only the outgoing waves in
te(q', x) and e(q', x) survive, for using (A4) we have

(N(q) I~(q'))=2~(&/q)~(q —q') (A2) e 'P" (q' —q's+ie) —'-0. (A6)

(e(q) t
e(q')) = 2s b(q —q'). (A3)

"The averaging procedure can be used to eliminate a boundary
condition in problems of higher dimensionality. fn three dimen-
sions we can write the Green's function G(r, 0) tor a point source
at the origin as

p sink(r —a)/(4pr sinka), or u cosk(r —a)/(4pr coska)

with G satisfying obvious boundary conditions on the surface
of the sphere r=a. Letting a~ ~ and using (4.8) we obtain
(sink (r—a) /sinka) = (—cosk (r—a) /cosku) = e'"' which —is the free
space function, and we have (G(r,0))= —u exp(ekr)/(4nr).

'P When g=k (finite potential) St S* and S is unitary. If in
addition V(x) = V(—x), S)~——S~2.

Using (A6) and the definition of I and e in (A5)
we find

G(x,y)- (t /2iq) "*s(ys),

which is Eq. (2.14).

(A8)

G(x y)-(t /2iq)u'"i(q/&)S»N*(q y)+S»~*(q y)3 (A&)

The function inside the bracket in (A7) can be identified
as s(q, y) using the properties of S. We conclude that,


