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Selection Rules and Angular Dependence in Paramagnetic Acoustic Resonance*
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The problem of spin transitions between magnetic sublevels under ultrasonic excitation is treated by con-
sidering perturbation terms pHe tt S (dipolar) and S d S (cluadrupolar). When the tensors tt and d are
expanded in acoustic strains, the resulting expansion coefIj.cients form a magnetoelastic matrix which de-
scribes the spin-phonon coupling. For the quadrupolar term which is dominant for S)-„the magnetoelastic
matrices are obtained for all crystal classes with the assumption that they are not necessarily symmetric.
By using the transformation of spin operators, which includes the case of anisotropic g factors, general ex-
pressions for acoustic transition probabilities in dipolar and quadrupolar cases are derived in terms of h;
and d;. It is shown, on the basis of these expressions with magnetoelastic matrices and strain transformations
to crystalline axes, how the acoustic absorption coefhcients are obtained for any direction of polarization
and wave propagation, for arbitrary direction of the external magnetic Geld, and for all crystal classes. It
turns out that the explicit angular dependence of absorption coefficients is diGerent in the dipolar and
quadrupolar cases for anisotropic g factors, but often for isotropic g factors the forms of angular dependences
are similar. This treatment is valid for iron group and S state ions and also is formally applicable to nuclear
quadrupole transitions under acoustic excitation. The theory is compared to the results of our experiments,
in which absorption coefficients at magnetic resonance were measured for 10 kMc/sec acoustic waves. The
essential points of the theory are borne out by experimentally measured angular dependences of acoustic
absorption.

I. INTRODUCTION

'HE investigation of spin-phonon interactions by
paramagnetic acoustic resonance has been stimu-

lated by the close relationship of this problem to that
of spin-lattice relaxation. The experimental methods' '
which have emerged during the last few years were
preceded and accompanied by general theoretical treat-
ments~ ' based mainly on the assumption of the Van
Vleck" spin-phonon interaction mechanism, although
other mechanisms have also been considered. '

The acoustic-resonance methods involve propagation
of coherent acoustic waves (often at microwave fre-
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quencies) in single crystals containing paramagnetic
ions, usually at low temperatures. When the frequency
of the acoustic w'aves corresponds to the separation of
magnetic sublevels of the ioI, , transitions are induced
and an absorption of the acoustic waves is observed.
Certain sets of selection rules, which depend on the
dominant coupling mechanism, effectively describe
these transitions. The exact form of these rules for
different acoustic modes in various physical systems
determines what types of experiments can be performed.
Interpretation of observations involving the propaga-
tion of acoustic waves at magnetic resonance is con-
tingent on a knowledge of the form of the angular and
polarization dependence of the spin™phonon transition
probabilities. To experiments of this kind. belong para-
magnetic acoustic absorption, ' certain maser experi-
ments" (acoustic or electromagnetic-acoustic maser),
saturation effects of ultrasonics on ordinary spin
resonance, ' ' and nuclear polarization by acoustic
means.

In this paper we calculate paramagnetic-acoustic ab-
sorption coefFicients applicable to iron group and S-state
ions for arbitrary direction of wave propagation and
polarization and for any external magnetic-field direc-
tion. The derivations are given for both dipolar- and
quadrupolar-selection rules and for all crystal field sym-
rnetries. A few representative cases are compared with

experiments.

II. CALCULATION OF ACOUSTIC TRANSITION
PROBABILITIES

A. Phenomenological Spin-Phonon Intera|:tion

Detailed investigations of the paramagnetic-
resonance spectra of iron-group ions have established

"E.B. Tucker, Phys. Rev. Letters 6, 547 (1961).
's C. D. Jeffries, Progr. Cryog. 3, 149 (1961).
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x„=pHe. h S+S d.S, (2)

where h is a tensor representing the modulation of the

g tensor; similarly, d is a tensor representing the modu-
lation of the D tensor. The use of the phenomenological
spin-phonon Hamiltonian, Eq. (2), is justified by the
fact that it is consistent with the detailed microscopic
relaxation theory. In this theory' the crystalline field
part of the total Iramiltonian of the paramagnetic ion
is expanded in the displacements of the ion nearest
neighbors, and these are further expanded in the normal
modes of the lattice vibrations, thus leading to a term
in which the coordinates of the lattice and the para-
magnetic ion are mixed. This is the spin-phonon inter-
action operator and it is shown to be

BC„= Q [e(o&)Ard/M~']'" sing R uy PL;rheisr
f.s»

+2PXL@r(S,H+S,H;)+)'L;,r(S,S,+S;S,)j; (3)

where f= 1, 2, ~, 6;i,j = 1, 2, 3 (or x, y, s), M = crystal
mass, a= sound velocity (lattice is assumed dispersion-
less, all phonons having the same velocity), e(&e) =num-
ber of phonons of frequency or, ) =spin-orbit coupling
constant, A=equilibrium distance from the nucleus of
the paramagnetic ion to the nearest neighbor. Here y
is a phase factor resulting from the expansion of the
ionic displacement from equilibrium in normal lattice
modes, aj are coefficients determined by the direction
cosines of the velocity and polarization, H; are com-
ponents of the magnetic field, I.;;~ are tensor com-
ponents representing sums of matrix elements of

that, to a good approximation, the energy levels of the
lowest state may be described by an effective spin
Hamiltonian:

x=pHo g S+S D S. (1)

The first term is the Zeeman interaction of the effective
magnetic moment of the ion with the external field Ho,
the second term is the electrostatic interaction of the
effective quadrupole moment of the ion with the
crystalline electric field. In some cases, e.g., S-state ions
Mn'+ and Fe'+ in cubic fields, it is necessary to add
higher order crystal field terms of the form aS 4. The
spin Hamiltonian, Eq. (1), has been of considerable
utility in interpreting paramagnetic-resonance data,
and in obtaining the values of the g tensor and the D
tensor.

In the Van Vleck theory" of spin-lattice relaxation,
the dominant spin-phonon interaction is assumed to be
one in which the periodically modulated crystalline
electric field affects the orbital motion of the electrons,
which is coupled to the spin through spin-orbit coupling.
The over-all effect of this modulation, due to lattice
strains set up either by thermal vibration or by applied
coherent acoustic waves, is to modulate the static
interaction, Eq. (1), and to induce transitions between
the magnetic levels. This time-dependent perturbation
may be expressed in the form

crystalline field and angular-momentum operators
between the ground and excited orbital states. S; are
spin components; one should bear in mind that they
are components of the real spin of the ion in the ground
state and thus expressions involving them are not
generally interpretable in terms of S;, S; in Eq. (2),
where S is the effective spin. However, for iron-group
ions in many cases the effective and the real spins are
the same and then formal relationships between
quantities in Eq. (3) and phenomenological parameters
in Eq. (2) can be obtained.

Although it is possible that in some physical systems
both terms of Eq. (2) would have to be taken into
account, in most cases for S)-,' at the field strength of
several thousand oersteds, the second term predomi-
nates since it is larger by X/PH than the 6rst term. On
the other hand, for S=~~ the matrix elements of the
operator S;S;+S;S, vanish, and thus we have to be
concerned only with the first term.

Further validity of Eq. (2) was demonstrated by
Shiren, 4 who has shown that Van Vleck calculations can
be reduced explicitly to the form of the dominant
second term for Cr'+ and Ni'+ in MgO. Blume and
Orbach" have shown that even the S-state ion Mn'+ in
MgO can be treated by this form of spin-phonon
perturbation. Although MgO is cubic, and the static
D tensor vanishes; nevertheless the modulation restores
electively the quadrupolar term as a dominant one
for relaxation.

The utility of the effective spin-phonon Hamiltonian
is that it enables us to calculate, as is done in this paper,
the transition probabilities due to any specified lattice
strains from the simple spin eigenfun. ctions of the spin
Hamiltonian. Such expressions are very useful in
analyzing the angular dependence and polarization
dependence of the data from acoustic experiments and
are necessary in order to determine experimentally the
spin-phonon coupling constants, defined. by Eq. (5).
In this sense this phenomenological approach is an
extension of the widespread use of the spin Hamiltonian
in the analysis of energy levels.

B. Transition Probabilities for Quadrupolar
Term (S d S; S)-',)

Most experimental work so far has been done on ions
with effective spin S)-, or S-state ions. Since tensor
D in Eq. (1) is symmetric and, furthermore, since
expressions L;, in Eq. (3) are symmetric ini and j, we
expect the tensor d to be also symmetric; then the
second term of Eq. (2) becomes

BC,=d„s,'+d„„s„'+d„s,'+d„,(s,s„+Svs,)
yd. ,(s,s.+s~,)yd, „(s„s.+sz„), (4)

where x, y, z are principal axes of the local crystalline
electric field.

"M. Blume and R. Orbach, Phys. Rev. 127, 1587 (1962).
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Linear expansion of d;, in strains defines the magneto-
elastic matrix G:

4t'j p G jkl621
k, l

e&&= strains; k, l= x, y, s.
For a given wave mode and crystalline field sym-

rnetry, a particular combination of coefficients G;;l, i

describes the paramagnetic-acoustic-resonance effects.
The pertinent combinations can be obtained from the
form of magnetoelastic matrices and from the strains
associated w'ith elastic waves. The most general matrix
(triclinic symmetry) contains 36 independent constants
(30 if the trace of d is set equal to zero) and for a general
strain does lead to rather complex expressions for
transition probabilities. The situation is simpler for
higher symmetries, particularly if one takes the trace
of the tensor d equal to zero."

The assumption of zero trace and the effect it has on

the form of G amounts to a special definition of the
magnetoelastic matrix, but the number of independent
matrix components which can be obtained from experi-
ment is not affected by this assumption. "The number
of independent elements depends in part on whether
the G matrix is a symmetric or a nonsymmetric one. It
seems that no physical reason (such as exists in the case
of the elastic tensor) can be given for i42tri22sic symmetry
of the G matrix. Thus, we shall assume it to be non-
symmetric and in those special cases when symmetry
or near-symmetry exists, suitable changes can be easily
introduced. The number of independent components of
the G matrix is determined by the local symmetry,
since Eq. (5) must be invariant to a coordinate trans-
formation included in the symmetry elements of the
local crystalline field. Applying these arguments to
magnetoelastic matrices, somewhat in analogy to the
photoelastic case, and p;=1'd, =0, we obtain results
which are given below in the Voigt notation.

Monoclinic, classes C2, C2~, Cl~.

Gll

(Gl1+G21)
0
0

G61

G12

—(G12+G22)
0
0

G62

G13

G23—(G12+G22)
0
0

G63

0 0
0 0
0 0

G44 G4s

Gs4 Gss
0 0

G16

G26—(G14+G24)
0
0

G66

(6)

Here, and in all other cases, the rotation axis is taken along the Ox2 (s direction) axis. From (6), the magnetoelastic
matrix for orthorhombic symmetry, classes D2, C2, and D2& can be obtained by setting G16= G26= G4s= Gs4= G61
=G62= G63= o.

Trigonal, classes C3, C3;.

Gll

—(G11+G12)

G41—G46

G16

—(G11+G12)—G41

G46

G16

—G22/2
—G22/2

G33
0
0
0

G14

G14
0

G44
—G4s
—Gls

Gls—Gls
0

G4s

G44

G14

G16

0
G46

G41

(Gl1 G12)/2

(7)

The following substitutions in (7) are required to obtain G matrices for: trigonal symmetry, classes C2„D2, D2d-
set G»= G16= G4s= G46= 0; tetragonal symmetry, classes C4„D2, D4, D4&—set G14= G»= G16——G41——G4s ——G46 ——0,
substitute G« for (G»—G12/2), tetragonal symmetry, classes C4, 54, C4&—set G14——G15 ——G41 ——G4&=0, sub-
stitute G« for (G» —G»/2), —G&1 for G1& in the last row only; hexagonal symmetry, classes C&, C21, C61,—set
G14= G»= G41= G46= 0; hexagonal symmetry, classes D», C6„D6, D6&—set G14= G»= G16= G41= G4s= G46= 0.

Cubic, classes T, T~..
Gll—(G11+G,2)

0
0
0

G12

—(G11+G12)
0
0
0

(G11+G12)

0
0
0

0 0
0 0
0 0

G44 0
0 G44

0 0

0
0
0
0
0

G44

By substituting —G»/2 for G» in (8) we obtain the
magnetoelastic matrix for cubic symmetry classes

' R. B. Shulman, B. J. Wylunda, and P. W. Anderson, Phys.
Rev. 107, 953 (j.957).

T&, 0, 0&. In this case we have a symmetric matrix with
only two independent constants.

'5 R. J. Harrison and P. L. Sagalyn, Phys. Rev. 128, 1630
(1962).
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FIG. 1.x, y, s—crystalline coordinate
system. xp gp, sp—laboratory coordi-
nate system. x', y', s'—diagonal co-
ordinate system. 8' =sin 'L(gi/g) sin8),
q'=sin 'P(g, /gi)sing j. Direction of
IIp in the xys system is specified by
the Eulerian angles 8, y,' since the
choice of xp, yp is arbitrary, the third
Eulerian angle is taken as P=n./2
without loss of generality.

E OF NODES {INTERCEPT OF xy PLANE WITH xo yo PLANE)

ERcEPT oF x y PLANE wlTH x' y' PLANE

If a wave can be described by one strain component
e, cosset (s=1, 2. . .6) in the crystalline-6eld coordinate
system, the elements of the G matrix entering in the
transition probabilities can be obtained from the above
given expressions (6)—(8), by taking only the column
which corresponds to this strain. In the more compli-
cated cases these matrices are to be used upon perform-
ing strain transformation to crystalline coordinate sys-
tem on the basis of the known polarization and direction
of wave propagation. Thus, a pure longitudinal wave'"
of strain e, "=e, propagating in l, m, e direction with
respect to crystalline axes (x,y, z) is equivalent to strains
referred to those axes:

cyy=m 62

fzz= f/&

&&
= 2sme

~, =2ele

e~y= 2lme,

" Usually of interest are directions of propagation near the
pure mode axes. Such directions include axes of twofold or higher
rotational symmetry, directions perpendicular to a sixfold axis or
to a reflection plane, as well as other directions which depend on
relations between elastic constants and, in some special cases of
cubic and tetragonal symmetry, can include any direction in the
crystal. LSee F. E. Borgnis, Phys. Rev. 98, 1000 (1955)g. If a
pure mode cannot be propagated along a given direction, the wave
can always be decomposed into nonindependent longitudinal and
transverse components,

The combination of nonvanishing components of the G
matrix and strains will determine then which com-
ponents of the d tensor are to be included and thus
which matrix elements of the spin operators would have

to be evaluated in order to find the acoustic transition
probabilities. Therefore these matrix elements will de-
pend explicitly on the direction of the magnetic field Ho,
the direction and polarization of the acoustic wave, and
the local crystal-field synunetry. Taking P and P

' as
eigenfunctions of the static Hamiltonian in Eq. (1), we
can write the acoustic transition probability as

Here X, is the amplitude of the time-dependent
perturbation X,(t)=X„cosset, and g(p) is the nor-
malized line shape of the acoustic-resonance line.

If the D term is appreciable, f and l(
' can be ob-

tained exactly by diagonalizing the spin Hamiltonian.
On the other hand, if the D term is negligible (or H p is
parallel to the c axis) to a good approximation we can
get useful formulas by transforming the spin operators
in the crystal xys axes to a new' coordinate system x'y's'

in which the Zeeman term alone is diagonal, i.e., the
transformation must be such that the coefFicients of
S, ~iS„vanish. We define x'y's' by the Eulerian
angles 0', q 'pP' in Goldstein's notation" and may further-
more take P'=s./2 without loss of generality (see
Fig. 1). The same figure also shows a laboratory
coordinate system roy&0 dehned by Eulerian angles

0, ip, and P= pr/2, with the field Hp along zp.

In the general case the spin components transform
I

H. Goldstein, Ctassical Mechanics (Addison-Wesley Publish-
ing Company, Inc. , Reading, Massachusetts, 1951), p. 107.
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as follows:

gi igz
S,= — cos9 sing S,'

gy g*——cospS„'+—sin9 sin pS,',
gi g

gl lgy
S„= coso cosqS '

1. Lorlgitgdirlal Wave; Straie ie (l,m, n) Direction
with Respect to Cubic Axes (x,y,s), M —+ M—1

n= C,{L
—(sin29/4) (3GqqP sin'p

+3Gnm' cos'p —3Gq~e' —4G44lm sin2p)

+2G~4 cos29(me cosy —ln sin@) 7'

+L(sin9/4) ( 3GuP sin2y-
+3Gum' sin2p+8G44lm cos2q)

—2G44 cos9(mB sill(p+lB coslp)] },
7rhnvg(v) $($+M) (S—M+1) (2M —1)']

(13)CI ——

g~ gy——sin pS„'——sino cospS, ',
g g

gj. gl&

S,=—sin95 '+—cos95,'.
g g

Here
gg= (g

s sms(p+g„cos p)~

g= (g[~ cos 9+gg sin'9)' '.
When the g factor is isotropic, it drops out of the
transformation expressions and then the diagonal and
laboratory systems coincide. Sometimes, when there is
an appreciable mixing of wave functions by an axial
field, they are computed and given in the laboratory
coordinate system; in such cases Eq. (11) also can be
used to obtain the matrix elements in (10). When the
total spin Hamiltonian is numerically diagonalized in
crystalline coordinates, matrix elements can be calcu-
lated directly using Eqs. (4) and (10).

With (10) we get acoustic absorption coefficients at
paramagnetic resonance:

Arlhv m-Dev g (v)
l(ll-IX" lk-') I', (»)

p'v E pv ck
p= density of crystal; Ae= spin-population excess per
unit volume in the lower level; t. is the peak value of
strain. Since it also enters into BC„, the strain cancels
out, as it should for purely magnetic attenuation.

Now using Eqs. (4) through (12), the acoustic
absorption coefFicients for practically any case of
interest can be obtained in terms of angular functions
and spin-phonon coupling constants.

General expressions for paramagnetic acoustic ab-
sorption coefficients for cubic symmetry (Td,0,0&) thus
derived are: C. Dipolar Selection Rules ()Hs h S)

We now evaluate Eq. (10) using instead of H, the
dipolar spin-phonon perturbation,

Ks ——P P S,h;I,Hs, (16)

i, h=x, y, s. By comparing the terms in Eq. (3) which
we have respectively absorbed into h;& and d;A, , we
expect the properties of the tensor h to be similar to
those of the tensor d. Furthermore, for small wave
amplitudes we can m,ake a linear expansion of h in

"D. I. Bolef and M. Menes, Phys. Rev. 114, 1441 (1959).

Z. Lomgitudieal Wave; Straie irt (l,m, e)
Direction, M —& M—Z

a= Cs{-',Gn[(P —1) cos'9 sin'&p

+ (m' —1) cos'9 coss p+I'+ (3ns —1) sin'9

+cos'q (m' —2P)+sin'q(P —2m')

+2 cos'9(m' cos'y+P sin'q)]
+2G44(me cosy sin29 —le sing sin29)
—2G44lm sin2 p (cos'9+ 1)}'
+16CsLsGu(P —m') sin2q cos9

G44 (m—rI sin9 sin&p+Nl sin8 cos &p

+lm cos9 cos2 q )]',
Cs= Lv.t1n vg (v)/16pv'h]L(5+M) (5 M+1—)

X (S+M—1) (5 M+2)] (14)

A strain e,"„associated with a transverse wave can
be related to the crystalline-axes strains by expressions
similar to Eq. (9). With l~, m~, N~—direction cosines of
x"; l2, m&, m2—direction cosines of y"; and substitutions:
l~ ls ~ l', mq ms ~ m', rtq rt~sn', (m~es+msn~) ~
2m', (rsqls+eslq) ~ 2+i, (lqms+lsmq) ~ 2lm in equa-
tions of the type of Eqs. (13) and (14) we get expressions
for absorption coe%cients of any desired transverse
mode for any direction of Bo.

By expanding the electric-field-gradient components
in a Taylor series of the strain components and treating
the acoustic wave as time-dependent perturbation on
the nucleus, Bolef and Menes'~ calculated the coefFi-

cients of acoustic absorption due to the nuclear spins
for longitudinal waves propagated along the cube axis.
It should be pointed out that the method described in
this section may be formally applied to nuclear quadru-
pole systems, where instead of Eq. (1) we have

x=p„g.H, I+I P I,
and the nuclear spin-phonon perturbation is of the
form X,= I.d„.I. Within the above mentioned restric-
tions on the wave functions, our results can be used to
calculate acoustic absorption coefFicients in nuclear
quadrupole systems in terms of nuclear spin-lattice
coupling constants.
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strains, as it was done for d in'Eq. (5), and the matrix
of coeKcients defined by this expansion will then be of
the form similar to that of the G matrix. With Eq. (11),
(12), (16) and the following transformation of the com-
ponents of the magnetic field (Fig. 1):

H =Hp sin y sino

H„=—Hp cos p sine

H, =Hp coso,

(17)

we can now easily derive a general expression for the
absorption coefficient in terms of k, (s = 1, 2 6 in
Voigt notation). For the isotropic g factor in Eq. (1),
the absorption coefficient for the transition M —+ M—i
becomes

ad = Cs(Hs'/e') (L—-,'(sin28)

X (kz sin i +ks cos t
—ks —ks szn2y)

+cos28(k4 cost —ks

sing�

)j'
+ [-', (sin8) (—kz sin2 z +ks sin2 p+ 2ks cos2 qq)

—cos8(k4 siny+ks cosy)]'),
Cs ——(whnvg (v)P'/pv'k) (S+M) (S—M+ 1) .

But substitution d; ~ h; makes the expression in curly
brackets identical to the one which can be derived quite
generally for the iso tropic case on the basis of the
quadrupolar term of the previous section with Kqs. (4)
and (11).Thus, in cubic crystals where wave functions
are only slightly perturbed by the crystal 6eld at Hp
values of several kiloersteds, the angular dependence of
absorption coeKcients (transition probabilities) in
certain directions is essentially the same in dipolar and
quadrupolar cases. In particular, for longitudinal waves
propagating along the cube axis, except for variations
(usually small) of He with 8 for some lines, the transition
probabilities are proportional to sin'0 cos'0 for both
cases.

If the Zeeman wave functions are substantially
perturbed by the crystalline field, then even for isotropic
g's we would have different angular dependences of
transition probabilities. This arises from the fact that
in the quadrupolar case w'e would now have non-
vanishing matrix elements of 5,', 5 s, and (S,S„+S,S,)
for transitions between adjacent levels. When the g
factors are anisotropic the explicit angular dependence
in the two cases is of different form.

Thus, for Hq in the x, s plane (y= —qr/2) we get with
Eq. (11) in the quadrupolar case, M —+ M —1:

cosa sin0
~q= (A dz)giigz

e — g
' cos'8+g ' sin 8

g
2 cos2g g

2 sin2g 2

g~~ cos 8+gz sin 8-

Cz (d4g„cos8 dsg, sin8)'—
(19)

e g
' cos'8+g ' sin'8

and in the dipolar case:

cos0 sineC3Hp'
(k3gz kzgt!)

e' (g
' cos'8+gzq sin'8)'"

(g„cos'8—g, sin'8)
hs

(g, P cos'8+ g, sin'8) '"
CgH p'

+ (k4 cos8—ks sin8)'.
Q2

Hence, in some cases the observation of the angular
dependence of the transition probabilities does provide
a means of distinguishing between the quadrupolar and
dipolar rules, but in other cases it does not give a clear-
cut proof for dominance of one or the other term. The
dom, inance of the quadr upolar term in the experiment-
ally studied cases has been established, however, by the
relatively weak intensity of the —,'+-+—-,'transition.

In the formulas for M —& 3f—1 transitions, C~ in
Kq. (13) and Cs in Eq. (18) contain expressions (5+M)
X (S—M+ 1)(2M—1)' and (5+M) (S—M+ 1), which
are characteristics of the quadrupolar and dipolar
selection rules, respectively. On the basis of these
expressions one expects the -',~——,

' transition to be
forbidden in the quadrupolar, but not in the dipolar
case.

"E. H. Jacobsen, Phys. Rev. Letters 2, 249 (1959); E. H.
Jacobsen in Qnuntlm Electronics, edited by C. H. Townes
(Columbia University Press, New York, 1960); E. H. Jacobsen,

Acoust. Soc. Am. 32, 949 (1960).
H. E. 8ommel and K. Dra nsf eld, Phys. Rev. I.et ters 1, 234

(1958); H. E. Bommel and K, Dransfeld, ibid 8, 83 (1959). .

III. COMPARISON WITH EXPERIMENT

We have constructed an experimental apparatus
(shown in Fig. 2), which is an adaptation of Jacobsen'szs
and 8ommel-Dransfeld's" microwave phonon-genera-
tion technique to paramagnetic-acoustic-resonance ab-
sorption. Microwave acoustic pulses at frequency
10" cps and of 1 @sec duration are generated in a quartz
rod or plate which is inserted in one cavity, then
transmitted through a paramagnetic sample and
detected in the other cavity. All echoes are detected by
the microwave receiver but only a particular one is
integrated by a gated box-car integrator which puts
out a dc voltage proportional to the acoustic pulse
power. Waveguides and cavities are in a liquid-helium
Dewar which is placed between the pole pieces of a
Varian 1.2-in. magnet. When the magnetic 6eld is
varied through resonance, acoustic absorption lines due
to spin transitions are displayed on the recorder which
is connected to the box-car integrator. A system of
waveguide and ferrite switches (to protect the receiver)
allows studies of transmitted and reflected signals from
both ends.

The problem of interest to experimentalists at these
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Fro. 3. Acoustic absorption coe%cient of Fu'+ in CaF2 at reso-
nance versus angle P between Ho and propagation direction of
9.3 kMc longitudinal waves.

frequencies is how to achieve a satisfactory bond
between the transducers and specimen. In our experi-
ments the paramagnetic crystals are clamped between
two quartz rods (is-in. diam), each of which has a
circular brass collar (—,'~-in. o.d.) glued to it with strong
epoxy resin. One of the collars is threaded and fits
inside of a cylindrical brass clamp, the other end of
which fastens to the plain collar on the other quartz
rod. The sample, both ends of which are wetted with
nonaq stopcock grease (made by Fisher Company), is
thus placed inside of a brass clamp under slight pressure
from the transducers. Since it is essential to achieve a
reasonably good parallelism of this combination as well

as a good bond, the whole thing is tested and corrected
until transmission of pulses of acoustic power at 500 Mc
is maximized. The 500-Mc phonons can be easily
transmitted at room temperature and for this reason

are used as a test indicator for actual experiments at
10 kMc. The advantages of this technique are good
mechanical strength and prevention of bending of the
sample, something of importance here, because even a
slight amount of bending may cause sufhcient deviation
from parallelism to destroy the signal. Another good
feature is that samples put together in this way can be
warmed up to room temperature and cooled down
repeatedly without appreciable deterioration of
transmission.

In some experiments transverse waves were generated
by exciting ferromagnetic resonance' in thin cobalt
films. Cobalt 6lms were chosen because they can be
used to excite coherent phonons continuously over a
range of several thousands oersteds and such magnetic-
ally broad excitation makes possible overlap and
observation of relatively narrow paramagnetic acoustic
absorption lines produced by spin transitions in the film
substrate.

The angular variation of the acoustic absorption
coefficient (lines -,'~-', and ——,'4-4 ——,') of Eu'+ ions in a
CaF2 crystal observed with our apparatus is shown
in Fig. 3.

Divalent Eu has a 4f7, '57/2 configuration and in cubic
CaF2 is described by"

X=pgH S+84(P4'+SP4')
+84(P4' —21P4')+AS I, (21)

',J."'M. Baker, B. Bleany, and KV. Hayes, Proc. Roy. Soc.
(London) A247, 141 (1958).
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where the effective spin S=7/2, and P„are operators
which transform like spherical harmonics I'„"' (e.g. ,
P4'~S, ', S,', P4'~S~', etc.).

Since CaFs is cubic, Eq. (21) does not contain terms
like P2 which correspond to the quadrupolar term
S D S in (1). However, the acoustic strain effectively
restores a term S d S to the spin-phonon interaction,
which may exceed the higher order terms. This occurs
for Fe'+ in MgO', as demonstrated by the disappearance
of the +-,'+-+——,

' line. We did not observe the +-,'+-+——',

line in the acoustic spectrum of Eu'+ either, although
it was quite strong in the ordinary spin-resonance
spectrum. Actually, only the &2~&~ and &-,'+-+&&

acoustic resonance lines were observed. Probably the
~~~~-,' lines were too weak to be seen; in the spin-
resonance spectrum they were rather broad and weaker
than expected.

In the experiment longitudinal waves were propa-
gated along the [111j crystalline direction; P is the
angle between Hs and [111jin an arbitrary plane. It
is easily shown that the angles fl and p in Eq. (13) can
be transformed to express the angular dependence of
the absorption coefficient for longitudinal waves as
sin'P cos'P regardless of the plane spanned by Hs and
the [111j axis. When this is done it turns out that
although we are dealing with longitudinal waves, the
coeKcient G~~ disappears from the expression for n
(since dr ——ds ——ds ——0) and we get:

s-Aevg(p)
n[rrr] = [(S+M)(S M+ 1)j

pv'k

)& (2M —1)'G4$ sin'I9 cos'P (22)

No charge compensation is required in order to substi-
tute divalent europium ions for Ca'+; the local 6eld
symmetry is practically undistorted cubic. The static
terms 84 and Bs in (21) are small enough so that the
Zeeman wave functions assumed in the derivation of
(22) would need correction of only a few percent.
Corrections to Eq. (22) thus would be less than the
experimental error and would not infiuence the generally
satisfactory comparison between the sin'P cos'P curve
and experimental points. From the measured values of
n, sample length of 7 mm, and Eu concentration (0.3%),
we get the spin-phonon coupling constant, 644 ——6+2
~ 10 "ergs.

Figures 4(a) and 4(b) show comparison between our
experimental measurements of njg(u) in 0.08'%%uz ruby
(c axis taken as s; longitudinal waves were propagated
along the c axis) and theoretical curves based on dipolar
and quadrupolar selection rules and corrected for
variations in Ae versus 0. Here the transition proba-
bilities were calculated using Eq. (10) and exact wave
functions" for both cases. As we can see, the agreement

"E.O. Schulz-Du Bois, Bell System Tech. J. 38, 271 (1959);
W. S. Chang and A. E. Siegman, Stanford University Technical
Report No. 1958 (unpublished).
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Fro. 4. Comparison of the quadrupolar LFig. 4(a)j and dipolar
LFig. 4(b)j theories with the experimental angular dependence of
the absorption coefficient multiplied by the linewidth in 0.08%
ruby. To normalize the theoretical curves the computed point
for —,'~—-', transition was set equal to the experimental value for
8 =70' in Fig. 4(a) and I=55' in Fig. 4(b).

in angular dependence with experiment is more satis-
factory for quadrupolar interaction than for dipolar,
although there seems to be some discrepancy between
experimental results and theoretical quadrupolar curve
for the 2~-,' transition. The —,'+-+-,' transition occurs at
relatively high 6elds for 0=0 to 30'. The dipolar transi-
tion probabilities which depend on Hp' are relatively
high for 8 between 10 and 25'. But from the comparison
of Fig. 4(a) and 4(b) it does not seem likely that the
dipolar contribution can account for the measured n's

being greater than one would expect on the basis of
quadrupolar theory alone.

Some deviations of experimental data from theory
can be attributed to variations in the direction of the c
axis throughout the sample. Since line positions depend
on the angle between Bo and c axis, these variations
tend to distort the lines, especially where they are
strongly anisotropic. Variations of the c axis were
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observed in all 6 ruby samples and to some extent this
reQects a limitation of the experimental technique, since
we need relatively long samples in these measurements
and consequently certain crystalline defects have
greater eRects on results than in experiments which
could be done with shorter samples, such as, for
example, ordinary spin resonance or observation of
spin-resonance saturation by phonons. Experimental
curves, w'hich Tucker obtained by this latter technique, '
are similar to those in Fig. 2, and they, too, seem to
show a stronger spin-phonon interaction for the —,'~-,'
line than theory predicts. The saturation technique is
a more sensitive one for observation of relative transi-
tion probabilities, but cannot completely exclude the
eRects of other modes on spin transitions which are
usually present together with the main mode. By direct
observation of the phonon attenuation due to Gipping
spins, the absorption technique separates the effects of
longitudinal and transverse modes, thus offering an
advantage for angular-variation studies. Furthermore,
it allows a direct observation of acoustic-interaction
bandwidth and measurements of magnetoelastic cou-
pling constants, from which spin-lattice relaxation times
can be calculated. ' 4 '

By transmitting transverse waves and also longi-
tudinal waves perpendicular to the c axis of ruby we
have measured G~4=0.31 10 "ergs. From longitudinal-
wave measurements along the c axis we obtained
G33=1.16&0.08 10 "erg, in agreement with Tucker's
measurements. The coupling constants do not show any
dependence on Cr'+ concentration in the range 0.02—
0.5'Po covered by our measurements. Thus the direct
relaxation time, which can be inferred from the coupling
constants, does not depend on the concentration in that
particular range either. This conclusion is in agreement
with Van Vleck's theory and in disagreement with the

theory by Kochelaev" who predicted variations in direct
relaxation times proportional to concentration to the
—4)3 power.

IV. SUMMARY

A general treatment of paramagnetic acoustic reso-
nance absorption with particular emphasis on its
angular and polarization dependence has been
developed. This was accomplished by introducing spin-
lattice coupling matrices for all crystal classes and also
by the introduction of general-strain and spin-operator
transformations applicable to systems with isotropic
and anisotropic g factors. It was shown that the
acoustic-transition probabilities calculated from dipolar-
and quadrupolar-selection rules have similar depend-
ences on the angles between the crystalline axes and
magnetic field, and on the angles between crystalline
axes and directions of propagation and polarization,
when g factors are isotropic. When g factors are aniso-
tropic or when w'ave functions are significantly perturbed
by crysta)line fields, the angular functions are dissimilar
for the two sets of rules. Some features of the theory
are in satisfactory agreement with experiment, but
others need further experimental verification. In
particular, this applies to the form of the magneto-
elastic matrices and to the observation of dipolar
selection rules, detailed studies of which would require
improvements in present experimental techniques.
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