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Nonlinear Optical Frequency Polarization in a Dielectric
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A perturbation calculation of optical frequency polarization quadratic in the Maxwell 6eld is made for a
dielectric in which the electrons are localized on units of the crystal. The result is expressed in a power series
in E(r)~10 ' where (r) is the size of the unit and E is the wave number of the Geld. The term of zeroth
order is the electric-dipole term which vanishes in a crystal with a center of symmetry. The term 6rst order
in E(r) is separated into electric-quadrupole and magnetic-dipole contributions by introducing a special
gauge for the electromagnetic potentials. Higher power terms are neglected.

1. INTRODUCTION

HEN two coherent laser beams pass through a

~ ~

~ ~

dielectric, the emerging light may contain
radiation at the sum and difference frequencies of the
incident beams' in addition to harmonics of the incident
frequencies. ' Static electric polarization of a dielectric
by a laser beam has also been observed. ' These effects
occur because induced polarization P in the dielectric
is nonlinear in the applied fields E.

Polarization being a polar vector, an expression for
the polarization quadratic in the applied fields, P",
can be constructed from products of three polar vectors,
and from suitable products of axial and polar vectors.
When the crystal lacks inversion symmetry, quartz and
K.D.P., for example, we may write P "=p p~EpE~.
We have two polar vectors supplied by the electric field
and the third by a vector direction in the crystal. Most
authors have considered only this type of quadratic
polarization.

Polarization quadratic in the fields has also been
observed in calcite, whose crystal structure has a center
of sylnmetry. 4 We shall show that in the absence of a
vector defined in the crystal we can expect a quadratic
polarization given by the phenomenological relation

P-"=G-pvBpE~+D-p~sEp(~/~r~)Es (1 1)

The first term in (1.1) is a product of a polar vector
E and an axial vector, the magnetic field B. The second
term is a product of three polar vectors; 8/cir, operating
on E, is equivalent to the wave vector of the incident
light. G, D, and p are functions of the frequencies of the
incident beams.

The following rough consideration leads to (1.1). In
all polarizable media, there is a force density on the
particles of the medium given classically by

F"=—-'~ (E P') —(1/c)BX r)P'/clt.

The quadratic polarization may be regarded heuristi-

M. Sass, P. A. Franken, A. E. Hill, C. W. Peters, and G.
Weinreich, Phys. Rev. Letters 8, 18 (1962).

2 P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich,
Phys. Rev. Letters 7, 118 (1961).' M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys.
Rev. Letters 9, 446 (1.962).

4 R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev.
Letters 8, 404 (1962).

cally as the linear polarization induced by F. If the
linear polarizability is n, we may write P = (nq) n pPp
where e is the effective number of particles per unit
volume which contribute to the polarizability 0., q their
charge, and F the force density. Since P '=n pEp, we

get

P "=(eq) '$ p, E,(8/Brp)E
+n.pn, pep, rBs(r)/r)t)E) j, (1.2)

which is the form (1.1). The frequency dependence of
n should not be forgotten.

From Maxwell's equations, we see that the first and
second terms on the right of (1.2) are the same order of
magnitude. Using the above model for fused PbSi03,
which has a refractive index of 1.9 at a wavelength of
6)&10 ' cm, taking e= 2&10"cm ', we find

Pii/Pi
~

E/(2X10" V cm ').

For a static magnetic field B, the second term is the
polarization component that causes the Faraday ro-
tation. ' Thus, we can estimate

~

P"/P'~ for materials
with inversion symmetry from the experimentally
determined Verdet constants. In fused PbSi03, the
Verdet constant is 7.9X10 ' min/(G cm), and we
calculate from this ~P"/P'~ E/(2X10" V cm ') in
agreement with the calculation based on (1.2).

Expressions for these polarization effects are calcu-
lated in Sec. 2 using a crude classical model of a di-
electric. More rigorously, in Sec. 3 we begin a quantum-
mechanical calculation of the relation between the
Fourier components E», Bx„of the fields and
JK'+"',+„, the expectation of the electron current
density quadratic in the fields. Instead of using Bloch
functions as our basis states, we shall make the calcu-
lation in terms of electron wave functions localized on
units of the crystal. We seek the first two terms in the
expansion of J '+ '„,+„,in a power series in Ki and Ks,
i.e., the terms of zeroth and first degree in the E's. The
ratio of the latter to the former is in general of order
K(r), where (r) is the order of the dimensions of our
unit, and we shall be concerned with conditions where
K(r)=10 '. The terms of zeroth degree in the K's
vanish if the medium has inversion symmetry. Intro-

' R. Serber, Phys. Rev. 41, 489 (1932).
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duction of a suitable gauge for the electromagnetic
potentials enables us to put the perturbing part of the
Hamiltonian in a form linear in the 6elds, to first power
in K(r). In this gauge, the Fourier component of the
current-density operator becomes independent of the
fields to first order in E(r). J"'+"'„,+„, can then be
calculated wholly as a second-order perturbation.

Armstrong et al. ' and Franken and Ward' have
treated many aspects of nonlinear optical phenomena
and made quantum-mechanical calculations of the
second-order polarization. Both of these papers and the
other theoretical papers on the subject do the theory
applicable only in the absence of inversion symmetry.
For this case, the results of this paper are in agreement
with the literature.

r ' =qm —'
E,„/((up' —pp'). (2.4)

Using this solution, we And, for the second-order term

D II II
C1, ed]+oc)2 +/~A, COI+CO

2. CLASSICAL MODELS

A first view of the microscopic basis of the foregoing
phenomena may be obtained by representing the di-
electric as a lattice of charged harmonic oscillators with
appropriate refinements. For the case where the lattice
lacks a center of inversion, one makes the oscillator
anharmonic by the addition of a force quadratic in r,
the displacement of the charge' (though quantum
mechanically such a system is bound only metastably).
The equation of motion of the anharmonic oscillator
may be written

nt(d'r. /dt'+~p'rn)+X. p, rpr, =qL'. (t), (2.1)

on neglecting local-field corrections, Lorentz forces, and
space variations of the fields over molecular distances.
We let

E (t) =E,„,exp(kv, t)+E „,exp(i&os. t)+c.c. , (2.2)

and similarly,

= r ip'" +r „28'" +r,+ 28'~ " +etc.
+c.c. (2.3)

Fourier analyzing (2.1), to first order in E,„,

E= E„,expLi(a)rt —Ki r)j
+E„,expLi(psst —Ks r)j+c.c.

B=B„,expLi(cprt —Ki r)j
+B„,expLi(o)st —Ks r) j+c.c.

(2.7)

We expand the right-hand side of (2.7) in powers of
K r and, substituting the resulting series in (2.6), we
take the Fourier transforms of this equation. To first
order in K r (E—pp/c),

(q/tn)'( —E„,iKi E„,+i(&ps/c)E, x B,)
(ap (p&1+~2) )(~p 42 )

+a term interchanging the roles of 1 and 2. (2.8)

The Heisenberg equation of motion for r has a
solution, for the expectation of r„,+„„ identical with
(2.8) upon making the same approximations made
above.

The expression for P"„,+„, resulting from (2.8) is
identical in form with (1.2), since n(cu) = (q'/m)n
X ((up' rp')-',—~E„=—iKE. ; (a/at) E„=i(uE„.

P"„,+,=n((us)n(n t) (qn)
—'

X(—iK.E.,E„,+i((ps/c)E, x B„,)
+a term interchanging the roles of 1 and 2.

In the following two sections, the dielectric is still
represented as a lattice of identical, independent units;
but no assumption is made about the character of these
units, and the quadratic polarization due to such a
lattice is calculated in an essentially exact way.

a sum of terms like (2.4) with different cpp weighted with
different oscillator strengths.

In the limit co~0, ~P"s„/P'
~

=E„/Ep, where
Ep= (cusp')'/)tq. A lower limit for Ep, for highly asym-
metric molecules is about 10' V/cm, the magnitude of
atomic fields.

When inversion symmetry is present in the crystal,
there is no anharmonic force term. The Lorentz force
and the space variation of the electric 6eld now become
important in the equation of motion.

rz(dsr/dt +u r) =
qI E(r,t)+ (1/c) (dr/dt) XBj~ (2.6)

(q/m)sNX pr(F p, „,F~,„,+Ep, „,A~, „,)
M02 M 12 M02 M22 M02 M1 M2

2
(2.5) 3. LOCALIZED CURRENT DENSITY

AND HAMILTONIAN

The same result may be derived quantum mechani-
cally, treating (2.1) as the Heisenberg equation.
However, in contrast with the situation for linear polari-
zation, an arbitrary potential does not give this dis-
persion form, i.e., for a general system p p~&"'"» is not

I. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962).

r P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963),
Benjamin Lax, J. O. Mavroides, and D. F. Edwards, Phys.

Rev. Letters 8, 166 (1962).

We want to calculate the portion of the Fourier
component of the electron current density which is
quadratic in the exciting fields. The current-density
operator, in the two component Pauli spin space, at the
point r is'

J(r) =p,.((q/nt) [pr;,8(r—r ) I+Cp~ X (e;, 8(r—rf))
+ (p/m) (d/dt) ({pr;, 8(r r;) ) x e.;)—), (3.1)

9 I. A. Frenkel, Wave Mechanics; Advanced Generat Theory
(Dover Publications Inc. , New York, 1950), p. 322.
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where

~,=p,—(q/c)A(r, ); (A,B)=&(AB+BA) .

A(r) is the vector potential; p„ is the momentum
operator of the ith electron. The sum is over all S
electrons. The expectation of the first term in the
bracket on the right of (3.1) is simply the charge
density times the velocity of electron i. The second
term is c times the curl of the density of intrinsic
electron magnetic moments pe, . The last term is the
rate of change of the electric-dipole moments resulting
from the motion of magnetic dipoles.

Then a Fourier component of the current density is
the expectation of the operator

Jx= J(r) exp(iK r)dr

=P,f(q/m){~;, exp(iK r,)}
—cubi(K xa;) exp(iK r,)

+ (ti/mc) (d/dt)((~„exp(iK r,) ) x a~)j . (3.2)

Neglecting spin-orbit coupling, the Hamiltonian for
the electrons is H= Ho+H', where

Ho ——P,.pP/2m+ V(ri r, r), , (3.3a)

where

JK—P J(R)K (3.4a)

J(R)"=exp(iK R) P; ((q/m) f~„exp(iK r, ')}
cpiKx a; exp(—iK rt')

+ (tl/mc) (d//dt) (,~;, exp (iK r,')) x a;7. (3.4b)

H'= P,.L—(q/2mc) (p, ,A.(r);) —t(B (r,) ~ (r;

+qy (r,)+ (q'/2mc') A'(r, )$ (3.3.b)

The right-hand side of (3.2) contains some terms
linear in the fields, whose expectation to first order in
H' is at least quadratic in the fields. Furthermore, the
last term in (3.3b) is already quadratic in the fields.
We must therefore treat some combinations of terms
in H' and J" by first-order perturbation theory, and
some by second-order perturbation theory. The results
obtained in this manner are not easy to interpret if
the usual transverse gauge is used for the electro-
magnetic potentials.

If we use Bloch functions as our unperturbed wave
functions, our choice of gauge is limited to A(r), p(r)
periodic in r; otherwise, applying A(r) or (t)(r) to a state
will take us outside the domain of periodic functions.
In this paper, instead of using Bloch functions we shall

suppose that the eigenfunctions of the unperturbed
Hamiltonian localize each electron on a unit (atom or
molecule) of dimensions (r)((1/K. We then calculate
J(R)K, the contribution to the Fourier component of
the current-density operator from the unit whose center
is located at R, and then sum over all units of the system

The summation on j is over all electrons on the unit
located at R, and r = r;—R.

We can expand the exp(iK r') in (3.4b) in powers of
K r' and consider terms up to first power in (K r').
(We will hereafter drop the primes on r )T. his approxi-
mation is justified for our model in which the electrons
are localized. We get

z d
J(R)x= exp(iK R) g, q

—r;+—
q
—(K r, r,)

2 tA

—(q/2m)iK x (L,+)ri, )

+ (q/2mc)iK x (r, x A(r, ))

+(hq/2m)(K x a,)(K r,)

d/ d )id
+ (fiq/2mc')

~

—r, x a,+
~

——(K.r,r;)
dt's dt k2 dt

—~(kq/4xx') —((K x (L;—r; xA(x;)) x,)), (3 5)
dt

where L,=r, xp, is the angular momentum about R.
With the gauge described in the Appendix, in which
the potentials are explicit functions of the z' and are
distinct for each R, it is shown there that only the first
three terms on the right-hand side of (3.5) contribute
to the quadratic part of J(R)" up to first order in K(r)
or (p)/mc. At optical frequencies, K 10 ' cm ' and
these are of the same order of magnitude: (r) 10 ' cm,
K(r) 10 ', (p) 5/(r), (p)/mc 10 '. Consequently,
the operator J(R)" can be taken independent of the
fields.

J(R)x= exp (iK R) (dX/dt+ iK dQ/dt icK x M)—. (3.6)

The operator X=+;qr; is the total electric-dipole
moment of the unit; Q= 2iP; qr, r, is the total electric-
quadrupole moment and

M= (q/2mc) &&+;(r;x p;+ha, ),
the total magnetic moment. The sum is over all
electrons on the unit located at R.

It is shown in the Appendix that the portion of H'
acting on the electrons at R is linear in the fields to
order K(r) or (p)/mc, if the gauge introduced there is
used.

H'= pR H'(R),
H'(R)=g. L(X E.+iK. Q E.—B. M)

&(expi (e, K, R)je'" '—+Ox((Kr)')
+Hermitian conjugate, (3.7)

where the electromagnetic field is a sum of traveling
waves of wave vector K, frequency co . Therefore, the
contribution to Jx quadratic in the Maxwell field of
each unit may be calculated up to first order in K
solely by second-order perturbation theory.



NONLINEAR OPTICAL FREQUENCY POLARIZATION A731

TA))LE I.1 (R) +~+Em= exppT(&p&+&d2) t+hhl+(12 j times the sum of
the elements in the left-hand column. The numbers 1 and 2 under
the heading "Perturbations" refer to the frequencies of the per-
turbing Qelds.

Contribution toJ (R)K~+x

(1) E»E»p» 1&» "»
(2) B&~B211' &,

&"' "»
(3) E»B»P~,b&»»)

(4) 2(E&,+E2.)E2~EghZ, ~h
"»

(5) tA2hE2, E&A,hl&» "'
(6) 2E,hE&~L&2bd~~hl&» "»

(7) 2(+&p+Qop)E&yEobt&~p $& 1 2

a =dX/dt
b =2K dQ/dh
c=icKXM

Perturbed Perturbations
quantity 1 2

d= —EX
e=iK R-Q

f= —B.M

4. CALCULATION OF THE POLARIZATION CURRENT

Ke may write the linearized perturbation as

H'(R) = +&2(H, ' exp(i&0.t)+H. 't exp( —i&0.t)), (4.1)

and assume that the fields causing the perturbation are
turned on exponentially slowly at t= —~, when the
system is in the eigenstate of Hp,

I
0).

The expectation of an operator G may be expanded
in powers of the perturbation at time t:

&G)
—G 0+G &1)+G (2). . . (4.2)

where Go("=&0IGI0).
The superscripts stand for the powers of II' which

appear in each term. Let I22) be the eigenstate of Hp
with energy )2&0, and let o) Wo)~, &p~+o)b If the.
operator G is time independent in the Schrodinger
picture, and independent of the fields responsible for

For the part of the perturbing field which is a sum
of two traveling waves, with wave vectors Kl, K2 and
frequenCieS &01, &02, the COrreSpOnding part Of (J(R)")
that is bilinear in the fields will have the form

&J(R)x&„,+„2——Cx„,+„,expiL(K —Kl —K2) R

+ (&Pl+%2)t+01182j p

where Cx„,+„, is a constant independent of R. After
performing the sum indicated in (3.4a) we find

&J")„,+„,——0, unless K= Kl+K2 when (J"'+"')„,+„,
=1)hCE'+xo„,+„, where, 1V is the total number of units.
Similarly fOr &01

—o)2, Kl —K2, etC.

COnp Cva COb O) lO M b

Xexp (i (o).+&0 b) t) . (4.4)

H', is simply the contents of the square bracket of
(3.7). For G we take the first three terms on the right-
hand side of (3.5),

/d
J(R)"=I —X+i—K Q —icK)&M

I exp(iK R). (3.6)
rdt dt

Table I collects the terms of interest contributing to
&J")")„,+„,. Any combination of terms from H' and
J(R)x missing from the table is down by a further
factor of E&r) or &P&/mc. In a'll the expressions which
follow, calculations have been made using real wave
functions for the eigenstates

I
22) (i.e., we have excluded

spin-orbit coupling) and on the assumption that

&ol& ~ Io)=o. (4.5)

The first term in the left-hand column of Table I is
the standard electric-dipole term of zeroth order in
E&r&. It is the only one which vanishes with inversion
symmetry. It corresponds to the polarization calculated
with the anharmonic oscillator model in Sec. 2, but the
result does not necessarily reduce to a sum of terms
like (2.4). We find

the perturbation, then

&o I
G

I ~&&~ IH'-
I

o&
Gp(1) =Q

)2(&pep+0)u)

&~IH'.t Io)*&~IGl o)
exp(i&pt)+c. c. . (4.3)

~ (0)no o)a)—

The prime over the summation means e/0 throughout.
The expression in the square bracket of (4.3) is the
linear response of &G) to the perturbation at frequency
Mg.

I et two distinct perturbations of frequency co~ and
A&2 be present. The portion of Gp('~ which oscillates at
frequency o)1+&02 is then given by

G( p, &+ 2= G 0,12+G 0,21 y

where
&&IH'.1

I
0)*&~IGIt&&tlH',

I o&
«')o, . =(1/&') 2 2-

Ceno —
CO~ COlo b

&~IH'.
I
t&*&tlH'b'1o)&ml Gl o&

0Jlp —&b ~„0—~,—~b

&o
I
G

I ~&&~ IH'.
I t&&I I

H',
I o)

(2i )( -&o
I
x,

I ~)&~ I
x.

I t&&t I x„lo&

h) p 2
' —

I
l(&pi+&02) E& 2 (&phoo) o

—o)io)2)
&sr &no 2 &lp &1

GOnP
—Gly Gd g COlP

—
Gdg

&0l x-I ~&&~lxp lt&&tl»lo& &o I &-I &)&& I x.I t&&t I
x2 I 0&(~.~&0+~2(~1+~2))—

(0) p&0&O+&P1(&01+0)2))+
(~ 0 ()1+0)2) ) (&Pho &Pl )

(4.6)
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The following terms are the significant ones for a system having a center of symmetry. We have

t 2i) -(o
I
x,

I ~&(~I x.
I t&(f

I
m,

I
o&

I' i'"'""=I—i(~1+~2) QE+n (~1@ED ~2~no)
Ea) M»p —M1 Mtp —M2

(olx. l~)(Nlx, lf&(r l~„lo) (olx„l~&(~lx, lf&(tie, lo&
M2 M»O Mgp M1Mgp- (Eoi(Eo 0+Eoio)+EdsEdE0) ~ (4 7)

02 M1 M2
2 Ml02 M22 M„p —M1 M2 M]p —Mi

If we set Eoi
——0, Eos=Eo, in the second tenn of Table I, the result, B,XI'„,i(O,Eo) is ico times the part of the linear

polarizability tensor in a static magnetic Geld which causes the Faraday rotation. ' Similarly for term (3) with

M2= 0.
The fourth term represents the curl of the density of magnetic moments induced at frequency Eoi+Eoo. It is

-(olx, l~)(~la, ll&(f x, lo)
e~~E, QE gn (EoEoEos—EonoEoi)

E5' — (co~0' —oos') (»0' —oEP)

(o I
m, I ~&(~ I

x,
I f&(f I x, I

o o
I
m,

I ~&(~l x, if&(ii x,
I

o&

( Eoi(oElo+ 200)+ EnoOElo)+ ((Edl+E02)EoEO+Eosiono) 1 (4 8)
M»0 —M1 M2 M )0

—M2

where e,), is the I evi-Civita tensor.
Terms 5 and 6 in the table come from the rate of change of the expectation of X due to the perturbations —E.X

and i7E Q. We find

(2i) (olx i~&(»lx- f&(flQ„lo&
& 0""'""=I—i(~1+~2)Z ZEn (~E~no ~1~2)

E,a) M 02 M12 M l02 M22

(o I
x.I ~&(~

I
x,

I f&(z I Q„l o) (ol x.l~&(nl Q„le&(six, I o&

(oonooEEO+ (Eoi+E02)E02)+ (Ednooiio+ (Eol+Eos)col) ~ (4 9)
Mno M1 M2 M lo M2 M no M1 M2 M Lo M1

The last term in Table I is the time rate of change of the divergence of the electric quadrupole density, induced

by —E X. We find

(2i) (o I
x~ I ~&(~l Q-0 I»«l» I o&

EEVER I
I(Eoi+E02) ZE Zn (EonoEoEO Eolcoo)

&v) 2 M2 M
2 M2

(oIQ-El &( lx. lf&(fix Io) &ol Q., I ~&(NI x, is&(il x, I o)
(EonoMEO+ (Eoi+E02)Ed2)+ (Eonoioio+ (Eoi+Eos)ooi) ~ (4 1o)

MnO —M1 M2 Mlp Mnp —M1 M2 M~0 —M1

The sum of terms (2), (3), (5) and (6) calculated for a
one-electron harmonic oscillator should be identical
with (2.8) multiplied by i(Eot+Eoo). This is indeed the
case. Terms (4) and (7) are not included in (2.8)
because this expression is the result of calculating
(i(ooi+Eos))

—'(J(R)) t'E„,+, rather than

(i(~i+»)) '(J(R) &"'-+-'
The forms of the terms in column one of Table I

evidently confirms the conjectures made in Sec.
about the possible types of vector products which
make up quadratic polarization in media with inversion
symmetry. Terms (2), (3), and (4) correspond to the
first ("Faraday" ) term on the right of (1.1), and (5),
(6) and (7) to the second ("quadrupole" ) term on the
right of (1.1), though terms (4) and (7) of the table
represent eBects not described in Sec. 1.

Our calculation predicts the experimentally observed
phase relations between the symmetry-dependent and
independent parts of the quadratic polarization. For
real wave functions, X and Q have real matrix elements,
and the orbital part of M has imaginary matrix ele-
ments. The spin part of M makes no contribution to
J(R)x, in the terms enumerated in Table I."Therefore,
we see by inspection that I' is imaginary, 2, 6, and A

are real and p is real. Thus, the polarization due to
terms (2) through (7), which is present whether or not

"Each term of the quadratic olarization contains products of
three matrix elements (0~& ~l)(/ 8 ~EE)&tE

~

6
~

0). From Table I, we
find that at most one of the operators contains the total spin
operator (through 3f). If we have zero spin-orbit coupling, the
states are products of orthonormal spin and space functions, and
the two operators which do not contain the s in leave the spin
part of the state ~0) unchanged. Since (0~S 0)=0, ali matrix
elements of S which appear in these expressions vanish.
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.there is inversion symmetry, is s/2 out of phase with
that due to the first term, in accordance with
experiment. '

Since X, Q, and M are sums of one-electron operators,
if Slater-determinant wave functions are used, (4.6)
through (4.10) may be expressed in terms of matrix
elements of the component one-electron functions. In
this case, the excited many-electron states, ~ri), will

each have one excited "conduction electron" and one
excited "hole."The terms of (4.6)—(4.10) will have, as
factors, matrix elements between different hole states
as well as between electron states.
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APPENDIX

I et the electromagnetic potentials in the conventional
gauge be

The first term in L ] of (3.3b) is of first order in

(p)/mc, so that we need only consider the zeroth power
in its expansion in powers of K r'.
—(q/2mc)g. {p;,A. (R,r )}

= —(q/2mc) P.B. (r,' xy, )
Xexpi((u, t—K, R+8,)+H.c. (A5)

The second term on the right of (A2) has been neglected
because it is of order E'(r)'.

The last terin in the square bracket of (3.3b) is
quadratic in the field and gives mixing effects when
taken as a first-order perturbation. Comparing the
part of the expectation value of an operator, G, to
second order in the perturbation —qr'. E with the part
of first order in (q'/2mc')(r'xB)', we find that the
latter is smaller by a factor of order hE/mc', where
AE is a representative excitation energy of the system.
We can therefore neglect the term (2mc') '(qA)' in
our gauge, since AE/mc' 10 ' and E(r) 10—'.

To first order in E'(r) and (p)/mc, (3.3b) becomes

A'=g, A, exp'(&o, t—K, r)+c.c. ,

p'= 0, (A1)

II'=JR p.L
—X E.+iK. Q E.—B. Mj

Xexpi(K, R+8,+&a,t)+H.c. , (3.7)

where the A, are constant vectors J K,. The sum is over
Maxwell waves with electric fields (m, /c)A. and mag-
netic fields iK xA-..

We transform to a new gauge (A,P) given by

where

X=&;qrt', Q=-,' g; qr, 'r, ',
M= (q/2mc) P; (L,+tts, ).

A (R,r') = A ' &'{(r—p'A p')

rp (Ap &pr A )}
=-', (r' xB) +-,'rp'r, 'g '&p'A, ', (A2)

P(R,r') = (1/c)(d/dt)(rp'r '& p'A ' r, 'A ')—
r'(E ,'rp'~—p'E. ) . —-(A3)

On substituting (A1) and (A3) in the scalar potential
term of (3.3b), expanded in powers of K r' to first
order, it becomes

qy(R, r,')=qP, L
—r,'.E.(1—-,'iK. r,')

Xexpi(cut —K, R+8,)
+Hermitian conjugate$. (A4)

The fourth term of (3.5) is of first order in the field;
thus, we must investigate its expectation value in
first-order perturbation theory. With —qE r as the
perturbation, the expectation of this term in erst order
is smaller than that of qdr/dt in second order by a factor
AE/mc'~ 10 ' which is 10 ' times E(r). Since
E a&/c and (e) 1, the fifth term of (3.5) is smaller
than the term of zero order in E(r) by a factor Ace/mc'

10 ' at optical frequencies. The sixth term in (3.5)
also contains a factor which makes it 10 ' smaller
than the term of zeroth order in E(r). The last term
is her/mc' smaller than the third term in (3.5) and
may also be neglected. Thus we need consider only the
first three terms in (3.5).


