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Dynamics of Degenerate Electron Gas in a Magnetic Field. *
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Some aspects of the correlations between interacting electrons in a magnetic Geld are studied by a quan-
tum kinetic approach, taking into account the quantization of the orbital motion of the electrons. The
treatment is based on the introduction of an hierarchy of equations of motion for the s-body density matrices
and employing a decoupling scheme, valid in the self-consistent field approximation. In this way the dielectric
function is introduced "naturally, " and the response of the system to an applied field is calculated. The
dielectric function reflects the two main effects of the correlations, i.e., the collective excitations of the
system and the dynamical shielding. The dielectric function plays a role also in the "dressing" of the inter-
acting electrons. This is shown by calculating the spectrum of the density fluctuations and the equation
which governs the approach to equilibrium of the system. The method is not limited to systems in thermal

equilibrium, but also applies to systems in other stationary equilibrium states.

I. INTRODUCTION

'HE properties of a system of noninteracting
degenerate electrons in strong uniform magnetic

fields have been studied by many authors. "The main
features of this system are the oscillations of the thermo-
dynamic quantities in the magnetic Geld. The novel
effect of the (strong) magnetic field on the electrons is
the quantization of the orbital motion. The effect of the
orbital quantization is important, when the energy
associated with this quantization is of the same order
or larger than the average kinetic energy per particle.
That is, when Sco,&E+, where ~, is the cyclotron fre-
quency of the particle and Ep is the Fermi energy. The
question arises as to how the presence of the interaction
between the electrons would affect the various properties
of the system in magnetic fields.

Recently, attempts were made to include the Cou-
lomb interaction and to study its influence. The case of
the Fermi liquid model in thermal equilibrium was
studied by Bychkov and Gorkov' and others4 neglecting
the long-range part of the Coulomb interaction. Some of
the properties of the ground state and low-lying excita-
tions of an interaction electron gas were studied by
Kohn. ' Some properties of the interacting electron gas in
thermal equilibrium, especially the plasma oscillations
in magnetic Geld and their effects, were investigated by
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Stephen, ' Akhiezer' and Zyryanov. ' Stephen' ap-
proached the problem of plasma oscillations by employ-
ing a technique, which is originally due to Montroll and
Ward, ' and made connections with the classical treat-
ment of plasma oscillations. Akhiezer' generalized
former work on the energy loss of a test particle to the
case of strong magnetic Gelds by the method of tempera-
ture dependent Green's function technique. Zyryanov'
adopted the self-consistent Geld approach of Khrenreich
and Cohen" to derive the dispersion relations for plasma
oscillations in high magnetic Gelds, but made some un-

necessary approximations in his calculation. "
The present paper is concerned with some aspects of

the Coulomb interaction between electrons in a strong
uniform magnetic Geld. The treatment of the interaction
is restricted to the domain of validity of the random
phase approximation" or the self-consistent Geld ap-
proach (SCF).'s The magnetic 6eld is assumed to be
strong enough, so that the quantization of the orbital
motion of the electrons takes place. The magnetic inter-
actions and retardation of the Coulomb interactions be-
tween the electrons are neglected, and a homogeneous
positive background is assumed for average neutrality.
The method of approach is a generalization of the well

known one, employing in the investigations of classical
systems of interacting electrons, namely. the kinetic
approach. This quantum kinetic method, which was

developed in a previous paper" (hereafter referred to as

' M. J. Stephen, Phys. Rev. 129, 997 (1963).
z I. A. Akhiezer, Zh. Eksperim. i Teor. Fiz. 40, 954 (1961)

[English transl. : Soviet Phys. —JETP 13, 667 (1961)j.
s P. S. Zyryanov, Zh. Eksperim. i Teor. Fiz. 40, 1065 (1961)

LEnglish transl. : Soviet Phys. —JETP 13, 667 (1961)j; P. S.
Zyryanov and V. P. Kalashnikov, Zh. Eksperim. i Teor. Fiz. 41,
1119(1961)[English transl. : Soviet Phys. —JETP 14, 799 (1962)j.

' E. W. Montroll and J. Ward, Phys. Fluids 1, 51 (1958).
zz H. Ehrenrich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
' ' It has been brought to our attention that John J.Quinn and

Sergio Rodriguez LPhys. Rev. 128, 2487 (1962)j have been investi-
gating the same problem."D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
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I), is a suitable one for the study of both thermal
equilibrium and quasistationary equilibrium.

In Sec. II we recall the formal development of the
hierarchy of equations for the density matrix, as was
derived in I.The truncated set of equations, for the one-
electron density matrix and the two-electron correlation
function, is given in the SCF approximation. A proper
representation in terms of the "Landau states" is
introduced to take account of the quantized orbital
motion of the electrons in the magnetic 6eld. In Sec. III
we present calculations of the dielectric function,
dielectric tensor, and the density-Quctuation spectrum
of the system. These functions are calculated by the
kinetic method for the case, where the electrons are
known to be distributed among the "Landau states" in
a given "diagonal" distribution function. (Fermi dis-
tribution is the one which corresponds to the special
case of thermal equilibrium. ) A concept of a "dressed"
electron is introduced in a natural manner, to account
the the cloud of the Landau electrons, associated with a
given "test electron" due to the Coulomb interaction in
the SCF approximation (compare with Rostoker's and
Ron'4). The spectrum of density fluctuation is obtained
by virtue of an ensemble average of free dressed elec-
trons. Section IV deals with the derivation of an
irreversible kinetic equation for the Landau electrons.
A method developed in I, which is similar to the one
originally used by Dupree, "is adopted here, with slight
modi6cation, to solve the integral equation for the
correlation function. The kinetic equation governs the
approach to thermal equilibrium of the Landau electrons
by virtue of both the individual and collective aspects
of their interaction. We conclude our paper with a brief
discussion of the results (Sec. V).

II. HAMILTONIAN FORMULATION

We consider a system of S electrons in a unit volume
with a mass m and a charge +e. The electrons interact
with each other via Coulomb potential v(r) =e'/r and
move in a constant magnetic Geld B. A neutralizing
positive background is assumed. In the second quanti-
zation representation the Hamiltonian of the system
reads (with @=1)

8 e
drat. &(r) —i—-A(r) ~t.(r)

2ts ty — Br c

~
i +Tt —~F„(1,1') =P drsWtsF„„(1.2; 1',2), (4)

( 8

Eat i ' ' .a

and

~
i +Ti+T—s Wts ~F.—.., (1,2; 1',2')

Bt

drs(Wts+W„)&„„.,(1,2,3; 1',2', 3) etc. , (5)

where T;, W,;, and W„stand for

T-=
28$

8—i —-A(r;)
Br; c

8 —A(r,'), (e)
Bfs C

aIld
W;;= v(r, —r;)—v(r, ' —rj'),

W;;= v(r;—r;)—v(r,'—r;) .

(7a)

(7b)

If Eqs. (4) and (5) use has been made of the equations
on motion for the P operators

8 e
i—It.(r) = i—-A(r) p. (r-)

Br c

and position r, satisfying the usual anticommutation
relation, and A(r) is the vector potential corresponding
to the uniform B field. From here on, our formal
development proceeds in close analogy with that of I,
and for completeness we shall give brief review of it.

The one-electron density matrix is denoted by

P„(1,1')=F„(ri,ri', t)
=Tr(~., (r,',tit.,(r„t))

= 9" '(1')f. (1)), (2)

where the Heisenberg representation for the operators
is used, and D is the time-independent density matrix
of the whole system. The two-electron density matrix is
given by

F„.,(1,2; 1',2') = Q.,t(1')f.,t(2')P„(2)f„(1)), (3)

and higher order functions may be de6ned in the same
manner. The equations of motion of the F's are

where f,t(r) and iP, (r) are, respectively, the creation
and annihilation operators of the electrons with spin 0.

's N. Rostoker, Phys. Fluids 3, 922 (1960), and Nucl. Fusion 1,
101 (1961).

"A. Ron, Phys. Rev. 132, 978 (1963)."T.Dupree, Phys. Fluids 4, 696 (1961).See also P. A. Wold,
Phys. Fluids 5, 316 (1962).

+P dr'v(r r')f; (rt')f;(r')f.—(r) (&)

and a similar one for ft.
We now introduce a proper antisymmetrization

operator.
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where I';g, permutes the r; and r~, and deGne new func-
tions by means of

F„...,„(1, n; 1' n')
=y f.. .„(1 n; 1' n'). (10)

We also use the truncation scheme of I, which is
originally due to Bogoliubov, by introducing a genuine
two-electron correlation function

g„„(1,2; 1',2')=f„„(1,2; 1',2') —f„(1,1')f„(2,2'), (11)

and approximating the three-electron function by

f"~ (1,2,3; 1',2', 3') = II f.;(', ')

PSII'S

In the Coulomb case, under the self-consistent Geld ap-
proximation, we obtain the coupled set of equations

8
i—+Tv—p «2Wuf, (2,2) f,= — «2Wi2f, (2, 1')f,(1,2)+p drqW~2g„„(1, 2; 1',2),
Bt 0'2 0'2

(13)

8
i +Tg+—T2 Q—dr8(Wg3+W23) f.,(3,3) g.„,(1,2; 1',2')
Bt 0'3

dr3(W~8f. , (1,1')g...,(2,3; 2,3)+W2sf (2 2 )g (1 3; 1' 3)j

= W&2f., (1,1')f., (2,2') — dra)W&3f„(1,1')f., (2,3)f., (3,2')+ W23f„(1,3')f„(2,2')f„(3,1')j. (14)

We wish to point out that the terms on the right-hand
side of Eq. (13) are, in the self-consistent Geld approxi-
mation, small compared to those on the left-hand side.
A detailed discussion of this subject was given by
Guernsey (see also I).

To make further progress, we notice that our set of
equations, Eqs. (13) and (14), is a complicated differ-
ential-integral equation in the configuration space, and
a change of representation is called for. A proper
representation is, undoubtedly, the so-called "Landau
representation, ' "'where the electrons are Grst subjected
to the magnetic Geld and then interact with each other.
Introducing the Landau gauge, with B in the s direction,

A(r) (O,Bx,0=—), (15)

the Schrodinger equation for an electron reads

B
+I —i—x ~+, 4 «)=+ 4 «)

2m Bx' (By c

E~.'„=co, (n+ 2)+p'/2-m (20)

The eigenstates of Eq. (16) are

p (r) —=
~
cL)=

~
n, p, q) = (2m) 'e'~ +'~~@„(x q/m—,), (21)

where 4 are the orthonormal set of eigenfunctions of
the harmonic oscillator. The boundary conditions we
impose on the wave function are the usual ones, namely,
periodicity in the y and s directions and rejecting
boundaries in the x direction (the border region may be
neglected). The number of states belonging to given
n and p (per unit volume, and regarding p as
continuous) is

n = mu. /(2vr)', (22)

where the cyclotron frequency ~, is

(u, = eB/mc.

Equation (18) is the wave equation for an harmonic
oscillator with the energy eigenvalues

Noticing that s and y are cyclic, we write

y. (r) =

exp�(ipse+—

iqy)N. (x),
2' 4.(r)=Z-4-(r)~-. , (23a)

apart from spin. Finally, the proper representations for
P.(r) and f.t(r) read

(17)

and the equation for I (x) is

1 8' m q )'
+—~' x-

~
N. (x)

2m ax'

=i E ig (x), (18)
2m/

and

P.t(r) =P.y.*(r)a.,.t, (23b)

where the summation goes over all n—=n, p, q, and a t,
a are, respectively, the creation and annihilation
operators for the Landau states. In particular, we shall
be interested in the distribution of the electrons among
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the states e, that is, in operators we have abbreviated by

f.(n) =(g,tg, )= «,«,'P (r&')P *(r&)f,(1,1'), (24) (n'I ~(r,f ) ln) = «e- *(r)I'I r, —~—le-(r). (»)(
ari

with the normalization

S=Q f.(n). (25)

III. RESPONSE FUNCTIONS

We consider now the system of electrons under the
influence of a driving force. The assumption is made that
the latter causes only small eGects and that the system
responds linearly.

A. The Dielectric Function

(~(~/~~)+2'~ —LV(1)—V(1')3)f.(lil') =o i (26)

where

V(1)=g «g (r& —rm) f„(2,2)

is the self-consistent Geld. If we now linearize Eqs. (26)
and (27) around a "diagonal" distribution

Before we turn to the calculation of the dielectric
tensor in a magnetic Geld, it is convenient to derive, in a
simpler way, the longitudinal component of this tensor,
which is, sometimes denoted as the "dielectric function. "
We shall adopt this terminology in the present paper.
The simple derivation of the dielectric function serves
here just to illustrate the connection between the collec-
tive excitation of the system and the self-consistent
Geld approach.

We consider only the left-hand side of Eq. (13) and
write it as

We wish to point out that~f, ~o&(n) is not the thermal
equilibrium Fermi distribution, but any stationary dis-
tribution of the electrons in the e, p states. In particular,
one can substitute for fo the Fermi distribution.

The solution of Eqs. (29) and (30) is straightforward.
We perform Laplace transformations of both equations,
substitute f"' from Eq. (29) into Eq. (30), and dis-

carding the initial f&'& we obtain

V&, =v&, Q V&, Q ( nle'"'I )n
gt aa'0

, f."'(n') —f."'(n)
&&(nl & '""'In'),(32)

~a' ~a

where 8 is a small positive convergence factor. Now, we
notice that both f,'(n) and 8, are independent of g, and
therefore the summation

P(n'I e"'ln)(nl e-'""'ln')
qq'

qq

where (compare to Akhiezer')

H„„(x)= dsIO)x(s)'~']e 'L (s)L„(s), (34)

P„=k.B/Ii, P,=k xB/8; (35)

can be carried out first. We reserve the algebra for the
Appendix and state only the result

where f &'&(n) is assumed to depend only on N and p
of 0., we obtain

Io(x) is the Bessel function of order zero, 8 is the
Kronicker symbol, and L„(x) is the Laguerre poly-
nomial. Finally, the equation for the self-consistent Geld

reads
L~(~/~&)+~- —~-jf."'(n,n')

Zk vie(nl & "'In')I f."'(n') —f."'(n)3, (29)
D(k,ar) V&, 0, —— (36)

and two, ( 2 ) ~&2

(30) D(k,M) = 1—
v&i g H

km .i
In Eqs. (29) and (30) we have denoted by f"' the
perturbed density matrix (in the n representation), and

by e& the Fourier transform of e(r),

f.'(n', p+k, i) f.'(N,p)—
XZ (37)

+n' 2&+kff +n, y

is the dielectric function in a magnetic field. This func-

«e'"'v(r); tion was studied by Akhiezer, ~ and we have merely
presented here another method for deriving it, which is
in the spirit of the present work. We should mention

matrix elements of any function F(r,p) of. the particle here a paper by Zyryanov, where a similar method was
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employed, but the author failed to obtain the correct
dielectric function of Eq. (37), due to some unjustified
approximations he made in obtaining th|: matrix
(a'I e'"'I n). Equation (37) may be also considered as a
generalization of Akhiezer's thermal equilibrium result
to more general stationary situations.

It is now clear from Eq. (36) what is the origin of the
name dielectric function. As usual, the equation
D(k,co)=0 represents the condition for self-consistent
longitudinal collective oscillation in a magnetic field.
The real part of this equation amounts to the dispersion
relation, while the imaginary part of D(k, cv) represents
the generalized Landau damping of plasma waves in a
magnetic field. It is not the purpose of our paper to study
the properties of the dielectric function, but rather to
use it for deriving diGerent results. However, we restrict
ourself from now on to the case where f,'(a) is such
that the collective oscillations are damped in time and
do not show instabilities.

In terms of the Landau's representation, Eq. (41) reads

Li(8/ctt)+E Ej—f,&'& (n u')

& '( )4' *( )LU( )—U( ')1

XP 4.,*(r~')4., (ri)f.&"(n,), (43)

where p is given by Eq. (21).
We turn now to the introduction of the induced

charge density and current. The charge density operator

p(r) =eP, P.t(r)P. (r)

yields, for the (induced) charge density,

p(r ) =e Z f.'"(1,1')

=e Q g .*(r~)4 (r~)f.&' (n, n'), (45)
o'era'

3. The Dielectric Tensor

In an electron system, the presence of a magnetic
field produces coupling between different components of
the current, induced by an electric field, and the
components of the latter; that is, electric Gelds induce
currents which are, in general, not parallel to the Gelds.
This is usually expressed by a dielectric tensor e(k, s&)

defined by the equation

j(k,a)) = (icy/4m)l s(k,ce) —11 E(k,u)), (38)

in terms of the Fourier transforms of the induced
current j and the prevailing field E.

In order to calculate the dielectric tensor, it is con-
venient to start from the gauge invariant Hamiltonian

H = dr/. t (r)

p (k) = e Q (u'
I

e'~'
I u)f.~" (u,u') . (46)

In a similar way, the current operator,

j(r) =
2m 0'

de).t(r') p' —-A(r') b(r —r')

+8(r—r') p' —-A(r) P.(r), (47)

yields for the (induced) current

j(k)= jo(k)+j~(k), (48)

under the assumption that before applying the perturb-
ing field the net charge density vanishes. The Fourier
transform of p reads

X f (2m) 'I y —(e/c)A(r) j'+ex(r) jf,(r), (39)

where p-+ i(8/ctr), —y(r) is the scalar potential, and
the vector potential A(r) is given as

A(r) =Ao(r)+A~(r), (40)

where

and

jo(k) =—e2

Z(nl e"'A~(r) Iu)f."'(u) (49)
mc tra

where Ao(r) corresponds to the uniform magnetic field
B. If we further assume A~ and y to be small, the
linearized equation for the density matrix takes the
form

Li(8/cjt)+ Tgjf.&'& (1,1')
= LU(1)—U(1')gf, &'&(1,1'), (41)

where T~ is defined by Eq. (6), f,&'&(1,1') is given by
Eq. (28), and

e
U(r) = — p —-Ao(r) A~(r)

2mc c

h(k) =—2 (u'le'"' p—Ao(r)+- lu)f. "'(u,u'),
fg 0', cd% c 2

(50)

(51)E(r,t) = E(k', cu) e—'""+"',

where the definition of the matrix elements is given by
Eq. (31), and the assumption of zero net current )for
the distribution f, (n)7 is invoked.

Now, since our linearized equations are gauge
invariant, we choose the gauge where y(r) =0, and the
vector potential A& is determined by the prevailing
electric 6eld

+A, (r) y —-Ao(r) +ex(r) . (42)
namely

A, (k', (o) = i(c/(o) E(k', (o) . (52)
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Substituting Eqs. (52) and (51) into Eqs. (42) and (43), we obtain the stationary solution

e e k'- f,("(n') —f.(') (n)
E(k' ) ('i '""'

p—A+—
i

)*
5$07 c 2 - E~& E~ co z6

(53)

where the asterisk stands for the complex conjugate, and 8 is a small positive convergent factor. Further, the
induced current LEqs. (49) and (50)j is

e'cV 2 e
j(k,o)) = —i E(k o)) —i E(k',o)) g (n'~ e"' p —-A,+—~n)*

584) tS Q) 0 «' c 2

f (()) (a') f (0) (—a)
X(n'~e"' p—-Ap+ —~n), (54)

C 2 E~& —Ertt —M —$$

where use has been made of Eq. (25). Following a procedure similar to the one which leads from Eq. (32) to
Eq. (37), we can write the dyadic

P(n') e'"' p —-A()+— ~a)(n~ e'""'
p —-A()+—~n)*=ma&eh), ),e5&e &+knF„ne&(k)F~~ &*(k),

ee G 2 G 2

where, with e„e„,e, the unit vectors in the x, y, z directions,

a
F .,(k)= d e'x"'

X(
—x

~

ie e„xe—x+.—e p+ ~X. (x),
mo), ( ax 2)

(56)

and C „(x)are the harmonic oscillators eigenfunctions. Finally, we employ Eq. (38), and with Eqs. (54) and (55),
we obtain the dielectric tensor

( o) '
M ' o) f,"'(I', P+k(() f,"'(e,P—)

e(k,o)) =
I

1— 1— —P F„„.„(k)F„„.„*(k)
o&s 1V mn'p E„,, „pa„E„,„o)— — (57)

defined by

5(k,o)) = 2 Re5+(k,o)), (58)

dte'"'()s(k, t)n( —k, 0)+e(—k, 0))s(k,t)), (59)

where o)~'= 4s.e'E/m is the plasma frequency.
%e do not intend to study here the properties of the

dielectric tensor, but merely to present a method of
deriving it from the equations of motion of the density
matrix. However, we wish to point out that by using the
equation for the continuity of charge, Bp/N+Bj/Br=0, 5+(keo)) = (2-V)

and the Schrodinger equation LEq. (16)j one can show
that the dielectric function D(k,o)) of Eq. (37) is, indeed,
the longitudinal component k e(k,o)) k/k' of Eq. (57).

C. Syectrum of Density Fluctuations

In the theory of linear response of a many-body
system, the Fourier transform of the time-dependent
density Quctuations, introduced by Van Hove, "plays
an important role. We wish to present here a simple
method of deriving it in the case of electrons in a
magnetic Geld. The method is based on the introduction
of the so-called "dressed electrons, " i.e., the electrons
with their associated clouds. '4

The spectrum of the electron-density fluctuations is

"L Van Hove, Phys. Rev. 95, 249 (1954).

Re stands for the real part, N(k, t) is the spatial Fourier
transform of the electron-density operator, and the
( ) is taken in the sense of Eq. (2).A standard method
of calculating Eq. (59) is the Green's function technique,
which is limited to thermal equilibrium (and zero tem-
perature), and it is essentially given by Akhiezerr in his
study of the problem of the energy loss of a charged
particle moving through the system, while in thermal
equilibrium. Our approach to the problem, which mak. es
use of the "dressed particle" method, covers a wider
range of situations, namely, systems in stationary states
of the one-particle distribution function.

Consider a test particle, with the same properties of
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the electrons, embedded into our system. If we assign
to the test particle, in the given magnetic Geld, the
Landau states P and P', it will interact with the electrons
of the system, via the potential (energy)

fluctuation reads

y„„(k,t) =»(g l
e'"'rl p)ap tape"pp'-~p" (60)

where np~, ap are the creation and annihilation operators
of the test particle, and Ep is the associated energy.
Assuming the system to respond linearly to the small
perturbation caused by the test particle, we can write
the equation for the density matrix as

+f.&" (N, p)(1—f.&"(e', p+k„)]}. (65)

This is our result for the spectrum of density Quctuation
in a uniform magnetic Geld, in the self-consistent Geld
approximation. Its wide variety of applications is well
known and we do not consider them here.

=Lf."'( ') —f "'(n)j Z»& le '"'ln')

X{ P (ni'le"'lni)f. "'(ni,ni')

+(|i I

e" 'I P)ap'ape't '

e &"(k t) = Q (n'
l
e'"'

l n)f &'l (n n')
omar

(62)

which yields, upon solving Eq. (61),

where we have skipped over some steps, which are
similar to the derivation of the dielectric function. The
stationary cloud associated with the test particle is,
thus, given by

IV. KINETIC EQUATION

In the present section we consider the problem of
deriving a kinetic equation for the electrons in a uniform
magnetic Geld. ' ' This task is accomplished by solving
Eq. (14) for the correlation function g in terms of the
f,(1,1'), and substituting the result into Eq. (13) to
yield an equation for f, itself. We shall follow closely the
approach investigated in I, with appropriate modiGca-
tions to suit the present problem.

The first step is the transformation of Eqs. (13) and
(14) to the proper Landau representation. We restrict
ourselves to a derivation of a kinetic equation for the
distribution function f,(rt,p) of the electrons among the
states speciGed by E„,„.Thus, we assume that in Eq.
(11)f is represented by

tnt) c 'Vrc
1/2

I&'& (k, t) = p H„„,
2s. D(k, Ep Ep) ' km—o&.

f.to& (n', p+k„)—f.'(tz, p)
X .y E E Ep +Ep —i8— —

f,(1,1')=P y *(rt')y (ri)f.(n), (66)

while g takes care of the "oG-diagonal" elements,
namely

X(P l
e'~']P)ap tape'eP' sP" (63) Xmas(rs)$4)(ri)grriug(nl, nsi ni )ns ) (67)

where D and H are given by Eqs. (37) and (34) respec-

tively, and f,'(ts, p) is the stationary "diagonal". dis-

tribution function of the (field) electrons.

We now consider the test particle with its associated
cloud as a "dressed electron" with the assigned Landau
states P' and P; hence the corresponding density
operator reads

rt(k, t) =(p'l e'"'l p)ap tape'&~p' ~p '+I '&(k, t)

e'~~~' —E~) 'up ~up.
D(k, Ep Ep)—

If we substitute Eq. (64) into Eq. (59), consider the

average ( ~ ~ ) as taken over "free" dressed particles,
and remember that we deal with fermions, the spectrum

without restricting a priori the dependence of
g~„,(ni, ns ', nt', ns') on the n's. Ttus scheme of approxima-
tion will be justified a posteriori by the explicit depend-
ence of the correlation function on the strength of the
interaction

Lthe ratio= (potential energy)/(kinetic energy)].
Equation (13) now reads

(8/Bt) f.(rt, p) = —2 Qs» Q, , ~ Imi G.(n,n'; k)j, (68)

where» is the Fourier transform of s(r), Im stands for

""We are thankful to Dr. E. Klevans for pointing out to us an
unpublished work of V. P. Silin )Salzberg Conference, Paper
CN-10/247, September 1961,English transl. :AEC-Tr 5589, 1963
(unpublished) g, where the kinetic equation has been investigated
by employing a diferent method.
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the imaginary part, and

G(, 'k)= Z&'I'"'I )
0'2cl2(x2

x&ns I
e lns)g (nr, ns, Q1 ns).

In deriving Kq. (68) we have used the relation

g»»» (nl&Q2 j Q1 &ns J g»»»lnl &ns j nl&ns) '

(69) Similarly, Eq. (14) takes the form

(70)

fi (8/Bt)+E., E,+—E.; E.,]—g.„,(nr, ns, nr', ns')

—2» (nrle""'lnr')[E. (Q1,Q1') —E. (Q1'Q1)] & &ns'le '""lns)g ., (Qsns ns &ns)
0'3cK3(x3

—2» (ns le'""lns')2'"(ns, ns') —E. (Qs', ns)l & &ns'le "'lns)g". (Qrns'nr'ns')
0'30t30!3

=2» (nr I
e

I
Q1 )&ns I

e
I ns )[E.&(n&nr )E.&(nsns )—E.&(nr, nr)E" (ns, ns)], (71)

where

E.(, ')=f.( ')L1—f.( )]
Adopting the procedure employed in I, which is

(72) originally due to Dupree, 's we introduce an operator
tP(p, k, t) by the equation

We now notice that in order to obtain the kinetic equa-
tion it is enough to solve Eq. (71) only for the expression [Z(a/at)+K(P, k)]~P(P,k, t) =0,

Im P G.(n n', k) .

Hence we de6ne a function

s(p, p. ;k)= E ( 'I '"'I )
ee me

1 1 2 2

X &ns'I e "'Ins)g...,(nr, ns; n&', ns'),

where P stands for the shorthand

where K(P,k) is the integral operator

Skv,
—( 2 1/2

»&,Sp „+&,„H„~
I

h1
lm,K(p, l) =E..—E.—

27r

Ip=—o;I, p&m, p.
Using Kq. (71) we can write

[i(8/Bt)+K(pr, k)+K(ps, —k)]g(pr, ps, k)
= 3(p,p. ; k),

with the initial value (P(p, k, t=0)=I, where I is the
unity operator We also .invoke the adiabatic hypothesis,
which is due to Sogoliubov, '~ that the correIation func-
tion of the two electrons reaches an asymptotic value
in a time short coro.pared with the time in which the dis-
tribution function changes appreciably. Noticing that
K(P&,k) commutes with K(Ps, —k) and introducing

(73) Laplace transforms of Eq. (78), we can write the solu-
tion of Eq. (75) as

B(pr,ps; k) = —' dSI
dre " gSI T

CJ 2+$

d$2
gS2t

~ 2%i

Xtp(p„k, s,)iP(p„—I, s,)s(p„p„k), (79)

(75) where e is a small positive convergence factor, and c1, cs
are the usual Laplace transform inversion contours. The
operator tP is obtained by solving Eq. (79), i.e.,

A(P I) I
tp(p, k,s) = i I+ Q, (80)

is+A(P) D(k, s) e is+A(P)

X[E.(n,n') —E.(n', n)] 2, (76)
o, nn', py'

and the source term

3(p,p. ; k)
= (mo&,/2&r)'1&sb„;, „+&,„3„,„, s„

XH..., [(2/m .)'1'h, ]H..., [(2/m .)'&'h,]
Xp (Q1,Q1 )E (ns Q2 ) E (Q1 nl)E (ns ns)] ~

(77)

In obtaining Eq. (75) we have made use of the sym-
metry property

g»&&&&(nl&Q2 j nl &Q2 ) g»&&&&(Q2&nl j Q2 &nl ) ~

~(p) =E..—E.

A(p, k) =

and

mo&, ( 2 )'I'

2~
'

m /

X[E.(Q,n') —E.(n', n)],

A(p, k)
D(k, s) =1—P

e isla(p)

(80)

(81)

'7 N. N. Bogoliubov, in Studies of Statistical 3fechanics, edited
by J. deBoer and G. E. Uhienbech (North-Holland Publishing
Company, Amsterdam, 1962).
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Finally, after some algebraic manipulations (see I for details) we obtain

Iml Z G. (o&,o&', k))=Im
q1 qI'

" dzv 1 A(Pi, k) 1
1+

„2xi A(pg) W—+i8 D(k, m) e4 0 (pg) W—+ib
1

x &(P A k), (82)
D*(k,w) e4 A(P2)+@+i'

where the limit 8~ +0 is understood, and D(k,w) is given by Eq. (37). Evaluating the zv integration in Eq. (82)
we obtain our Gnal result

t9 vp'H„„,
l

(2/cue, ) '~'k454rI, „,L (2/m40, ) '~'k4)—f.(n,p) = —2x
Bt &u', ' ID(k, ~-,.+~ —~,.) I'

X&(&„,,„~a„E„,„—+E„,„q„&,, „—){f,(nq, p+k~~) f, (n3, p' k,—~)(1 f,—(n,p)5/1 f,—(n2, p')5
—f, (n, p)f (n2, p')I 1—f, (n&, p+k„))L1—f;(na, p k„))}, (83)

Equation (83) is the kinetic equation for the electrons
in a magnetic Geld. The individual and collective
aspects of the electron interactions in a magnetic Geld in
the self-consistent field approximation are included. The
collective aspects are represented as a dynamic screening
by the dielectric function D in the denominator. The
latter is due to the simultaneous motion of the inter-
acting electrons in the magnetic Geld. It is obvious, by
inspection, that the Fermi distribution

f (n p)={e pl:2' '(&-,.—~)5+1} ' (84)

is a stationary equilibrium solution of Eq. (83), and
therefore Eq. (83) can be regarded as governs the ap-
proach to equilibrium of the system of electrons. In
Eq. (84) T and p are, respectively, the temperature in
energy units and the chemical potential of the electrons.

V. DISCUSSION

In the present paper we have studied some aspects of
the correlations between interacting electrons in a strong
magnetic Geld. We have used a quantum kinetic ap-
proach, taking into account the fact that the orbital
motion of the electrons in a magnetic Geld is quantized.
This is accomplished by writing the density matrix for
one and two electrons in the so-called "Landau repre-
sentation. "Starting from the equations of motion of the
second quantization operators, a hierarchy of equations
for the density matrices have been introduced. This
hierarchy is "naturally" truncated in the self-consistent

Geld approximation. Thus the magnetic Geld is con-
sidered as of zeroth order in the equations of motion for
the electrons, while the interactions between the
electrons is regarded as a first-order effect. As usual, the
fact that each electron "sees" many others, due to the
long range of the Coulomb potential, changes the order
of magnitude of the interaction terms in the equations
when many particles are involved (i.e., when an inte-
gration over the long-range potential is present and the
exchange effects do not cut it off). In this way the SCF
method takes proper account of both the individual
and collective aspects of the electron interactions.

While the electrons are moving in their quantized
orbits in the magnetic field, they interact with each
other and develop correlations. This is expressed to a
large extent by the dielectric function calculated in
Sec. III. The dielectric function reflects the two main
effects of the correlations, i.e., the collective excitations
of the system and the dynamical shielding. The spec-
trum of excitations is given by the zeros of the dielectric
function, while the shielding is expressed by singling
out a "test particle" and "dressing" it I Eq. (64)). This
dielectric function plays a role also in the equation
governing the approach to equilibrium of the system.
The electrons approach thermal equilibrium as though
they are "dressed" by each other, as shown in Eq. (23).
If an external field is present, the induced current is
related to the Geld by a conductivity tensor, due to the
magnetic field, and a dielectric tensor expresses the
response of the system to this external Geld.

APPENDIX

~e wish to present here the derivation of Eq. (33). Using Eqs. (21) and (31) we write

s= Z(~'I e" 'l~)(~l e '""'I~')

(24r)
—4 P drdr'e '"" '&'&C (x q'/mes. )e'"f'e'"'+""4 (—x q/~)—

Xe "*' ""'4 (x' —/ q(vm)e ""e'&'*'+'&'&'C (x' —q'/ am&,). (A1)
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The integration over s, s', y, and y' is straightforward and leads to

s = bp„(„bg„,l.„b„,„+I., Q b;,o+g„dg;e'"* '""*'4„(x q—'/mes, )
QQ

+4 (x—q/mo, )4 „(x'—q/duo, )4 „(x'—q'/mo, ) . (A2)
Under the transformation

x= R+ $/2, x'= R—$/2, q= Q+—rruo, R, q'= Q'+—rruo, R,
and an integration over R, Eq. (A2) becomes

(A3)

s=bq, qb~, ~q, P bo, o t,„d$e'~ &4„(Q'/cue, +$/2)4„(Q'/mco, —$/2)4„(Q/duo, +$/2)4„(Q/nuu, —$/2). (A4)

Notice the Kronicker b for k and k, which corresponds to invariance under spatial translation. Changing the
summation by an integration, and using an integral representation for the 8 function, we obtain

s=bk gb, „+k„(thud./2Ã)' d(drie'"*&+'"» due'"" ~"4. (u+(/2)4„(u $/2—)

X du'e' "'&"'4„.(u'+ $/2)4„. (u' $/2)—

2 ( $2+~2) p $2+~2)
= bg, ],by, y+g„~ dydee/e'~*&+'" e ""'&&'+ '~'&L„~ mo, ~L„.

~
rBM, )' (AS)

where use has been made of the equation

due'""4 (u+$/2)4„(u —$/2) = e '&'I L„(ap'/2),

with L„(x) the Laguerre polynomial. Finally, if we set

u= P+n'

g= (2/neo, )'"x ) g= (2/duo. )'"y,

and use circular coordinates for x, y, k„and k„

x=r cos8, y=r sin8, k,=k& coso. , k„=k& sinn,
we obtain

(A7)

(A8)

s =bggb;„+g„, , dr2re "'L„(r')L„(r')
(2~)' o 0

gg&i (2/meso) & ~2k~r OOS(0—a)
7 (A9)

and setting s=r' yields

as stated in Eq. (33).

~k', k ~y', @+kII

27r

mes, ( 2 )'~'
ds&o

( [ (s)'I'kL e 'L„(s)L„(s),
krruo. &

(A10)


