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Estimates of the saturated magnetic remanence at
O'K were obtained by 6tting the low-temperature
remanence data to paramagnetic expressions. The
resulting estimates corresponded to a few percent of the
available total moment of the solute atoms.

The magnetic transitions did not occur in Co and V
alloys of 1 at.% concentration. These alloys also did not
exhibit a Curie-Weiss law. The occurrence of the
transition in the case of Cr, Mn, and Fe does not follow
uniquely from the particular form of magnetic transi-
tion exhibited at higher concentrations. Instead the

properties of the transition appear to be a general
consequence of dilution in those alloys for which
the transition-metal impurities exhibit strong para-
magnetism.
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We use a simple rule giving the expectation value of a quantum operator for any perturbation order to
calculate the general second-order conductivity tensor of a solid. The expression for the conductivity tensor
amounts to a regrouping of terms in the conventional expressions and takes a considerably simpli6ed form.
The formula is applied to second harmonic generation in a free-electron gas and reduces to the classical
equation given by Kronig and Boukema in the optical region. The second harmonic radiation generated in
metals is shown to possess two resonances occuring at the plasma oscillation frequency for p polarization
and at half the plasma frequency for p and s polarization. The amplitude of the resonance is related to the
imaginary part of the dielectric constant at the plasma frequency, e&(&oo). Only metals with es (coo)«1 (i.e.,
alkali metals, Ag and Al) will show resonant effects.

1. INTRODUCTION

'HE quantum-mechanical treatment of second
harmonic generation has been considered by

many authors. ' As the conventional calculation for the
second-order conductivity involves much algebraic com-

plexity, and the expression obtained contains many
terms, the formula has been studied in detail only in the
dipole approximation.

Instead of following the conventional procedure, we

make use of a rule which gives the expectation value of
a quantum operator for any perturbation order. ' Our
expression for the conductivity tensor amounts to a
regrouping of terms in the conventional expression and
takes a simplified form, "We next apply this formula to
the study of second harmonic generation in a free-
electron gas and And that in the optical region, the
second-order conductivity tensor agrees with the clas-
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sical form, 4 which is of the same order of magnitude as
the experimentally observed second-order conductivity
tensor of some solids like KDP, which. lack" inversion
symmetry. The second harmonic radiation generated in
metals is shown to possess two resonances, occurring at
the plasma oscillation frequency and half the plasma
oscillation frequency which arise from the resonance of
the plasma oscillation with the fundamental and the
second harmonic radiation, respectively. These reso-
nance effects further enhance the possibility of large
second harmonic production in metals.

2. THE CONDUCTIVITY TENSOR

Let us consider the interaction of an electromagnetic
held with a system which is originally described by a
Hamiltonian HlJ. In a solid Ho will be the kinetic energy
plus a periodic potential. The interaction Hamiltonian is

8 g2

II'= — fA(x, t) p+p A(x, t)$+ A'(x, t), (1)
2mc 2ssc

where A(x, t) is the vector potential for the electromag-
netic field, the gauge being chosen so that the scalar
potential is zero and y= —ibad. Denoting C,+ and C. as
the electron creation and annihilation operator of state
s, which is an eigenstate of the unperturbed Hamiltonian

4 R. Kronig and J. I. Boukema, Koninkl. Ned. Akad. Wetens-
chap. Proc. Ser. B 66, 8 (1963).
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Ho, we obtain in the interaction representation,

Hl(t) eiHotH&e ~Pot

where ~. ,= (1/0) (E, —E,). If 'we decompose H'(t) in a
Fourier series,

—e
(y A+A p)„C,+C, —'" "'

se 2m/ e
—ka'tH (~ )H'(t) =

e' 2x

+ [A'(x, t)]„.C,+C, e-'""*' (2)
2mc' then from (2) and (3) we obtain

H'(co) = P [A(x, co —cu...) p+p A(x, a&—~, ,)],.C,+C,
2mc & &'

s, e' 2mc

de)
A(x (o') A(x, s&—a&' —a), ,) C,+C.. . (4)

2' —ss'

where A(x, a&) is the Fourier transform of A(x, t),

A(x, t) =
dGO—A(x, (u)e '"'.
2Tl

The current operator j (x,t) of the system in the interaction representation is given by

j (x,t) = P g, *(x)P P, (x)—iP, (x)P iP, *(x))C„+C,e ' ""'— A. (x, t) P iP„*(x)iP,(x)C„+C„e '"'"'. (5)
2m rr' mc

Define

j (x,t)= j (Q,ro)e ""'exp(iQ x)da&d'Q/(2x)', (6)

then we obtain from (5) and (6) that

e
j„(Q,cv) = P [exp( —iQ x)P +P exp( —iQ x)]„,C, C,2~5(~—~„,)

2m «'

P [A.(x, rv —a&„,.) exp( iQ x)];„—C+„C„(7).
mc «'

The expectation value of the current operator is given by'

i-(x, t) =O'(t) I j-(x,t) IA(t))

ItMi+Ze

+(—1)'
" d(u, [H'(a, )[H'(io, ),j.(x,t))]e

—'i"~+"»'
+ lo.(—-)), (8)

2'ir ~ 27I (AMi+ZC) (5&i+5(02+Ze)

where iPz(t) is the wave function of the system in the interaction representation and e is an infinitesimal quan. tity.
Decomposing j (x,t) into Fourier components,

j (Q,&v)= j (x, t) exp(icvt —iQ x)dtd'x, (9)
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we obtain from (8) and (9)

~.(Q,-)=«.(--)
l j.(Q,-)+(-»

+(—1)'

" d~, [H'(a»), j (Q, to —cot))

hMr+ze

" d(o, " dt's, [H'(ter), [H'(cez), j.(Q, a& —tet —tez)]]+" IA(—")) (1o)
„2zr „2zr Puot+ze) (ho), +ho&z+ze)

Substituting (4) and (7) into (10), and retaining only the terms quadratic in 2, we get

i.'"(Q ~)=—e' " d~z [A(x,~r) p+p A(x,cot)$„[exp(—iQ x)A (x, o&—ter) j, ,

fS c oo 2' 2h (tdr+Ms~i)

1 [A(x)(v,) A(x, ~—~r)]„
[exp( iQ—x)p. +p exp( —iQ x)j... (f, f;)—

h(M —MB~~)

~ deox 1g3

[A(x, C0 —Mz M~~„~) 'lz+p—'A(x& M (dt co&~r~)]~~~-
See'c' „2m. Acing»'~'

X[exp(—zQ x)p +p exp( —zQ x)]„.,[A(x, cot-te„...) p+p A(x, a» —ce„...)j,.„.

&((f„f,)/(—hte Izte„)—+complex conjugate of last term with Q ~ —Q, te -+ —&e. (11)

In (11) f, is the occupation number of state s.
We define the second-order conductivity tensor by the formula

cPgydGD j
(Q,te)= 0 pv (gt Q —gt'~t &—»)Ep(& tet)Ev(Q —9t t0—tet)

(2zr)'
(12)

Since in a solid, an arbitrary translation does not leave the crystal invariant, such a definition is possible only when
umklapp processes, which give rise to local-field corrections, are neglected. In this approximation, the symmetrized
conductivity tensor is given from (11) and (12) by

e ~pe (A~C» &zp»)

2fÃ GOyG02

kgyp
P &(P,ttrp&r, y, qz, tez) P (e,k~ iH'p+hh—p ~

zz', k—q,)
&n'nk 2

bya(f. , g f;,g, ) — 1 (rz,klzz', k—
q&

—q,)
&&(zz', k—q, ~

zz,k)
' ' +-

[ha),+E„.(k—q,)—E„(k)+i»J 2 [ho&r+ha)z —E„(k)+E„.(k—qr —qz)+is)

Izgr +Izqz
&&(~', k—q,—q, ~

—zhV. +hh. — -
~
~,h}~„(f, f. , „„)—

2

1 Ag yp kg2p
(zz,k

~

i%'p+hh p
—

~

zz', k—q&)(zz', k—qz ~
ihV, +h—h, hq&, —(zz"—, k—

q&
—q,)

fg n, n', n",k 2 2

(zz", k —qt —qz~ zhV' +hh—lz(q,.+q,.)
i

zz, k}

n", k—q1—q2 n', k—q1

X
[hte, E„(k—qr)+—E„"(k—qz —qz)+is)[Au»+h~z —E (k)+E„(k—

q&
—qz)+isa

+c.c. of last term withers + Mz Ml + Ml pl~ gl gz + gz, (13)

z Stephen Adler, Phys. Rev. 126, 418 (1962).
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where I' stands for the permutation symbol and Z„(k)
for the energy of the Bloch state in band e with wave
vector k. In (13), all matrix elements are taken with

respect to the periodic part of the Bloch wave functions

e„,g(r):
1

(ri k
i 0 its', k')—=— N. ,s*(x)Og„.,s. (x)dsx, (14)

where the integration is over a unit cell and v denotes
its volume.

The expression (11) may be compared with the
second-order polarization given by Armstrong et al. ,

'
and is seen to be considerably more compact. In the
dipole approximation. (qi, qs, —& 0), the first two terms
on the right-hand side of (13) vanish, and the expression
is equivalent but more compact than that given by

Butcher and McLean. 2 For the calculation of the third
and higher order conductivity tensors, the advantages
of the present method will become even greater.

3. SECOND HARMONIC GENERATION BY A
FREE-ELECTRON GAS

In this section, we turn to the application of Eq. (13)
to the free-electron gas. The classical result has been
given by Kronig and Boukema, 4 and our quantum result
reduces to it in the optical region where nonlocal effects
are negligible.

We consider a transverse electromagnetic wave inci-
dent on the plane boundary of a metal in the free-
electron approximation. The fundamental wave in the
metal is then transverse and the conductivity tensor
becomes

o ~p&(qi, qs j oii, ops) =
2' GO]G02

lsd
P ~(Pqi~i, Vqs~s) 2 &p/i ~i-

~ - (2z-)s .
Ak qi hqp

+ ~v (f. f. „-)
tg 2'

(2ts~ qi~ qs~)tips(f& f& sr ss)— —

4 oii+~s —[jtk (qi+qs)/m)+P, (q +q )'/2m]

P 7 ( ~ qio' qs~) (fs-sl ss fs-si)

k qs Sqp is(qi+qs)'
ops —It — + o~i+&s-

sz 21Ã 251

bk (qi+qs) h(qi+qs)'

1S 28$

+c.c. of last term with qi, qs, oii, ops ~ —qi, —
qs, —~i, —cus . (15)

In the optical region, the inequalities

k qi Aqp
co+)A m' 2~

show that nonlocal effects are negligible. The con-
ductivity given by Eq. (15) becomes approximately
equal to

ss&(qi +qs )
o'~Ps(qi)qs i sikes) = tiPv ~ (16)

28k MiMs(nit+Ms)

where E is the total number of electrons per unit
volume. Equation (16) agrees with the classical result.
Although the right-hand side of (16) vanishes in the
dipole approximation (qi, qs ~ 0), in the optical region
it is of the same order of magnitude as the conductivity
tensor of a solid lacking inversion symmetry such as
KDP, as measured by Ashkin et al. ' This is probably due
to the fact that the inversion symmetry is not strongly
violated for such materials. Although the conductivity
tensor of the metal is comparable in magnitude to

sA. Ashkin, G. D. Boyd, and J. M. Dziedzic, Phys. Rev.
Letters 11, 14 (1963).

KDP, the polarization is also proportional to the energy
of the transmitted fundamental which for metals is
usually small in the optical region.

To calculate the second harmonic generation by a
fundamental wave of angular frequency ~ incident on a
metal, we need to solve the Maxwell equations with
appropriate boundary conditions. The general solution
has been given by Bloembergen and Pershan, ' and
Kronig and Boukema have treated the boundary con-
dition for the nonlinear metal. ' The result is that the
harmonic wave in the metal is given by

Es ——er Bs exp(iks x—2io&t)

+ Sir'cr(c0) exp(2skir x 2soit). , —(17)
M e (2(0)

where ks is the wave vector of the homogeneous wave of
frequency 2' and biz, k&z refers to the amplitude and
wave vector of the transmitted fundamental. The func-
tion rr(oi) is found from Eq. (16) to be

a (oi) = esE/4msois—
7N. Bloembergen and P. S. Pershan, Phys. Rev, 126, Q)Q

(1962).
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4s. cr(a „)
c e(2a&„) t e'/s(2o/„)+cos8sr)

—(4s/c) B~r'o. (n) sin8;
(19)h2-

e(2/o)LeUs(2o/) cos8~+cos8sr)
$e (~))t/sh, s

X
{(el(M)+see(o/)) +)Ms(/0)/e](o/), +zes(/d)) )

(24)

where 8; is the angle of incidence. The reflected harmonic
amplitude hP is given by hsfe(2'))'".

We de6ne the angles
Resonant effects will occur only for those metals for

which es(ce„)«1. These include the alkali metals, s Ag, s

and Al."The contribution to e2 arises primarily from
interband transitions. ' "Then in the frequency region
where (es)'/'&eq«1, Ss and BP have the form

sin8;sin8;
(20)sin8~~= sln82z =

t, (cs))'/'
'

Le(2/d))'/s
'

then when the incident wave of amplitude h; is p
polarized (s polarized) the amplitude h&r"' is given by gs~ Le~(co))

—I/2 . @sr/~
Lel (co))

—//2 (25)

and e(/d) is the dielectric constant of the metal. The then (19) gives
amplitude hs is given by

2 cos8;

h; e (c0) cos8,+cos8yr

2 cos8;

8/ cos8/+ e (M) cos8yr

(21)

Equations (19)—(21) are also valid for damped waves
when the angles become complex.

To examine resonant phenomena we separate the
dielectric constant into real and imaginary parts

6 GO =6]. M 262 M (22)

slI1 8p = y( e),M (23)

and de6ne a plasma frequency ~~ by e&(o/„) =0. When
the fundamental frequency is near ~„a resonance in
both the rejected and transmitted harmonic amplitudes
will occur near normal incidence for p polarization.
Consider the frequency dependence of 82 at an angle
8,&&1 given by

Thus the size of the resonance is determined by 62

and occurs near normal incidence. However at normal
incidence (8,=0) no second harmonic is generated.

When the harmonic frequency 2~ is near the plasma
frequency a resonance occurs for both s and p polariza-
tion. If we consider an angle of incidence de6ned by
sin'8;=eq'/'(2o/), a similar analysis shows that in the
range (es)'/'(e~&&1, hs and h& have the form

8s~ Leg(2/d)) ' SP Peg(2o/)) '" (26)

so that the size of the resonance is determined by
Les(&o~)) '/' and Les(ru„)) '/', respectively.
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