
P H YSI CAL REVIEW VOLUME 134, NUM 8 ER 3A 4 MA V 1964

Interpretation of Knight Shifts and Susceptibilities
of Transition Metals: Platinum
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Measurements of the magnitude, sign, and temperature dependence of the Knight shift and susceptibility
in platinum are used to determine the contributions to each arising from the spin paramagnetism of the s and
g bands, the orbital paramagnetism and the core diamagnetism. A complete expression for the orbital con-
tribution to the Knight shift in a transition metal is derived, including spin-orbit coupling. We show that
in the tight-binding limit, as in the free ion, a simple relation exists between the orbital susceptibility and
the orbital hyperGne Geld. The relation of the enhancement of the d-spin susceptibility over its speciGc heat
value to the possible occurrence of superconductivity is discussed.

INTRODUCTION

''N previous work' an interpretation of the Knight
~ ~ shift (E), susceptibility (I), and electronic specific
heat of various transition metal compounds was given.
It was seen that orbital paramagnetism made major
contributions to E and x and that the temperature-
dependent part of E was associated with that of y
through core polarization. . The present work (a) ex-

tends this to an analysis of platinum metal, thereby
giving estimates of the various contributiogs to E and

x; (b) gives a more detailed treatment of the relation
between orbital Knight shifts and orbital paramagnet-
ism, including spin-orbit coupling; and (c) establishes
a relation between the occurrence of superconductivity
and the ratio of the observed spin susceptibility to that
deduced from the measured specific heat.

I. NUCLEAR MAGNETIC RESONANCE IN PLATINUM

Platinum, like nickel and palladium, represents the
case of a nearly filled d-band transition metal. The
electronic properties of these metals have been the
subject of extensive experimental and theoretical study.
The earliest interests' centered on the seeming simplicity
with which one could understand the results of alloying

(e.g. , Ni-Cu, Pd-Au, etc.) and the fact that the de-

generacy temperature of the positive holes was sufh-

ciently low ( 1500'K) as to be accessible to experi-
mental study. The importance to the magnetic behavior
of these metals of d-d exchange, s-d exchange, and of
electron transfer between the two bands has been
investigated. ' ~

The utility of the Knight shift in further under-

standing the electronic properties of the d-band metals

'A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Vafet,
Phys. Rev. Letters 9, 262 (1962).

' N. F. Mott and H. Jones, The Theory of the Propertses of Metals
and Alloys (Clarendon Press, Oxford, England, 1936).

' E. P. Wohlfarth, Proc. Leeds Phil. Soc. S, 89 (1948).
4 H. Watanabe, J. Phys. Soc. Japan 3, 317 (1948).
~ E. P. Wohlfarth, Proc. Roy. Soc. (London) A195, 434 (1949).
SS. V. Vonsovskii and K. B. Vlasov, Zh. Eksperim. i Teor.

Fiz. 25, 327 (1953).
'M. Shimizu, J. Phys. Soc. Japan 15, 376 (1960); 16, 1114

(1961).

and alloys has only recently been exploited. "Certain
procedures have been advanced for separating the
various contributions to the Knight shift and suscepti-
bility, particularly in those cases where E and x are
dependent on temperature. A similar graphical analysis
is now offered for platinum.

Rowland' studied the Pt'" nuclear magnetic reso-
nance (NMR) in platinum metal between 78 and
350'K. He found the NMR to be strongly temperature-
dependent, and when compared with the Pt NMR in a
nominally nonmagnetic chloroplatinic acid solution in
the same field, the metal resonance was displaced to-
wards a lower frequency by some 3.5/~. This was
opposite in sign, and a factor of two or more larger than
had been expected. Rowland conjectured that the
magnitude and sign of the shift of the metal NMR
could result from a large chemical shift in the reference
solution. Subsequent to Rowland's work a study of
several intermetallic compoundsm (e.g. , PtAls, PtGas,
PtIns) revealed that the Pt Knight shift in these
metals was of the expected magnitude and sign (i.e.,
positive) when compared with the same chloroplatinic
acid reference. Clearly, then some particular mecha-
nism must be responsible for the unusual NMR prop-
erties of platinum metal. As will be shown below, the
large negative Knight shift and its temperature de-
pendence is a consequence of the core polarization of
inner s electrons by the d-band electrons.

1. Contributions to the Susceptibility and
Knight Shift in Platinum

(a) SNsceptibility

The delineation of the various contributions to the
observed paramagnetism of a metal has been given by
Blount" and Roth" in a detailed treatment of Bloch
electrons in a magnetic field. We shall use a simplified

' A. M. Clogston and V. Jaccarino, Phys. Rev. 121, 1357 (1961).
' T. J. Rowland, Phys. Chem. Solids, 7, 95 (1958).
"V. Jaccarino, W. E. Blumberg, and J. H. Wernick, Bull. Am.

Phys. Soc. 6, 104 (1961).
"E.I. Blount, Phys. Rev. 126, 1636 (1962).
"L.M. Roth, Phys. Chem. Solids 23, 433 (1962).
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two-band (ot and s) model in which the d electrons are
treated in the tight binding approximation. In this
limit two contributions to the susceptibility are of
prime importance. The spin paramagnetism X~", and
the orbital paramagnetism" to be expected in partially
ulled degenerate bands, Xyy which is the analog in
metals of the Van Vleck temperature-independent
paramagnetism.

We shall treat the s electrons as "free" with an
effective mass m~ and a g factor of 2 (exchange and
correlation effects nearly cancel)."At T=O the Pauli
paramagnetism X~ and the Landau diamagnetism Xl,
are given by

X~= 2P X(f),
(~ 1)

X =2psS(p)L —-', (m/ma)'$

where p is the Bohr magneton, m the electron mass,
and 1V(f') is the density of states for one direction of the
spin at the Fermi energy l. For the s electrons we take
m*=m so that X~= —~X~ whereas for the d holes one
expects m~))m so that one may safely neglect X~.

The total susceptibility of platinum includes the dia-
magnetism of the core Xq;„we include in Xd;, the dia-
magnetism of the filled portion of the outer d shell,
essentially because it is temperature-independent and
it has a negligible effect on the Knight shift. The total
susceptibility at temperature T, x(T) is given by

X(T)= ', Xt +X~"(T)+-X„+X„., (J.2)

where we allow for the fact that XJ"may be temperature-
dependent in the temperature range of interest, pri-
marily because of the relatively small degeneracy
temperature of the holes. The dependence on tempera-
ture is further accentuated if exchange between the d
electrons is present. Neglect of the s-d exchange inter-
action has but a small effect on X(T).

To separate the various contributions to X(T) we
must now estimate the relatively small contributions
Xq;, and XI'. The remaining quantities will be obtained
from our graphical procedure.

X~;, . estimated values of X~;, for platinum have been
given in the literature based on earlier measurements of
the susceptibilities of platinum compounds. The esti-
mate used by Hoare and Matthews" and by Wohlfarth'
is Xe;,~—28X 10 ' emu/mole. That this is not an un-
reasonable choice, say +15%, may be seen by taking
the measured value of X for gold, X= —28X10 ' emu/
mole where the d band is fully occupied, and subtracting
a free-electron estimate for the s-electron susceptibility
from which one obtains Xs;,———36.6X10 ' emu/mole.
Both these values are to be contrasted with the large
value of Xe;,———75X10 ' emu/mole computed from

"R.Kubo and Y. Obata, J. Phys. Soc. Japan 11, 547 (1956).
'4 S. Raimes, The Wave Mechamscs of Electrorts crt Metals (Inter-

science Publishers, Inc. , New York, 1961)."F.E. Hoare and J. C. Matthews, Proc. Roy. Soc. (London)
A2j.2, 137 (1952); see also D. W. Budworth, F. E. Hoare, and
J. Preston, sbslt A257, 250 (1960) f.or more recent measurements.

the Slater functions' which is twice as large as the
"measured" value for Au. Since

Xa;.= — P (r,s),6'' '

and the major part of X&;, comes from the 5d shell, it
appears that the Slater functions overestimate (r')sa.

X~'. the molar spin susceptibility of the s electrons
is given by

Xt '= 1.86X10 '(fJE/p)'t'rt 't' emu/mole, (J.4)

where for platinum tM =195.09, p= 21.37 g/cm' and s4
is the number of s electrons per atom. We obtain Xp'
=4.8)& j.0 'if we choose e,=nq=0. 2. This value follows
from an interpretation of the temperature dependence
of the susceptibility in terms of a parabolic d band. A
similar analysis' without the benefit of knowledge of
the Knight shift gives values of e,=v~=0.3.

Xvv. if f(E„t,) and f(E t,) are the Fermi functions
for electrons in state stk and st'k with energies E„t,and
E k, respectively, the tensor susceptibility Xzz may
be written" in the tight-binding approximation, as

(2sr)' nn

f(E„g)—f(E„,k)

+n'k +nk

XP (stk~ L~rt'k)(rt'k~ L(rtk), (I.5)

where L is the orbital angular momentum operator (the
symmetrical Wigner-Seitz cell is used for the integra-
tion). A great deal of information about the band
structure would be required to calculate Xyy. However
this quantity is related to the orbital contribution to the
Knight shift as seen in detail in part II. Using this re-
lation we are able to deduce X«by an analysis of the
Knight shift versus the susceptibility Lsee (c) below).

"W. R. Myers, Rev. Mod. Phys. 24, 15 (1952).
'7 C. H. Townes, C. Herring, and W. D. Knight, Phys. R,ev. 77,

852 (1950).

(h) Krtight Shift

The original interpretation given to the observed
shifts of the NMR in the non-d group metals assumes
that only the s-electron hyperfine interaction con-
tributes to the held at the nucleus. " As such, the
Knight shift apart from any diamagnetic terms, could
be expressed as

K,=AH/II= (8sr/3) X,Q(~lb,
—
(0) i')r, (J.6)

where 0 is the atomic volume and (~lt, (0) ~')» is the
average at the Fermi surface of the s conduction-
electron probability density at the elclels. The shift is
measured with respect to a nonmagnetic, nonmetallic
reference. More recently, it was recognized that addi-
tional contributions to the Knight shift must be con-
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where

n. =0.895X10 'AQHhr(s), n =d0 895X1.0—'4QHht(d),

and Hhf (g) and Hhf (d) are the hyperfine fields per spin
in the metal arising from the contact and core polariza-
tion interactions, respectively, and 3 is Avogadro's
number (all susceptibilities expressed per unit volume).
For platinum, AQ=9. 10 cm'. In the case of a free ion,
P' is rigorously given as

P'= 2(1/vs)Q, (1.9)

where (1/r') is the expectation value of r ' for the
free-ion wave functions concerned; F, is a relativistic
correction factor discussed below. In the metal, cor-
responding to (I.5), the orbital field at the nucleus is
)see Eqs. (II.5) and (II.9)]

1 dk f(E„,) f(E„.,) f
2—L

H.„=— g p'~ ask —ri'k
(

(2s)' »' E~ s—E~g

X (fs'k
~

H. L
~
Nk), (I.10)

so that Fq. (9) may be used in the solid with a value of
(1/rs) close to that of the free ion (N, number of
atoms/unit volume) .

Next. an estimate of n, and P' is made and we
show that bKri, the digererttial diamagnetic contri-

' M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys.
Soc. (London} A73, 811 (1959).

"A. Abragam, J. Horomitz, and M. H. L. Pryce, Proc. Roy.
Soc. (London) A230, 169 (1955).

20R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027
(1961).

sidered. Cohen, Goodings, and Heine" have shown that
core polarization of the inner s-shell electrons by the
conduction electrons modifies the Knight shift of the
alkali metals. Core polarization has also been used to
explain the negative Knight shifts observed in certain
intermetallic compounds. ' The existence of core po-
larization can be seen in the hfs spectra of d-group
ions in crystals and was first described in terms of
atomic configuration interaction" and more recently
calculated by means of the unrestricted Hartree-Fock
method. " For other than s electrons, if one neglects
spin-orbit coupling, the spin dipolar hyperfine field
vanishes in cubic symmetry so that the spin mag-
netization of p- and d-band electrons is manifest only
through core polarization. Because of the translational
motion of the electrons through the crystal the angular
momentum is quenched, (f,)=0 and the orbital hyper-
fine field, and therefore the orbital Knight shift is of
second order in /, as is the orbital paramagnetism.

We may express K(T) for platinum as

K(T) =K,+Kg(T)+Kvv+&Ks (I.7)

K(T) =n, xr'+unix~" (T)+0 J";&vv+bKu;. ) (I 8)

where F; is a relativistic correction factor given by
Casimir s' the prune on (1/r')' indicates the use of
atomic units, and p is the nuclear gyromagnetic ratio
in units of p„, the nuclear magneton.

For Z=78, the values of Ii, are Ii 3~2——1.14 and F5~2
=1.05. Using p"'=1.21 and Eqs. (I.11) and (I.12) we
find for platinum that a~~s

——74.8, as~s= 29.6, and a(s)
= 1046 (all times 10 ' cm '). Values of Hi, t (s) and (1/r')'
are given in Table I where Hit(r) is obtained from the
relation Hht(s) = a(s)/yp .

To calculate u and P' we need to know how the
hyperfine fields in the metal differ from their free atom
values and here is the largest uncertainty that enters
into the computations. For the s electrons this problem
has received considerable attention. "As a reasonable
estimate for )=Hi,t '"(s)/Hi, t(s) we take 0.7, giving
for u, the value in Table I. Since relativistic corrections
are not entirely negligible for the spin-dipolar and
orbital-hyperfine interactions, we must estimate an
average value of Ii, for the 5d electrons in the metal.
Assuming the two states to be populated according to
their statistical weight, we find F,=1.086. Since we

TAsr, z I.The hfs interaction parameters determined from optical
data' on the neutral platinum atom (see Sec. I).The second col-
umn gives the hyperfine 6eld per spin for the s contact hyperhne
interaction, the hyper6ne 6eld per spin resulting from core polariza-
tion (obtained from analysis of the metal Knight shift), and the
hyperfine field per unit angular momentum for a d electron;
(1/r')fv; = 11.7 au.

27.6 X10'
1 92X10'
2.41X10'

A"hf(s)
Hhf(d)
2ff(1/r')f"~

33.9 X106 Oe—2.36X 10' Oe
1.47X106 Oe

a See Ref. 21.

2'B. Jaeck.el and H. Kopferman, Z. Physik 99, 492 (1936);T. Schmidt, ibad 101, 486 (1936)..
2' H. B. G. Casimir, On the Interaction j3etmeen Atomic 370clei

and Electrons (De Erven F. Bohn N. V., Haarlern, 1936).
sa W. D. Knight, Solid State Phys. 2, 93 (1956).

bution to the Knight shift is, for all practical purposes,
unimportan t.

a, and P'. the neutral platinum atom has the con-
figuration - Sd'6s';'D. The hfs of the Pt'" isotope
has been determined" in the fine structure levels J=1
and J=3 of the 'D state. Expressing the hfs interaction
as %=A;I J we have

At ——(5/4)asks ——,'a(s) = —168X10 ' cm '
(I.11)

As ——-ssasis+tsa(s) =199X10 ' cm ',
where a3~2 and a5~2 are the hfs interaction parameters
for the single 5d (l=2) hole in the states j=l+sr, and
a(s) is the hfs interaction parameter for the 6s elec-
tron. "The parameters a, are related to (1/rs);

2l(/+1) 1'
a =y- F;X1.59X10 sX — cm ', (I.12)

J(J+1) r3
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know that the d wave functions are expanded in the
metal we take, as in the case of V"&, the value se(r ');,„
as a reasonable one for (r ') in the metal. The value of
P' times F; is given in Table I.

The procedure employed here for obtaining (1/r')
divers from the one employed in the case of U, since
in that case no measured values of the hfs parameters
existed but we had reliable Hartree-Fock calculations. '4

No such calculations exist for the 5d ions at the present
time but a useful check on the magnitude of (1/r') is
obtained from the empirical relation for (1/r') obtained
from the one structure splitting" X using screened
hydrogen-like wave functions;

-3,50

-3.60

1- -3.70
X
W
O

LLJa. 3,80
Z
I

«3 90
I .

zx -4.00

X= (2l+1)Z;H(1/rs)')&2. 0 cm ', (I.13)

where Z, is the "interior charge" defined as Z,=Z—Z,
and H is a relativistic correction factor. For the Sd
shell we have found from an analysis of the hfs and fine
structure of La and Lu that the values of (1/r')' de-
rived from (I.12) and (I.13) are brought into coincidence
for Z, 20. Furthermore, it may be shown that in the
3d shell, Z, is surprisingly constant as one crosses the
shell and, if we assume the same to be true for the Sd
shell, we may use Z, =20 in (I.13) for platinum. For
H=1.0522 and P =8419.9 cm ' for the Cine structure
splitting" of the configuration 5d' of Pt", we find
(1/r')'= 9.5.

8E~;,. in comparing the shift of the NMR in the
metal with respect to a chloroplatinic acid solution, one
has to correct for the digerential diamagnetic shift.
That this is unimportant relative to the other large
shifts that we are considering may be seen as follows.
The metal and the acid platinum configurations corre-
spond roughly to core +5d'P and core +5d', respec-
tively; hence"

rp cp
il~„, —— P — = — P —,(I.14)

3m'' & r 3ap & r

where rp and ap are the classical electron and erst
Bohr radii, respectively, and the 6 indicates the sum
extends over four of the 5d electrons. Now quite
generally (ap/r)(((ap/r)'). In particular for the jso-
electronic Nir Hartree-Fock calculations'r give (tip/r)
= s((ap/r)'). Using the same ratio for Pt we find that
(tip/r) 3 and hence 5Ep;, —4(rp/tip) = —0.02Po. This
number is so small when compared to the uncertainties
in the other quantities, observed and estimated, that
we shall omit all reference to it from now on.

"R. E. Watson, SSMTG, Tech. Rept. , 1959, MIT, Vol. 12
(unpublished); R. E. Watson, Phys. Rev. 119, 1934 (1960).

25 C. E. Moore, Natl. Bur. Std. (U. S.) Circ. No. 467, Vol. III
(1958).

se A. Abragam, The Principtes of unclear Magnetism (Clarendon
Press, Oxford, England, 1961).

"A. J. I'reeman and R. E. Watson (to be published).
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FiG. 1. The experimentally observed Knight shift of the Pt'95
NMR in platinum metal versus the susceptibi. ity, with tempera-
ture the implicit parameter, is shown by the open circles. The
straight line is a best fit to this data, The open square is a low-
temperature measurement of E which is arbitrarily placed on the
straight line. The value of 1/y corresponding to this is shown as
a cross in Fig. 3.

(c) Consfructi ort of the E versus X Diagram

If one plots the raw measurements of E &'~ versus
y &"~, with temperature the implicit variable, one finds
the result shown in Fig. 1.The figure also includes more
recent measurements of E at lower temperatures. "It
is to be noted that E versus y is linear with the excep-
tion of the lowest temperature region. %e shall oGer
evidence in the susceptibility versus temperature analy-
sis later on which indicates that the effects of a para-
magnetic impurity on p might be responsible for this
departure from linearity in the E versus p plot. From
the partitioning of E and g in Eqs. (I.2) and (1.8) we
see that the slope of the E versus y plot determines a~,.
the value so obtained" is given in Table I. It appears,
as in the 3d group, that ~nd

~

P' and both are an order
of magnitude smaller than n, .

The chloroplatinic acid has one drawback as a refer-
ence solution; the Pt'+ ion in PtCI6 is in Sd' configura-
tion in a strong crystal field and not a closed d shell.
Although the level (Sd)P 'I't lies lowest, there is an
appreciable Van Vleck paramagnetism to be expected.
This problem has been treated in detail for the 3d' Co'+
case and an empirical procedure followed'P which
utilizes the optical measurements of the cubic field

~8 L E. Drain, Phys. Chem. Solids 24, 379 (1962).
~9A. M. Clogston and V. Jaccarino, Bul1. Am. Phys. Soc. 7,

293 (1962).
'p J. S. Gritlith, The Theory of Transition Metal fons (Cam-

bridge University Press, Cambridge, 1961),p. 374.



CLOGSTON, J AC CARINO, AN D YAF ET

o

X

x
40

X
Q
X-2X

,r
—Aj'

I
I
I
I
I
I

vv
+Xdt, I

LXs(T-o)+Xd (r-o)„„]
COR RECTED

gd (T=o)

-40
I

40

~SPe HT.

I

80 120

6 EMU
X 106

MOLE

OBSE

I

&60

FIG. 2. A diagram of the Knight shift of the Pt'95 NMR in
platinum metal versus the susceptibility. The solid line marked
"observed" is the experimental datum shown in Fig. 1, only much
reduced because of the scale change. The solid line immediately
above marked "corrected" is the same data corrected for the
positive NMR shift in the chloroplatinic acid reference solution.
The remaining features of the E versus x diagram are discussed
in detail in the body of the paper.

"K.Jorgensen, Acta. Chem. Scand. 10, 518 (f956).
~ ln this regard an additional piece of evidence to support the

VV correction to the PtClg shift comes from the NMR measure-
ments t',Ref. 10) on the PtAly, PtGag, PtTng metals, The sus-
ceptibility of these metals is much smaller than Pt metal indicat-
ing, in a crude sense, that the d band is filled. The observed Knight
shifts, though positive (X~+0.4/o) with respect to the PtCls
reference are not as large as would be expected on a free-electron
calculation for the 6s band. Again one must subtract at least
0.'/% from the reference (or add it to the metals) to obtain any-
where near a reasonable value of E,. Since the d band is 611ed,
xvv and Evv —0

splitting ('I't —'I'4) and NMR shifts in the same com-
pounds to extrapolate a "zero shift" value. It appears
somewhat more diS.cult to do this for different Sd' Pt
compounds because the 'Fi —'F4 optical transition in
many cases overlaps the intense charge transfer bands.
Nevertheless, Drain" has estimated the VV shift for
the PtClq ion to be about +0.7% and an examination
of the optical data of Jorgensen" on platinum complexes
would seem to support this value. "

Assuming now that we have all contributions to E
and x we construct the diagram in Fig. 2. The X~;,
corresponds to the horizontal line starting from the
origin of the E-X axis. The E, contribution is added to
this and from the point A a line with slope P' is drawn.
The observed E versus X data are shown in the lower

right-hand part of the figure and the same data, dis-
placed vertically by 0.7% for reasons discussed in the
paragraph above, are then extrapolated until it inter-
sects the line extending from point A. The extrapolation
procedure provides all of the information concerning X

that we need. In particular, it shows that Xs'+Xyy
nearly cancels Xd;, so that all of the obserwd X=Xp".
The magnitudes of the individual contributions to the
susceptibility are indicated by the horizontal lines in
Fig. 2. Although the Hht (d) resulting from core polariza-
tion is an order of magnitude larger than the corre-
sponding fields observed in the 3d transition metals, the
ratio of Hh&(d)/Ph&(s) 0.1 does not changeappreciably.

The fact that Xyv in platinum is substantially less
than the value of 211X 10 ' emu/mole deduced for X„b
in vanadium' is in keeping with the expected qualitative
dependence of Xyy on the position of the Fermi level in
the d band. Equation (I.5) would suggest that, apart
from the detailed consideration of the symmetries of
the d functions and their energy distribution in the
band, Xvv E.S where E, and N„are the numbers
of occupied and unoccupied states, respectively, in the
d band, subject to N,+N„=10/atom. For vanadium,
N 4, N„6, whereas platinum (as we shall see from
the analysis of the temperature dependence of the sus-
ceptibility) has N, 9.8 and N„~0.2. The ratio
(NONu)v/(NONu)pt= 12 is to be compared with the
ratio deduced; (Xyy)v/(Xyy)pg 7.5.

X(T) X.(T)
(I.15)

k~ is the Boltzmann constant, T,„an effective exchange
temperature e, the number of d holes per unit volume
and p*= (g/2)p, the effective spin moment with a, g
factor determined by spin-orbit interaction, Xs(T) is
given by

where Ts is the Fermi temperature, t =knTs.
The electronic specific heat per unit volume C, is

2. Estimate of the d-Band Parameters

Having seen that the observed susceptibility is in
fact equal to the d-spin susceptibility, it is possible to
interpret the temperature dependence of the suscepti-
bility in terms of the derivatives of the density of states
at the Fermi level. In addition, platinum, being the
heaviest transition metal, has the largest spin-orbit
coupling. It is of interest to see whether the values of
the band parameters deduced from experiment are
appreciably modified by spin-orbit coupling. To do this
we make the usual parabolic band approximation for
the d holes, being aware that this is a gross approxima-
tion to the actual band structure. Let X(T)=—Xr "(T).
Then the reciprocal susceptibility is'
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TmLE II. d-band parameters determined from the analysis of
the electronic specific heat and the temperature dependence of
the "corrected" susceptibility of platinum. The two columns of
numerical values correspond to (1) zero spin-orbit coupling and
(2) ratio of spin-orbit coupling to mean band width equal to 0.1.
The quantity lV(I') V is discussed in Sec. III.
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T,„('K)
m*/ta
iv(p) v
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19.9
0.472

'I

IL'

~ 0,98

X
~ 0.96
z

~~ 0.94
l 0
O

0.92

0.90

given by
C„=-,' (z') (akim/Tp) T=—yT. (I.17)
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FIG. 3. The reciprocal of the mass susceptibility versus tem-
perature is shown by the open squares. The point marked by a
cross is the value of 1/x determined using the Knight shift as a
measure of the susceptibility in this low-temperature region. The
dashed line is an extrapolation of the high-temperature 1/x data
subject to 8(1/x)/dT=O

(For simplicity in the above analysis we have not
differentiated between the "bare" 1t/(I ) and the modi-
fication that results from electron-phonon self-energy
corrections; see section III.) The last three equations
contain three unknowns, Ts, T, and fs (P* will be dis-
cussed below), which may be determined experimentally,
provided x varies as T'.

However, the observed 1/x versus T exhibits an
anomalous decrease at the low-temperature end of the
plot (see Fig. 3) although no such behavior is present
in the Knight shift. Since E(T)= constant&& X(T) above
80'K, it would appear reasonable to assume that some
paramagnetic impurity could be responsible for the
low-temperature behavior of 1/x and at the same time
not affect the Knight shift. If we use the Knight shift
at 20'K as a measure of 1/x(20'K), we find the point
indicated by a cross on Fig. 3. The dashed line is an
extrapolation of the high-temperature data to T=Q
subject to the condition LB(1/x)/BT]r=s=0. We shall
call this the "corrected" 1/x(T). In Fig. 4 we plot the
"corrected" 1/x versus T'. The linearity of this plot,
shows that the density of states does not vary rapidly

FIG. 4. The reciprocal of the mass susceptibility versus T
using only the data above 80'K in the previous figure. The lowest
temperature point is derived from the Knight shift found at 20'K
as explained in the text.

in the vicinity of the Fermi level and this, at least, is
consistent with our simple model.

In Table II values of e, Ts, T,„, and m*/m are given
for two values of P~; P~=P corresponding to no spin-
orbit coupling and P~=1.1P. This latter value is ob-
tained as follows: If X is the atomic spin-orbit coupling
for the platinum ion and 6 the mean width of the 5d
band in platinum, then the fracttorlal increase in g
would be of order" )/A. From the observed" fine
structure splitting of 8400 cm ' for Pt' 5d' D, and a
value of 6~4 eV, we find 'A/6~0. 1.

3. Yemyerature Deyendence of
Orbital Paramagnetism

In the preceding section we have neglected the tem-
perature dependence of the orbital paramagnetism, Xyy.
For platinum this can be justified as follows.

From Eq. (I.S) it is easy to show, if one assumes that
the holes have mostly F3 orbital character, that the
change in Xvv for small T, 8Xvv=Xvv(T) Xvv(0) is-
of order

hxvv xvv(0) (1V(I )/rs) (knT)'/A. (1.18)

In fact they will be a mixture of I'3 and F5 so that the
energy denominator should be somewhat smaller than
the bandwidth 6 and probably of the order of I As we.
have seen, the change in Xp" is of order

SX,~=X s(0}(k,T/I-)s, (I.19)

and since Xvv(0)&(Xi "(0) and I((D, the change in Xvv

can be neglected.
It may be noted that the temperature dependence of

X~y must be taken into account, along with that of X~"
when X~y&X~", as is the case in the erst half of the
transition series. Thus an appreciable part of the
temperature dependence of x in lanthanum and scan-
dium could be attributed to X~y. This appears to be
borne out by the fact that the Knight shift of these
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metals" increases with decreasing temperature, as does
the susceptibility, ~ indicating that the changes in the
susceptibility and in the hyperfine field are of the same
sign, as would be the case for a field of orbital origin.

II. THEORY OF THE ORBITAL KNIGHT SHIFT
IN TRANSITION METALS

The orbital Knight shift resulting from orbital elec-
tronic currents, can be conveniently split into two
parts. "'6 First, there is a long-range contribution,
(AH/H) = (4s.—D)x, where x is the total susceptibility
and D the demagnetizing tensor. Second, there is the
contribution of the short-range part of the orbital
hyperfine interaction, which is very similar to the inter-
action in an isolated atom. As will be seen below, in
metals with partly filled d shells this contribution is
expected to be much larger than the former. Recently,
Hebborn" LEq. (25) of his paper) has given an exact
expression for this term, in a form which is simple
enough that numerical calculations could be carried out
if the d-band wave functions were known.

Vile give here an alternative and direct derivation of
this term, which is based on the work of Blount" and
Roth" and makes use of the similar character of the
orbital-hyperfine and spin-orbit interactions, resulting
from the fact that both interactions are velocity-
dependent. Our result is given in a form different from
Hebborn's but it too is amenable to computation; it
explicitly reduces to the atomic value in the tight-
binding limit and it can be generalized to include the
effect of spin-orbit coupling, which, as we have seen, is
not negligible in platinum.

netic field H parallel to the direction of p and calculate
the free-energy F to first order in p. The hyperfine field
is then given by AH = —(1/AT) (c&F/c&1i). The free energy
was calculated in Refs. 11 and 12. We now briefly de-
scribe this result and then use it, replacing the spin-
orbit interaction by X' of Eq. (II.2).

In the presence of an external field H=V x A, the
Hamiltonian of the system described by Eq. (II.1) is
written as a symmetric function of the noncommuting
variables &r =k„+ed (j&&,)/Ac, where k is the wave
vector. A power series in the field is obtained,

x„(x)=x„&'&(v)+x„o&(x)+ .
, (II.3)

where 3C„(') is first order in B; e is the band index,
including the spin state. To this order the free energy
per unit volume is

F=Fp+ Q x„i'& (k)g(E„&,)dk, (II.4)
(2s)s m

where Fp is the field-independent part, and g(E) is the
Fermi function. Had we not imposed the condition that
the direction of p be fixed, the second term of (II.4)
would have vanished on summing over the directions
of p. The orbital hyperfine field AII is given in terms
of X"' by

/1 1
@AH=i — —Q X„o&(k)g(E„,&,)dk, (II.5)

kiV (2s-)'

where Ã is the number of atoms per unit volume. X&')

itself is given by

( s ) 4ir px K~
X'=i —

i p —c'x '
Emc)ir ~in

~ pE ' (II.2)

—= (e/mc)A' p,

where K is a reciprocal lattice vector and p the
momentum.

To find the orbital hyperfine field, we apply a mag-

33 W. E. Blumberg, J. Eisinger, V. Jaccarino, and B. T.
Matthias, Phys. Rev. Letters 5, 52 (1960).

34 J. M. Lock, Proc. Phys. Soc. (London) 870, 566 (1957).
3' Y. Yafet, Phys. Chem. So1ids 21, 99 (1961)."J.E. Hebborn, Proc. Phys. Soc. (London) 80, 1237 (1962);

J. E, Hebborn and M. J. Stephen, ibid. 80, 991 (196Z).

I. No Spin-Orbit Coupling

Consider the interaction of a band electron with a
periodic array of nuclear moments p, located at the
lattice sites and parallel to one another. The periodic
Hamiltonian is

x xp+x
where Xo is the sum of the kinetic and electrostatic
energies, and 3C' is the short-range part of the orbital
hyperfine interaction, given by"

X„&'&(k)= ( Q X„„.xps„.„+2X„„xpp„„+Is(e)„„],
5

(II 6)

where a is the Pauli spin operator, X is the periodic
part of the coordinate, and ~ is the velocity times the
electron mass, pp= (im/A)LX, xj; the matrix elements
over the Bloch states, o„„,X„„,pp„„. are functions of k.
Since spin-orbit coupling is neglected, e„„is a constant
matrix, independent of any orbital effect and thus does
not contribute to the hyperfine field. The first two
terms of Eq. (II.6) represent the interaction of the
periodic part of the electronic orbital moment induced
by the nuclear moment with the external field. Equation
(II.6), like Hebborn's Eq. (25), is valid not only for
nondegenerate bands, but also for the degenerate bands
in the transition metals, except along lines of sym-
metry where the band states are degenerate. Since
these form a set of measure zero the application of
(II.6) to the d bands is valid.

We now transform Eq. (II.6) into an expression which
is very similar to that of the orbital hyperfine inter-
action of an isolated atom with one difference in that
it has a contribution from the surface of the atomic cell.
This is small in the tight binding approximation. The
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details of the transformation, which essentially eliminates X and replaces it by the ordinary coordinate r,
have been given elsewhere" and here we give only the result:

PIE
X,„o&(k)=

e
4-*(~p. yp—.)4-d.+I —

I
0-*(»' y~—*')0-dr

n 'c)

( (e)
u.*p,+(p,u„)*+2u.*i Ak„+i —iA„'

i
x —y idS

kc) 4 ak„ ak, )
r)E„/r)k„r)$ * r)P„( r)f„)* r)$ r)E /r)k, r)$„* r)$„r)$„)*r)$„

+i m„
i

—dS+ ir, + x,—
i

— dS . (II.7)
4&E./&k. e &k. r)k. ~ r)k./ c)k.— 4r)E /r)k, s r)k, r)k, &k,~ &k,

The magnetic field has been assumed to lie in the s
direction; A' is the periodic part of the vector potential
due to the nuclear moment and is defined in (II.2);
the Bloch state f„k is normalized over the unit cell and
u„k is its cell-periodic part. it„k is assumed known to
first order in the hyperfine interaction K'; i.e.,

itak tOek+2 (+ )n'n, V'n' /k(En En')
q

where the y„i,'s are the eigenfunctions of 3CO. The last
three terms of Eq. (II.7) are integrals over the surface
of the unit cell; the first one originates from the first
term in Eq. (II.6) and the other two from the terms in

X„„ofthe same equation.
It is to be expected that in transition metals where

the Van Vleck paramagnetism is likely to be important
the surface terms will be small because of the localiza-
tion of the d functions. In this limit the two volume
terms in Eq. (II.7) acquire simple physical meanings
as will be more apparent if we first give an alternative
expression for the interaction K'.

The summation over u in Eq. (II.2) is rather incon-
venient. It can be eliminated and converted into a
summation over lattice points R, by using the theta
function transformation of Ewald. "We obtain

e (r—R)
5i."=—ts P X p, (II.S)

mc ~ r-
where the summation over s (which would be condi-
tionally convergent if the order were not specified) is

to be effected in the order of increasing distance from
the origin. The summation converges rapidly. Thus the
term from R,=O is of order r 'l, while in a cubic metal
the contribution from the nearest neighbors is of order
v(r'/as)l„a being the distance and v the number of
nearest neighbors. In the case of vanadium, u is about
5 au while calculated values" of (r") in the free ion are:
for the d' configuration, (r ')'=2.747; (r')'=2.07; and
for the d' configuration, (r ')' = 1.S35; (r')' =4.576.
These figures suggest that only the contribution from
the central cell is of importance in Eq. (II.S) Lwhen
A' occurs in the surface terms of Eq. (II.7), the con-

s7 Y. Yafet, Phys. Rev. 106, 679 (1957).
3 M. Born and K. Huang, Dynamical Theory of Crysta/ Iattices

(Oxford University Press, I.ondon, 1954), p. 248.

tribution from the nearest neighbors can of course not
be neglected].

Returning now to the volume terms in Eq. (II.7),
and using Eq. (II.S) and the perturbation expansion of
p„k, we see that if only the central cell contribution to
X' is retained, the first term becomes

p *(xpv yp*)p.dr—

eu t.
(mid, i'')i n,

' ——u +c.c.
n ~n k risc rs, (E„—E„,)

(II.9)

2X„.(r-')~2
(II 11)

Whenever the d shell is partly filled the paramagnetic
contribution exceeds the diamagnetic contribution be-
cause Xyy))Xd;, . In the beginning of this section it was
stated that under the same condition the long-range
contribution is small compared to the short-range con-
tribution. From (II.10) it is seen that the ratio of the
two is of order (Q/n. )(1/r') and since 0=10' au, the
short-range term dominates.

"N. Ramsey, Phys. Rev. 78, 699 (1950).

Except for the 1/r' factor this expression is identical,
within a proportionality factor, with the contribution
of the electron in the state y„k to the Van Vleck sus-

ceptibility of the material; this can be seen from Eq.
(103) in Ref. 12 and the discussion following it, provided
the spin-orbit interaction is neglected. If the further
approximation is made that the radial functions of the
states q „k and &p„k are identical and Eq. (II.5) is used,
we find for the Knight shift arising from this term:

Evv= (AH/H)vv=2xvv(1/r')Q. (II.10)

This was to be expected by continuity from Ramsey's"
result for molecules.

Similarly, the second volume term of Eq. (II.7)
can be seen to give the diamagnetic contribution to the
Knight shift. In the tight-binding limit this can be
related, in analogy to (II.10), to the atomic diamag-
netism Xq;, of the material, and we find
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2. Effect of Spin-Orbit Coupling

We now turn to the effect of spin-orbit coupling, and,
more generally, to the relativistic effects, assuming the

nuclear moment to be concentrated at a point. If
I

is the solution of the Dirac equation, it is convenient
to eliminate the small component part P~ and to express
the result in terms of the large component spinor fi.
The energy of interaction' to first order in the nuclear
moment is then given by the expectation value over Pi
of the operator BC„,

W+eq q-'
X„=I 1+

2mc2 I
-Sar (1) p 1-

~~ p~(r)+0~. v p.vl —I+2P
3 Er) ra

W+e y)
—'- I't e(p x r)-

+ 1+
I

~ &(—ev)&
2rnc' ) 4m'c' cr'

(II.12)

Here 8'=E—mc', E is the energy, and y is the electro-
static potential. Of the three terms in the first square
bracket, the first (which nonrelativistically is the con-
tact interaction) gives a vanishing result because of the
ep/mc' term in the first factor, the second is the dipole-
dipole interaction with the electron spin, and the third
is the orbital interaction. The term in the second
square bracket is a part of the spin-orbit interaction
(&/4@Pc')e x V ( ey) —(p+ eA'/c), where A' = p x r/r' is
the vector potential of the nuclear moment. This term
by itself is of order r ' and hence it would diverge for
s states. The factor

I 1+(W+ep)/2mc'j ' makes it
finite, which restores the contact interaction. For an
s state only this term contributes; for //0, the other
two terms of (II.12) contribute as well.

We do not intend to give a formal relativistic treat-
ment and so we consider the large component of
the Bloch function Pi, q to be decomposed into eigen-
states of the angular momentum. Especially in heavy
metals, the largest relativistic effects are those for s and
pit2 states, and their contributions to the energy are to
be calculated by the usual methods"" used in atomic
hyperfine calculations. For the j&~ part of the wave
function the relativistic corrections are less important
and can be treated in the lowest approximation, i.e.,
by including the spin-orbit coupling into the Schrodinger
Hamiltonian. We will consider in turn the hyperfine-
orbital and the hyperfine-spin interactions.

(a) Orbital Interaction

The Hamiltonian of Eq. (II.1) is modified as follows:
Ko includes the spin-orbit interaction

X,.= (t't/4m'c') e x ~ (—g q ) .p;
~ H. Kopferman, NNcleur Moments (Academic Press Inc. , New

York, 1958), English translation, p. 199.

BC' includes (for non-s states only) the last term of
(II.12) but without the convergence factor, i.e.,

X'=—A' p+ o x ~ (—ep) . (11.13)
mc 4mc'

Bg
X g$~ ~1 j+pp~ i

~+neap

dk. (II.15)

The 6eld AH~, from the first term on the right is
formally given by the same expression as in the no
spin-orbit case, i.e., using Eq. (11.7), but with the
Bloch states modified by spin-orbit coupling. Let
X„„,&"(k) denote the part of BC„,&'&(k) that is linear
in p. From the fact that for fixed p, X' changes sign
under time reversal, it can easily be shown that
X»t &"(k) =X»& &" (—k). If the crystal has a center of
inversion, itis also true that X„„i&'&(+k)=K„„t"& (—k).
It then follows that BC„") cannot have a term that is
linear in the spin-orbit interaction because, such a
term being proportional to O.„ it would have to be of
opposite signs for p„i,t and 1t„i,i, . Thus the spin-orbit
corrections to AH~ are of second and higher orders. In
contrast, AII2 is of first order in the spin-orbit inter-
action because e„i,= e„~. Thus for small spin-orbit
coupling, it is sufficient in calculating hII to first corn-

pute the contribution from the filled states, ignoring
spin-orbit interaction and then to calculate the ex-
pectation value of R'

I Eq. (II.14)j at the Fermi
surface. Using (II.15) and (II.6), we find. in this

Again we only treat the short-range part of the inter-
action in which case BC is periodic. It is assumed that
the energy levels and wave functions of GC have been
found to the first order in p. We note that as a result
of the spin-orbit coupling the Bloch states now have an
additional energy pE &p'p proportional to p, which
depends on the relative direction of o and p,

t&-» '=(4-~. &'4»), (II 14)

where p is the spin index of the Bloch state. Both terms
of BC contribute to (II.14) and it is likely, as is the case
when A' is the vector potential of an externally applied
field, that the contribution from the first term is by far
the most important. In the presence of a magnetic
field Eqs. (II.4)—(II.6) are valid, but because of the
dependence of the energy on the spin, the Fermi func-
tion in Eq. (II.5) is no longer symmetric in the two spin
directions. Let us assume that the spin states p, p' have
been chosen such that the energy (II.14) is diagonal
in p, and let E~i„=E~~,"'+@pe„~,where E„»"& is the
energy in the absence of hyperfine interactions; p has
the two values +1 corresponding to the spin directions
1' and J,. We rewrite Eq. (II.5), making the summation
over p explicit, as follows:

1
p(&K+&II—2) = ZE—X-."'(k)

E (2m-)' ~
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III. SPIN SUSCEPTIBILITY AND SUPER-
CONDUCTIVITY OF AN ELECTRON GAS

approximation:
AHs 2P0 dSI,

(II.16)
H (2')s

i ~,E„k
i

the integral being over the Fermi surface.
Because the spin-orbit coupling in the d shells is

small compared to the bandwidth, even in the heaviest
transition metals, the major part of the effect of spin-
orbit interaction will be given by (II.16).

The Pauli spin susceptibility of a noninteracting
electron gas is given by the well-known formula
x=-,'g'P'1V(Er), where P is the Bohr rnagneton and
1V(Er) is the density of states at the Fermi surface.
In the case of Coulomb interaction between the elec-
trons the susceptibility is enhanced by exchange. In
this case a useful approximation to I has been obtained
by Wolff" using the random-phase approximation. If
the interparticle potential is G(r r'), —then the inter-
action term in the Hamiltonian is

(b) Spin Spirt I-eteractiol

The periodic part of the electron-nucleus spin-spin
interaction is

Hj~f, — —P G(k k')—cs, ~*cq'+q, r' ck', rc]t+q, e' i
2 v &&' q«' (III.1)X"=PPn &ls &

S ir —Rsi
where, as in (II.S), the summation is to be made over
lattice points within spherical concentric shells.

In absence of spin-orbit interaction only the electrons
with unpaired spin at the Fermi surface contribute.
The hyperfine field is then given by an expression
identical to (II.16), except that s„q is now calculated
using X" instead of X' in Eq. (II.14). In cubic sym-
metry, as is well known, this term vanishes; in lower
symmetry it is finite but usually small compared to the
orbital interaction term.

When spin-orbit interaction is taken into account
BC" contributes a hyperfine field even in cubic metals.
As in the case of the orbital interaction, this is given by
Eq. (II.7), but with the Bloch states determined to
first order in the spin-spin interaction. It is informative
to examine the character of this contribution in the
case of small spin-orbit coupling. To first order in X„
the expectation value of BC" over a Bloch state is po.,t.„k
and arises from the a-+ and o. terms in BC„and K", re-
spectively, according to Lo.+,o. )=o, The order of mag-
nitude of e„q is P(1/r')(X„/DE) where DE is an
interband energy and, from (II.16), the corresponding
Knight shift is of order

(I1.17)
where

G(k —k') = e '""G(r)e'~'dr, (III 2)

and v is the sample volume. In this case Wolff finds for
the uniform susceptibility

-'ep'1l (Ef)
(III.3)

1 1V(Er) (1/—4qr) G(kf —kg')dQ'

where k~ and kf' lie on the Fermi surface and dQ' is the
element of solid angle centered on kf'. 1V(Ef) is now the
density of states per unit volume corrected for the ex-
change self-energy according to the relation

1
G(k —k')dk',&k= ~ok-

Sm'

where Esz is the free electron energy. If G(r) is repre-
sented by a screened Coulomb potential

(III.5)G(r) = (e'/r)e ~"

then
G(k —k') =47re'/(i k—k' i'+n') (III.6)

g 2(&) /1 X,.
-111V(K)P'i—

H kr' AE

The Thomas-Fermi approximation for n is n' = Sere'1V (Er)
(11.1S) which gives

In addition the filled part of the band also con-
tributes in this order. Since X" and X' behave in the
same way under time-reversal, the argument following
Eq. (II.15) is applicable to X" and hence X„„t&'l (—k)
=X„„qo)(k). However, in contrast with the orbital
case, there is no reason why this should vanish because
it includes a term that is even in 0, In the case of a
paramagnetic ion this would be written as P p,l, where
X is of the order of e„k given above. It arises as a cross
term in the elimination of the 0-, components of BC"

and X„. (t,) vanishes in the absence of an external
field but in its presence it gives rise to a Knight shift,

DHi&*'/H P'(1/r')Xso/(d, E)' (II.19)

This is of the same order as (II.1S), except when the
density of states at the Fermi surface is large.

(1117)

where a is the average distance between electrons. For
values of a and E~ encountered in a d-band metal o. is
of order 4k~.

In the case of metals that are superconductors, the
lattice-induced interactions introduce an attractive
potential between the electrons. If retardation effects
are ignored, the interaction Hamiltonian may be
written4'

H;„,= ——P G(k, k') c~,.*cq +, *cs,.c~+q, , (III.S)
2V kk'qocr'

4' P. A. Wolff, Phys. Rev. 120, 814 (1960).
42 J. Bardeen, L. N. Cooper, and J. R. Schrie6er, Phys. Rev.

108, 1175 (1957).
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to see if any experimental relations exist between the
susceptibilities and superconducting transition tem-
peratures such as those suggested by Eqs. (III.21) and
(III.22). We have, in fact, evidence' which shows that
X for the intermetallic compounds V3Si and V3Ga, and
the metal vanadium, is less than X,p h$. in approxi-
mately the degree predicted by Eq. (III.22) and the
observed transition temperatures. In the case of
Pt metal discussed in this paper for which we And
&) X,~ h~. , we conclude that N(E~) V is negative.
According to Eq. (III.20), no energy gap would then
exist at absolute zero and we would conclude that Pt
would not be a superconductor at any temperature.
Thus if superconductivity exists it must arise from
considerations not included in the simple BCS theory. 44

CONCLUSIONS

It has been shown that a consistent interpretation
of the Knight shift and susceptibility in platinum metal
may be given and that the contributions to each from
spin and orbit may be separated. The dominant con-
tribution to E is that of core polarization resulting from
the spins of d-band electrons. Both the orbital and s-
electron paramagnetism are small as a result of the
small number of s electrons and d holes. To construct
our E versus x diagram (Fig. 2) we have used a free-
electron estimate for the s-electron susceptibility neg-
lecting s-s and s-d interactions. Since both Xyy and

44L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958),
)English transl. : Soviet Physics —JETP 7, 505 (1958)g. G. M.
Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960), LEnglish
transl. : Soviet Physics —JETP 11, 696 (1960)]. P. Morel and
P. ~. Anderson, Phys. Rev. 125, 1263 (1962).

X~' are positive, our graphical procedure puts an upper
bound on both, from which we conclude that neither
one can be increased by more than a factor of 2 from
the values given. The relative value of orbital and spin
contributions in platinum as compared with those in
vanadium is clearly consistent with the position of the
Fermi level in the d band in each case.

Spin-orbit coupling, which might be thought to be
important for the heavy transition metals, has been
seen to have a minor eGect on the band parameters
determined from an analysis of the susceptibility and
electronic specific heat.

In Sec. II we have given a formal treatment of the
orbital and dipolar hyperfine fields in transition metals
including the effects of spin-orbit coupling. The result
is obtained in a form particularly suitable for calcula-
tions in the tight binding approximation which should
be adequate for the d electrons in these metals.

The last section shows that the quantity N(Er)V,
which determines the energy gap and transition tem-
perature in the BCS theory, also determines, in the
random phase approximation the relation between the
measured density of states N(Ey), and the measured
spin paramagnetism. Within these approximations, for
V positive, a finite energy gap exists and X&X,p.h&. ,
whereas, for V negative, no energy gap exists and
X& Xsp h$ Since, for Pt X 2X».h& ~ our theory predicts
it not to be superconducting.
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R. SHEN

Gordon McEay Laboratory, Harvard University, Cambridge, Massachusetts

(Received 12 December 1963)

A large rotatory power for Ku'+ in cubic fluoride lattices has been observed in the visible range. At fre-
quencies suKciently removed from the absorption bands, the rotation is proportional to the magnetization.
This suggests that the upper levels in the allowed optical transitions are of the I'g character. Measurements
on CaFs and SrF& crystals doped with very low concentrations of Eu (~0.005%) also suggest some possible
structure for the strong, sharp characteristic line of Eu'+ near 4000 A. The rotatory powers of several other
divalent rare-earth ions in Quorides have also been measured.

1'N a previous paper, ' we reported results of rotation
& - measurements on several rare-earth ions in CaF2. In
particular, we found that the divalent europium ion
(Eu'+) in CaFs has enormous rotatory power, which
appears proportional to the magnetization at frequen-
cies sufficiently removed from the absorption bands.

*This research is supported by Advanced Research Projects
Agency.' Y. R. Shen and N. Bloembergen, Phys. Rev. 133,A515 (1964).

These facts are well explained theoretically. ' Van Vleck
and Penney' first suggested that for 5-state ions in a
cubic field, both SJ and I'g levels in the allowed

SJ —+ I'z transitions are only slightly perturbed, and
hence the rotation should be proportional to the
magnetization.

»'. R. Shen, Phys. Rev. 133, A511 (1964).
& J, H, pan &leek and W. G. Penney, Phil. Mag. 17, 961 (1934).


