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Theory of Collision Broadening in the Sudden Approximation*
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A method is developed for calculating the cross section for line broadening in the limiting case in which
important collisions may be considered to occur very rapidly with respect to the periods corresponding to
the transitions in question. This method is essentially an extension of the familiar "sudden" approximation;
reference is made throughout to the particular example of optical double resonance only for definiteness .
and because there are available experimental results for comparison with the theory. Assuming the impact
model and considering the case when the energy levels in question are well resolved with respect to their
width, an exact expression is found for resonant self-broadening in the usual weak rf field limit of interest in
double resonance. For the case of very small oscillator strengths for the optical transition (intercombination
lines), the resonant broadening becomes sufficiently small so that second-order, intermediate-state processes
dominate, and approximations must be made to effect sums over intermediate states. Here the broadening
is of the same sort as foreign gas broadening, and in many cases of interest, the approximations can be made
in a sufficiently realistic manner to obtain useful expressions for the broadening. It is shown that the resonant
cross section and this "second-order" cross section are not additive, but that the one which is larger dominates
the total cross sections very strongly. Finally, we evaluate explicitly the self-broadening and foreign gas
broadening (by the noble gases) of double resonance lines in the group II metals and the self-broadening in
the optical spectrum of helium. In all cases our theoretical predictions are in good agreement with meas-
urements which have been made.

I. INTRODUCTION

'HE purpose of this paper is to develop a quan-
titative theory of pressure broadening in the

"sudden" approximation with application to the case of
optical double resonance lines. There are at present
several observations of the increase of double resonance
linewidths with density for self-broadening in zinc and
in cadmium, ' and for foreign gas broadening in mercury. '
In the case of zinc a rather severe disagreement has been
found between the observed cross section for broadening
and theoretical estimates based on the theories of
Furssov and Vlassov4 and others. ' In this work, this
discrepancy is explained and explicit formulas are ob-
tained for self-collision broadening both in the limit of
large and small oscillator strengths of the optical tran-
sition. Formulas are also derived for foreign gas broaden-
ing in the interesting case of broadening by the noble
gases. In Sec. II the theoretical expression for the line
shape in the presence of collisions is derived, and in
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Sec. III some specific cases are calculated for the purpose
of comparison with experiment.

II. GENERAL THEORY

The problem under consideration is the broadening of
resonance lines resulting from radio-frequency-induced
transitions between the magnetic sublevels of an atomic
state, where change of polarization of the emitted optical
radiation is used as a detector. The problem of these
transitions, neglecting collisions, in the case of equal
spacing of the levels was solved exactly by the well-
known result of Majorana' which gives the probability
P(t), that an atom initially in the state (F,ns) will at a
later time l, find itself in the state (F,srt') under the
inhuence of an rf magnetic field Bi, of frequency co. The
magnetic sublevels are assumed to be spaced equally due
to the presence of a weak static magnetic field Bp, which
produces level separations Acro. The analysis required to
obtain the Majorana formula is rather complicated, and
if the complication of perturbing collisions is added an
exact solution is out of the question. However, since the
excited states involved usually have lifetimes z which
are quite short (typically of order one microsecond),
the radio-frequency field can act on the atom only a very
short time, so that if the field is very weak, i.e.,
7t B&«1/r, the probability of transition to any but the
nearest magnetic sublevel can be ignored. p&B& is just
the familiar "Qipping frequency. "

In the case p&B&«1/r, we may consider the
problem of transitions between srt and sst+1 as an
isolated two-level problem. Although the simple two-

' E. Majorana, Nuovo Cimento 9, 43 (1930).
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level flipping formula is readily obtained exactly, it is
instructive to examine it via perturbation theory since
when the effect of collisions is introduced a straight-
forward solution of the resulting Schrodinger equation
is not possible. For the two-level problem, P(t) is given
by (keeping only through lowest order in ys Bt)

sin s (Gp
—top)t

F(t) = (F m)(—F+m+1) (yFBt)',
(tp —

top)

which is to be compared with the exact expression

(VsBt)'
F(t) = (F—m) (F+m+1)

(VFBt)'+ (~—~o)'

&& sin'-',
I ((u —top)'+ (y pB t)']'"t.

For t sufficiently small, the two expressions agree. To
obtain the double resonance line shape I(a&), this
probability Inust be weighted by the probability of
decay to the ground state of the atom, (1/7)e 't', and
integrated from zero to infinity to account for the finite
lifetime of the excited state. r In the first (perturbation
theory) case

(v~Bt)'
I((u) =-,'(F—m) (F+m+1), (1)

(1/r)'+ (~—~p)'

and in the second (exact) case

I(a&) = ', (F m-) (F—+m+1)

Bt——Bt(i coscot+j sinptt), the expression for H may be
written as

H=Hp+H, (t) ,'B—t-t tj+e ' '+tI, e'"'j

where tl+ p——,&itl, Since p=ysF, where F is the total
angular momentum of the excited atom, p+ and p corre-
spond to the usual raising and lowering operators for
magnetic sublevels, and hence to annihilation and
creation of radio-frequency quanta. This last term will
be referred to as H„~ for the interaction of the particles
with the field. The solutions of Hp are assumed to be
known,

ik(8&./Bt) =Hog„,

where e stands for a member of a complete set of
quantum numbers. Define H~=H p+H, (t); U~(t, tp) will
be the corresponding time-development operator satis-
fying the equation ikU&(t tp) =HyU&(t tp) with the re-
quirement that U„(tp,tp)=1. Similarly, Up(t, tp) corre-
sponds to H p and U(t, tp) corresponds to H. We want the
probability that an atom, initially in the state n, will
find itself at a later time T, in the state m. This will be
given by

F=
I
9-(I') IU(I' to) I&-(tp)) I'

=
I «. '(T, to)lt-(T) IU.-'(T,to)U(I', to) lit-(to)) I',

=
I Q-(to) I U.-'(I', to) U(T, to) lt. (to)) I'.

At this point the utility of the interaction representation
is evident. Calling U~ 'U= V, sbV= (U~ 'H„rU~)V
which may be solved by iteration, V=Vp+Vt+Vs+,where

Vp ——1,
z

V1= —— U„-'(t', t,)H„,(t') U„(t', t,)dt',

apart from a factor giving the density of excited atoms.
Because of our decision to neglect Yg81 with respect to
1/r, these two results agree also.

To summarize, throughout this work it will be as-
sumed that ypBt((1/r, and the two levels involved are
considered to be isolated. The smallness of y p81 will be
used to neglect all but the lowest contributing order in
time-dependent perturbation theory.

Consider the Hamiltonian, H=Hp+II, (t) —ts Bt,
where p is the magnetic dipole moment of the system in
question. Hp is the unperturbed Hamiltonian of two
atoms in a static magnetic field, one in the excited state,
the other, which will be called the perturbing atom, in
the ground state. H, (t) represents the effect of the inter-
action between the atoms, containing the usual dipole-
dipole, dipole-quadrupole, etc. , terms of the Inultipole
expansion of the interaction between two electrically
neutral atoms. The two atoms are considered as colliding
repeatedly with each other in an uncorrelated way to
simulate the eGect of many perturbers on the excited
atom. This term, which must be defined statistically,
will be referred to as the collision Hamiltonian. With

"J.Brossel and F. Bitter, Phys. Rev. 86, 308 (1952).

and so forth. Clearly, Vp gives no contribution. Hence
to lowest order in $1,

T

P=-
to

(1 (to) I
U (t, to)H„r(t)U„(t to) I4' (to))dt

Since U (t,tp)t+U„(t, tp) =t+(t),

812 T 2

(4 (to) It+(t) I4.(to))s-'"'«,
to

82 T

4PP

812 T

4'

dt dt'(Nlp (t)lm&(nip+(t') lm&e'"e ' ",

dt dt'e' &'-'l(rtl p (t) I m&(mI p+(t') I rt&.

where H„~ is as defined above. Consider the case of
absorption first. Then only p+ will contribute and

812 T

Q (to) I
U (t, to)t+U„(t, to) ly. (to)&e-'"« .
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X"exp" U (x,0)H, (x+t)

= Up '(t, tp) Ti(r) Up(t, tp),

where T~(r) is given by

X Up(x, 0)dx Up(t, tp)

Ti(r) = "exp" Up '(x,0)H, (x+t) Up(x, 0)dx

Hence the expression

&f'I T '(t+r, t)lc)&dl T(t+r, t)lib)«

becomes

s""'+"""&f
I
Tr '(r) lc)&dl T (r) I

~)«

It is clear from the assumption of random collisions that
H, (x) is essentially time-translation invariant, and thus
T, (r) is essentially independent of t. The t integration
thus yields a delta function, b(tpb, +rp&.), which means
that for a nonzero result we must have orb, +tpq, 0——
which is equivalent to the original assertion b=c and
d =a, since to have radiation at all it is necessary that
c/d and a/b. In practice, the levels are smeared out by
collisions and radiative damping, so that the require-
ment that levels coincide is expected to be pp&b(1/r, ff

and cpd ((1/r tf. Since in most work 1/r„ri is less than
one Mc/sec, then as long as the Zeeman splittings are
greater than one Mc/sec (they are generally greater
than 10 Mc/sec in typical double resonance work) the
requirement is just b=c and d=u. For very closely
spaced levels the situation would be more complicated.
Thus p, q reduces to

e, ()= &dlt (t) ld&&dlt-lc)&cl T '(t+r, t) l~)

X &c
I t+ I d) &d I

T(t+ r, t) I d)«,

where c and d are adjacent sublevels. Using an obvious
notation, our basic formulas in Eq. (5) may be rewritten
as

g 2 00

1(~)= Z«s "" "" '"'4 s(r)dr
212 &sf p

4*t(r) =&ilt (t) li) l&flt+li) I' &fl T (t+r, t) If&-
(6a)

X&il T(t+r, t) Ii)dt. (6b)

Since Up(t', t) = exp l
—(i/A) H p(t' t—)]= Up(t' —t, 0), then

upon setting x= t' —t,

T(t+r, t) = U (t, t,)

a differential equation for F(r) may now be found.

dF(r) =

dF(r) =

Dfl T-'(t+ +d, t) If)&il T(t+ +d, tli)

&fl
T-'—(t+r, t) If)&'IT(t+r, t) IiH«,

D fl T '(t+r, t-) T '(t+r+dr, -t+r)
I f)

X&i I
T(t+r+dr, t+r)T(t+r, t) li)

&fl T '(t+r, t) I f)&il T(t+r, t) li)ddt

In breaking up the above products into sums over inter-
mediate states, only those terms with intermediate state
f (in the first product) and i (in the second product) will
contribute by the above arguments. Hence,

dF (r) = f&f I
T '(t+ r, t) I f)

x&flT '(t+ +d, t+ )If)
X&il T(t+r+dr t+r) li)&il T(t+r, t) li)

—
&fl T-'(t+r, t) I f&&il T(t+r, t) li)1«

&fl ~'(t+r+—dr, t+r) I f)

X&iI T(t+r+dr, ter) Ii)g

XI &fl T(t+r, t) I f)&il T(t+r, t) li)]dt.
' F.D. Colegrove, P. A. Franken, R. R. Lewis, and R. H. Sands,

Phys. Rev. Letters 3, 420 (1959);P. A. Franken, Phys. Rev. 121,
508 (1961); M. E. Rose and R. L. Carovillano, Phys. Rev. 122,
1185 (1961).
"J.K. Dodd and G. W. Series, Proc. Roy. Soc. (London) A263,

353 (1961)."J.P. Barrat, J. Phys. Radium 20, 541, 633, 657 (1959).

At this point, the rather serious restrictions of the
theory should perhaps be emphasized. They are funda-
mentally two in number: (a) y~B i&(1/r, , u and (b) the
splitting of the magnetic sublevels is large with respect
to the width of the lines in question. In the most general
magnetic resonance type experiment these two restric-
tions are not necessarily well obeyed. For example, in
the so-called level-crossing experiments" the entire
effect depends on the fact that the levels are very close
to each other, in fact, that they actually intersect. The
most general approach to this problem, which brings in
the phenomena of light beats, " level crossing, " and
coherence narrowing" would require a true density
matrix formulation of the problem and would be much
more difficult to carry through.

Using the methods of Anderson, which we repeat here
in simplified form for completeness, it is now a straight-
forward matter to obtain a simple form for @,q(r).
Calling

F(r)= &fl T (t+r, t) If)&il T(t+r, t)li)dt,
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Now assume that dv may be chosen to be much greater
than the duration of a collision but also mu'ch smaller
than the time between collisions. This is the standard
"impact" assumption which in this case is obeyed to a
very high degree of accuracy (the time between
collisions is of the order of 10 ' sec and the duratioo of
a collision is of the order of 10 "sec). Then T(t+r, t)
and T(t+r+dr, t+r) are uncorrelated and the time
integration over them may be performed separately.
The second term in brackets gives just F(r) upon inte-
grating. In the first term, since only one collision occurs
in dv, the time integral may be replaced by an integral
over all possible types of collision. Hence,

dF(.) = (1 &f—I
T-—'(t+r+dr, t+.) I f)

X &i I
T (t+ r+dr, t+ r)

I i&),.F(r),
where the average is taken over all possible types of
collisions. The average over symmetric and anti-
symmetric states of the two atoms considered as a
system can be done simply. Since either of these two
states is equally likely,

dF(r) = —{1—lL(fl T '(p) If)+&il T(p) Ii&+

+(fl T '(p) I f)-&il T(p) Ii&-j}-F(r),

where the subscripts + and —signify symmetric and
antisymmetric states, respectively, and where p repre-
sents the spacial collision parameters over which the
average is taken. Because of the simple signihcance of
symmetric and antisymmetric eigenfunctions this can
be written in a simpler form. The interaction considered
in this paper will be the dipole-dipole interaction, and
hence, if it is of the first-order, resonant type, (I Tl )~
= (I Tl ) ~, i.e., the two matrix elements are connected
by simple complex conjugation, whereas for nonresonant
interactions ( I

T
I )+= (I T

I ), since the perturbing atom
in this case acts like a foreign gas atom. Hence in these
two cases

dF1(r) = —«(1—(f I
T '(p)

I f)(il T(p) I i)&, Fz(r),
dF (r) = —&1—&fl T '(p) If)&il T(p) Ii)&-F2(r),

where the matrix elements are computed using either
symmetric or antisymmetric eigenfunctions.

Now assume that the probability of a collision of type
dp in dr is just evd p dr, where e is the atomic density,
v is the relative velocity of the two particles and dp con-
tains a velocity average. Then, with an obvious change
for the nonresonant case,

dF(r)

F(r)
~ «[1—(f I

T '(p)
I f)

X&il T(p) Ii&]dp dr

Since it is customary to write the collision frequency
in the form e80-, where 8 is the average relative velocity,
we will replace v by 8 throughout. This is exact in the
resonant case where, as will be shown, 0 has a 1/v de-
pendence. In general, to be precise, one should actually
velocity average the expression for the collision fre-

quency, but since this substitution will involve varia-
tions of only a few percent no significant error is made

by setting v=8. Hence dF(r)/F(r) =zt00 dr and, there-
fore, F(r) =exp( —NPo. r), where

[1—
&fl T '(p)

I f&(il T(p) li&ld p (7)

XRe exp{—i[a&—(oz,—i(y+Nvo) jr}dr.

Writing &r =0zi+igz, the signal becomes

(vz&i)'
I,g=--

(&u ~z,+rzba z)'+ (1/r, .q+ rzvo zz)'

It is instructive to examine I,y more explicitly. Set

f=m+1, i =m; then for the absorption, case described
above

with the omission of Re in the nonresonant case. Hence

4'z=(il p(t) li) I(fit li) I' exp( —~8«),
and thus

f'z=l&ilp(»li&l&flF li&I'h &)'

I ~i——z(ml p(t) I m) I (m+1lti+I m) I'(ypB, )' Re exp( i{~ ~~—,, i[y+Nvo—(m ~ m+1)]}r)dr

', &mls (t) I
m-)(F m)(F+m—+1)(&,fl, )2

where by Eq. (7),

XRe exp{ i[&a ~~i, +ggaz—(m ~m+1)]r}exp{ [y+rtv~zz(m ~—m+1)]r}dr,
0

~(m~m+1)=Re [1—&m+1IT '(p) lm+1)(mlT(p)lm&jdp

with the omission of Re in the nonresonant case. Now consider the inverse transition, i= m+1, f=m. This is the
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emission case, so p+ is replaced by p and co is replaced by —co. Then

I~g, ———',(m+1I p(t) Im+1)(F—m)(F+m+1)(ypBg)'

XRe exp{ i—$ o—& p—p„,~&+nvar(m+1 ~ m) ]r) exp( f—p+nva~(m+1 ~ m))v )dr
0

a(m+1~m)=Re L1—&ml T '(p) lm) &m+1I T(p) lm+1)g&p

with the omission of Re in the nonresonant case. It is easily seen that a(m+1 ~m) =o.(m —+ m+1)*, so that

I~g(„———,'(m+1I p(t) I m+1) (F—m) (F+m+1) (y pBg)'

XRe exp(+if'& ~~q+,n8ar(m~ m+1)]r) exp( $y—+nvag(m~ m+1) jr)dr.

Thus, I, +~ and I +~, are the same except for the mul-
tiplicative factors of (m I p (t) I

m) and (m+1
I p (t) I m+ 1).

They are broadened by the same amount and shifted in
the same direction by equal amounts, as we must require
on physical grounds. In an experiment, the difference
between I, +& and I +j., is the observed quantity, and
thus the observed signa'l is proportional to the difference
between the populations of the two levels in question, as
should be expected. In a similar manner it may readily
be checked that the transition —m ~ —(m+1) in the
emission case gives the same magnitude of signal
(provided the levels m and —m have equal population)
and the same broadening as in the absorption case
m ~m+1, but the line is shifted by nvar/—2~ cps in
the former case as opposed to +nvar/2m in the latter
case. In both cases the half-width (full width at half-
maximum intensity) is

to evaluate T in closed form. Taking matrix elements on
both sides of the above equation, we get, using the
summation convention on primed indices,

iver(nl Tln) =(nlUp '(t, to) ln')(n'IH. '(t) ln")
X(n" IUp(t, tp) ln"&(n"'I Tln)

=e'"""'(n
I
H, &(t)

I
n')(n'

I
T

I
n&,

where co = (F. F.„)/h. T—wo limiting cases arise.
First, if the duration bt of the collision is long with re-
spect to all the co„„ involved, then the rapid oscillation
of e'"""'will give zero unless co„„=0,i.e., unless n=m'.
Then

it't(nl Tln)=(nIH. (t) In)(nl Tln&,

(nl Tl n) = exp —(i/A) (nl H;(t') In)dt'

NU0 ~

7l Tz s6
(in cps) . Thus

(n I
T (p) I n) = exp —(i/t't) (n I H, ~(t)

I
n)dt

Thus in the case of the 6rst-order resonant interaction
the line will be broadened, but there will be no shift of
line center since the cross section 0- has no imaginary
part. We may point out here that in the double reso-
nance case, where transitions take place between mag-
netic sublevels, it is clear that although an individual
collision will cause a shift, this should always vanish
when averaged over all collision directions. This will be
shown explicitly in Sec. III.

The 6nal part of the formal solution is to 6nd a
method of evaluating matrix elements of the form
(nl T(p) I

n). Recall the equation for T,

where the t in H, &(t) arises from the classical trajectory
assumption. This is just the well-known phase-shift
result. "The other limit of interest is our case, namely, if
bt is much less than the periods involved in our problem
which are, as mentioned before, T=10 ' to 10 ' sec.
Since St is of order b/v, where b is the distance of closest
approach, 6& 10 ' cm, and v=10' cm/sec, we see that
8t is a factor of 10 ' to 10 ' smaller than T. Thus the
oscillatory factors may be considered equal to unity
during a collision, and

iAT= I Up '(t, to)H, ~(t) Up(t, tp) jT, T=exp —(i/A) H, ~(t)dt

where H, &(t) is now the Hamiltonian for a single
collision parametrized by p. Since, in general, Up (t,tp)

XH, ~(t) Up(t, tp) does not commute with itself at differ-
ent times, the integration of the above equation will
involve complicated time-ordered products of terms
which, in general, are quite untractable. However, in
this case the physics of our special situation enables us

where H, &(t) is to be thought of as a matrix involving
the magnetic sublevels in question, i.e., a (2F+1)
X (2F+1) matrix.

Although this gives a formal solution to the problem,

"H. M. Foley, Phys. Rev. 69, 616 (1946).
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for the purposes of calculation some further manipula-
tion is desirable. Consider the collision as shown in
Fig. 1, where the coordinate system is chosen so that the
s axis lies along the distance of closest approach b. Since
a magnetic field is present, the matrix H, &(t) will have
an angular dependence. Note, however, that it is a
simple rnatter to calculate H, &(t) in the special case that
$0 lies along b Th. e (2F+1)-rowed representation of
the rotation group can then be used to rotate the field
to (8,&). Let us call M(p) =J'„"H, &(t)dt, where $0 is
taken along b. Then T(p) becomes

z

T(p) =exp ——D&~& '(8,&)M(p)D~(8, &),
h

o

Ho

where D~(8,$) is the (2F+1)-rowed representation of
the rotation group. Now M(p) will be Hermitian. Let S
be the unitary matrix which diagonalizes M(p). The
calculation of this matrix is greatly simplified by the
fact that the parameters b and 8 come out of M(p) in a
common factor. Thus, M(p) is just an array of numbers.

FIG. 1. The coordinate system for a collision between two atoms.

It is easy to see that if S diagonalizes M(p), i.e., if

[S 'M(p)Sj;;= p,b;;, then D~» '(8 @)S diagonalizes
D&~&-'(8,&)M(p)D&~& (8,&). Hence

I pi(p)

i 0
T(p) =D~~& '(8,p)S exp

h

po ~ ~ ~ ~ ~ ~ o 0

P2(p)
[D&»-'(8,y)S$-'.

0 ~ ~ ~ ~

t »+i(p).

Since the exponential of a diagonal matrix is equal to a diagonal matrix of the exponentials, we get finally

e
—'pI (p) I & ~ ~ ~ ~ ~ ~ ~ ~ ~ o p0

T(p)=[D"' '(8A)S]
e
—sos(p)/&

P. . . . . . . . . . . . . . .e
—sP2S'+I(P) I &J

From this expression, it is a simple matter to obtain any
desired matrix element of T(p). One now forms

[1—&flT '(p) lf)&~IT(p) lt)3

averages over all possible orientations of the magnetic
field and then integrates over 2~b db to obtain the cross
section.

It is clear that the ti;(p) must bear some analogy to
the phase shifts of the usual, adiabatic theory. "For the
relevant matrix elements, expressions of the form

(fl T (p)l f)=Z f,~'"'"""

The quantities (p;—p;) are the analogs of the phase
shifts in the abiabatic theory, although they are not
simply time averages of the difference in collision
energies between states j and j', but contain the effects
of transitions in their structure.

III. SPECIFIC EXAMPLES

The dipole-dipole interaction will be taken as the
collision Hamiltonian. Upon expanding the electro-
static potential between two electrically neutral atoms,
this is found to be

&tl T(p) l~)=Z c'~ '""""" [p R(t)][~ R(t)]a, (t) =
R'(t) R2

—P'e (10)

will be obtained, and hence,

&f1 T '(p) lf)&tlT(p) l~)

=2 f"exp —[p (p) —p'(p))

where Latin letters refer to one atom, Greek letters to
the other, and y= eZ; r;, r; being the radius vector from
the nucleus of one atom to its ith electron. R(t) is the
internuclear vector between the two atoms, depending
on time via the classical trajectory assumption (the
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trajectory has been taken to be a straight line, an ap-
proximation which can readily be seen to involve only
a very small error). In keeping with the assumptions of
Sec. II, atomic frequencies are neglected. Using the
coordinate system of Fig. 1, H, (t) may be expanded to
give

b8t
H, (t) =A +8 +C

R'(~) R'(~) Rs(t)

g(~) = ($2+V2P)lt2
where

A=3(p, nr p„m„)—, 8= 3(p,~—r+p„~„),
C= (2p„~„p.m.) —p,m.r)—.

Now, the expression

The matrix T must now be evaluated using eigen-
functions symmetric (or antisymmetric) in the two
atoms. Thus we want

~ dna' 1Q 0(r)y na(~)

+~."(r)~:(~)I p* « p*-«I~, '(r)~.-'(~)

+y, '(r)y, o(g)),

where P, is taken to be a 'So state and P, to be any
state with I=1(in practice, P, will usually be the lowest
'E' state). This reduces to

~'""'=&~.'(r) I p. l~."'(r))(~."(~)l~r l~, '(~))
-&~, (') I p. l~.- ('))&~.-(~) l-tl~, (~»

Evaluating this in terms of reduced matrix elements, "
02

1
2

T= exp —— EI,'(t)dt
A

must be evaluated. The three time integrations are
trivial. The first gives 4/(3b 8), the second vanishes by
sy'nrnetry and the third gives 2/(b'v). Hence

m,""'=
l&gllPlle)12 o 1 o,

1 10 2r

where m and m' values decrease from the upper left
corner. Hence

T=exp — (-',A+-', C) =exp
Ab v

2i
(p,n.r —p.my)

Ab v

2i
T= exp — I&gllplie) I-'

Ab'8

1
2

0

An examination of the original expression for H, (~)
shows that the term (p,mr —p,mt) is what we would
expect if the interaction were considered to be a delta
function in time, normalized in an appropriate way.
Then R(t) —& z, and the x and y axes are equivalent,
giving the result above. This is essentially the meaning
of the assumption that, in solving the original equation
for T, terms which do not commute with each other at
diferent times may be neg]ected.

01 1
2 2 J

It is obvious that any matrix of the form

'8 0 ci

0 b 0

Ec 0 a.

can be diagonalized by a matrix U given by

Pp 0 0 0 2 '/'

0 X+ 0 = 1 0

2-I/2- -I -a 0 c. '0 2-I/2

0 b 0 1 0

2—I/2

0 P ) 0 2—I/2 2—I/2 c P ~ j 0 2
—I/2 2—I/O

-'(1—cosP)e'&~»

2 "'sinPe '&

I
-', (1+cosp)e'& +»

D&'&= —2 "'sinPe'7

2 'I' sinPe'~

where Xo——b, X+——a+c, X =u —c.
At this point we calculate the collision cross section for a general interaction matrix, M, of this form, since this

type will again occur later. Since J=1, the three-rowed representation of the rotation group is relevant. It is
given by'5

.—,'(1—cosp)e "» —2—'t'sinPe '~ ', (1+cosP—)e '& +».
where (n,P,y) are the usual three Euler angles. Using this matrix, T becomes

~~ib 0 0

T=l-D&'&—'Nf 0 e'&'+'& I-D&»—&")—&

p p ~i(a—c)

'4 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1957).
"A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957).
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Performing the necessary multiplication it is a simple matter to And the diagonal elements of T,

(1 [ r [ 1)= —',LSin Pe'~+ (COS'u+ COS'P Sin'u) e'&'+'&+ (Sin2u+ COS'P Sin u) e'&

(O [ r [O)= cos'pe "+siil'p sin'ue'&'+'&+ sin'p cos'ue'&

&-1[rI-»=(1lr [».

A633

As we should expect, there is complete syrrunetry between m= 1 and m= —1, and hence the result for broadening
of the transition m=1 —+ m=0 will be identical with that for m= —1 —+ @&=0. We consider only the former,
obtaining

L1—(o[r- lo)(1[r[1)]dp,

Reo. = (1—
2[ sin'P cos'P+2 sin'P sin'u cos'u+sin'P cos'P(sin4u+cos'u))

—-',
[ cos'P cos'u+(cos'P+sin'P) sin'u] cos(a —b+c)—-', Leos'P sin'u+(cos'P+sin4P) cos'u) cos(a —b —c)

——,'Lsin'P(sin4u+cos4u)+2 sin'P cos'P sin'u cos'u) cos2c}dp,
1

Imo. =— i Leos'P —sin'P sin'u) sin(a —b+c)+ icos'P —sin'P cos'u) sin(a —b —c)+sin'P(cos'u —sin'u) sin2c}dp.
2

Now we must average over Euler angles, i.e., integrate over sinpdpdudy/Svr . If we do this, it is easy to see that
Imo =0, as asserted above. For the real part of 0-, we And after averaging

16'
Lsin'-,' (a—b'+c)+sin'-', (a—b' —c)+sin'c)bdb.

Using the familiar result" 32vr'[(g[[p[[ )['e/3fiX'=1/r,
where X is the wavelength corresponding to the transi-
tion from the excited state to the ground state, and r is
the lifetime of the excited state, the cross section
becomes

1 V/.
0=

10+ 8
(13a)

In the resonant case which we are considering, a=u/b',
b'= —2u/b' and c= —u/b', where u =g[[P[[e)['/AV. Thus,
using Eq. (12), we get

16& 2n o,
sin' —+2 sin' —bdb.

15 p b' b'

The indicated integrations are readily performed to
yield

16~'
I ( II pile) I

'

or in terms of the oscillator strength f of the transition
in question

4~ rpcsf
15 8

(13b)

rp is the classical electron radius. Values of 0., along with
the relevant constants are given for some cases of
interest in Table I.

Table I shows that the cross section for resonant
broadening decreases very sharply in going from heavy
atoms to light atoms as the assumption of Russell-
Saunders coupling gets better and better, increasing the
forbiddenness of the singlet-triplet transition which is
the main broadening mechanism. However, in practice
such a sharp reduction is not found. ' ' The experimental
cross sections in zinc and cadmium dier by less than a
factor of two, and both are larger than the theoretical
cross section for cadmium. The reason for this may be
seen by considering the fact that as the oscillator

TAm, z I. Self-broadening cross sections for the lowest 3EI state of the group II metals.

Atom

Mercury
Cadmium
Zinc

Lifetime of state

1.18X10 7 sec~
2.39X10 ' sec
3.2 X10 'sec'

Wavelength

2537 A
3261 A
3076 A

1.7X10-"cm'
1.0X10 '4 cm~
4.7X10 '6 cm~

0'2

4.2X10 '4 cm'
2.3X10 '4 cm'
1.4X10 '4 cm'

1.7X10 "cm'
2.3X10 '4 cm'
1.4X10 '4 cm'

&exp

10 "—10 "cm'
2.5X10 '4 cm'
1.4X10 I crn2

' See Ref. 12 for the measurement of the lifetime of the lowest 3P& state and the self-broadening in this state.
b See Ref. 2 for the measurement of the lifetime of the lowest ~Pi state and the self-broadening in this state.
e See Ref. 1 for the measurement of the lifetime of the lowest 3Pi state and the self-broadening in this state.
d o & is the resonant cross section [ Eq. (13a)g.
e 02 is the cross section calculated by assuming that the broadening occurs via intermediate states LEq. (16)j.
f oth is the larger of ot and os.
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strength of the singlet-triplet transition gets smaller
and smaller it is possible for second-order terms in the
perturbation evaluation of (m~H, (t) ~m') to become
larger than the first-order terms because of the peculiar
nature of the resonance interaction which operates in
6rst order.

In writing down the second-order sum over inter-

mediate states, intercombination terms, which will have
a negligible e6ect in cases of interest, will be neglected.
Thus, the perturber acts like a foreign gas atom, and
the use of symmetric or antisymmetric two-particle
wave functions is unnecessary; simple product wave
functions of the form g, (r)pq(p) will be sufficient. The
desired expression is

Cp~s~™= P [(y (r)y "(p)I3(p'n)(&'n) —p eely" (r)p" (9))
g6 gt gl I

X(y, (r)4.-(p) l3(p n)(m n) —p mid', ( )rP."'(p))(E.+E; E. E—,) 'j—,

{ss,rsvp S,
(5s,6p) 'Pt l0 000

13 000

{5s,6s) Si
2) 000

{Ss,5p) P&

29000

(5S,6d) D]g s
7000

(»,6p) Po,i,s (5s,5d) Dip s
(4 ppp l3 000

where the e' sum is over the singlet series and the e" sum
is over the triplet series. n is the unit vector along the
line connecting the two atomic nuclei, and r and g are
measured in units of the Bohr radius ap for future con-
venience in evaluating radial integra1s with Slater wave
functions. "

It is clearly impossible to carry out the above sum
exactly. However, in cases of interest, such as zinc and
cadmium, the arrangement of energy levels is such as to
enable to replace (E, +E, E, Eg) b—y an—average
value. The lowest energy levels for cadmium and zinc
are shown in Figs. 2 and 3, respectively. As far as the
singlet series is concerned, the dominant term will be
'Sp~'I'~, ' this transition has an oscillator strength of
about 1.5 for both zinc and cadmium. "Since the sum
of all the oscillator strengths for transitions from the
'Sp level is expected to be about two, it is clear that the
other levels contribute very little to our series. We have
estimated on the basis of Figs. 2 and 3 that (E; E,), —
for the singlet series will be about 50 000 cm '. For the
triplet series, the work of Ornstein et al.' has shown
that almost all of the oscillator strength sum from
transitions from the 'P~ level comes from the cluster of

levels shown in the triplet part of Figs. 2 and 3. We
have estimated (E; E,), =—30 000 cm '. Thus we will

replace our energy denominators with (AE), =80000
cm ', i.e., 1.6X10 " ergs. The sum over intermediate
states is now trivial, giving

Cp

,(4.(r)4."(p)
I

(AE). Rs

and thus,
X[3(p.n) (~ n) —p ~j'I 4, (r)y."'(p))

ao

X[3(p n)(~ n) —p ~7I4.(r)& "'(9))« .

The evaluation of the matrix elements as well as the
time integrations is straightforward but rather tedious.
The radial integrals will clearly be average values of r2

for a Ss or Sp electron in the case of cadmium or a 4s or
4p electron in the case of zinc. Slater radial wave
functions" are expected to be most accurate just for
such integrals, since their lack of nodes is much less
serious than in the case of computing matrix elements
between different states, where interference effects may
be important. For both s and p electrons in cadmium
(and similarly in zinc), Slater's I*and Z* are the same.
A lengthy calculation gives

(5s,5p) Po, s
42 0'00

Fxo. 2. Relevant en-
ergy levels of cadmium
(in wave numbers). g= exp~

480(AE), tslbs

-n*'(e*+-') (m*+1) ' 498 0 —6

0 444 0

(5 ) 'S

73 000

"I.C, Slater, Phys, Rev. 36, 57 (1930).'" A. Lurio and A. Landman (private communication).
» L S. Ornstein, J. P. A. van Hengstum, and H. Brinkman,

Physics 5, 145 (1938);J. W. Schuttevaer and J. A. Smit, ibid 10, .
502 (1943); see also D. R. Bates and A. Damgaard, Phil. Trans.
Proc. Roy. Soc. London A242, 101 (1950).

-—6 0 498 .
In writing this down, the contribution from the first

order is assumed to be so small that it may be neglected
with respect to the second order. It should be em-
phasized that one must not calculate a "first-order
cross section" and a "second-order cross section" and
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then add the two. To be precise, one shouM write Making use of the relation

z
T= exp ——(3IIr+Ms)

4r csc4r/p
sin' —bdb =— (2A)s/&(P) 1),

b 8 r(2/p)
(14)

Since M» and M2 comm. ute

g
—(i/A) M1~—(i/A) M2

and because they may be diagonalized simultaneously

which may be derived by partial integration followed by
contour integration, we get

~' CSC4r/5
(r =—L(12)"'+(48)'/'+ (60)"'j— P"' (15)

15 5 r (7/5)

T' —(D (r) Ip) o
—(4/s) —D 1o {4/4)—D 4 (D (r) rp) —)—

7

where D» and D2 are diagonal matrices corresponding
to M» and 312.

Thus the expression for the cross section may readily
be formed, taking some care in this case to average
properly over symmetric and antisymxnetric collision
states. However, the eventual integration over all
distances of closest approach b is quite complicated
and must be done numerically. One such example has
been done. For cadmium, where the "6rst-order cross
section" is 1.0&(10 "cm' and the "second-order cross
section" is 2.3X 10 "cm' (neglecting intercombination.
matrix elements) under typical double resonance operat-
ing conditions, the total cross section is only 2.4X10 "
cm'. Thus it appears that, given the approximation
already made, it is sensible to include only the dominant
term in the exponential except in an anomalous case
where the two terms are very nearly equal. The reason
for this effect is that the cross section is essentially
determined by an "effective collision radius" at which

the collisions reach a strength such that the probability
of causing a transition is about 50%. Given the rapidly
varying nature of the forces (A/R' or 8/Rs), this radius

may be expected to be determined in most cases by one

term or the other. Inside this radius, no matter how

strong the collisions, the probability referred to above
will vary in an oscillatory manner about 50%%uo. Thus,
although for r suKciently large, the A/R' term must
eventually dominate, the term in 8/Rs may determine
the "effective collision radius" and hence the entire
effect.

Now, setting

~e4ao4 r4*'(I*+-,') (r4*+1) '

If our above result for ~g is rewritten, the cross section
for collision broadening in the second-order case is given

by
o as4 -r4*'(r4*+1/2)(~*+1)-' s/4

o.)4= 1.70
(4E), h8 Z*'

(16)

For cadmium, r4*= 4, Z*=4.35, and (d,E), = 1.6X 10-"
ergs, so

o)4(Cd) =
1.7y 40-»

CIQ

(=2.3X10 '4 cm' for T=550'K),

and for zinc, r4*=3./, Z*=4.35, and (hE), = 1.6X 10 "
ergs, so

o)4(Zn) =
1.2&& 10-»

p2{t5
cm'

(=1.4X10 '4 cm' for T=575'K).

(4s,t s)'S,
(as,5p}'q lO OOO

l3 000

(4s,5s) sS&

22 000
(as, ap}'p,
29 000

(es,sa)'O„,
7000

(5s,5p) p (4 4a) ~~g.s
la 000 l3 000

On the basis of the approximations made, we feel that
these results are accurate to about 15%%u{).

The increase of the width of double resonance lines
with temperature in the 'E» state of cadmium has been

480(AE), hv Z42 F»G. 3. Relevant
energy levels of zinc
(in wave numbers).

(4s4p) P@s
45 000

we note that our T matrix is of the type discussed in ob-
taining Eq. (12), if we call a = 498P/b', b'=—444P/bs, —
and c=6P/b' Thus, .

16m. " 30P 24P 6P
sin' +sin' +sin' —bdb .

15 o
b' b'

(4s} $+
7% 000
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TABLE Il. Foreign-gas broadening cross sections
for the lowest SP~ state of mercury.

Colliding (az).
atOm n eon' Z*eona in ergSb 0 th (4.2)e 0'th (4.3)' +exp

Helium
Neon
Argon
Krypton
Xenon

1.0 1.70
2.0 5.85
3.0 6.75
3.7 8.25
4.0 8.25

4.55 X10»
3.96 X10-»
3.17 X10»
2.77 X10-»
2.57X10»

33 &5
42 &7
86 &14

118+20
144+24

34 +5
44 ~7
88 &15

122 +20
150+25

38&6
41 ~6
91 a14

180&27
189+29

a n*eo«and Z*««are Slater's principle quantum number and effective
charge for the noble gas in question.

b (AB)a& is the mean excitation energy, defined in the text, used to
evaluate second-order perturbation theory sums over intermediate states.' The two values of Pth (in A~) are calculated from the expression derived
in the test LEq. (17)$ using n Hg =4.2 and n*Hg =4.3.

d 0'exp is the experimental cross section as measured by Piketty-Rives.

shows that the agreement with the results of Piketty-
Rives is quite satisfactory.

As a final application of our method, we may point
out that the sudden approximation may be combined
with the adiabatic approximation to calculate the cross
section for resonance broadening in the usual optical
case, in which a transition is being broadened in either
the initial or final state by resonant interaction with
the colliding (identical) ground-state atoms. The sudden
approximation method allows us to take into account
correctly the magnetic sublevels of the interacting state.
From our discussion at the end of Sec. II, it is clear that
in this case the cross section is given by

«(1—SL(1 I
& I1)

observed, ' and the cross section has been found to be

19&10 "
8215

cm' (=2.5&&10 '4cm' for T=550'K).

Similar measurements have been made by Dumont' on
the first 'P1 state in zinc. He finds a mean cross section
in the temperature range near 300'C of O.g ——1.4)&10—"
crn' on what appears to be his most reliable set of data.
Since the experimental and theoretical results are ac-
curate to about 15%, the agreement between theory and
experiment is quite satisfactory. These results are all
summarized in Table I.

It is a simple matter to extend our above result to the
case of broadening by a foreign gas atom:

+«I T
I o)+(—1I &I —18lb&b

The states I1), I0), I

—1) are the magnetic sublevels of
the state which has the interaction with the ground
state. The T matrix for the other state is, of course, just
the unit matrix if that state has no interaction with the
ground state. We have assumed a state with 7=1 for
convenience, but the general case is exactly the same,
except that the dimension of the matrix to be diagonal-
ized may be greater. Using the matrix elements cal-
culated before for the 7=1 resonant case, we get

4m. "t' u 8s. " n
o =—

I
1—cos—bdb= — sin' bdb.

3 o k b' 3 0 2b'

0.= 1.70
(aE), kv„ —coll

-n*2(n*+ 1/2) (n*+1)- '~'

e4a, 4 n*(n*y -1/Z) (n*+1) %e note that the sum of the diagonal elements of the
T matrix is independent of the Euler angles, as we
should expect, since in the limit of the magnetic 6eld
going to zero (optical case), the angular average should
not be necessary because of the isotropy of space. The
indicated integration is readily performed to yield

where the subscript "coll" refers to the colliding foreign
gas atom which causes the broadening, v12 is the average
relative velocity of atom being studied in double reso-
nance and the perturbing atom, and (DE)„ is an
average excitation energy which must be estimated in
the manner indicated above for cadmium-cadmium
collisions and zinc-zinc collisions. For noble gas atoms
in the '50 ground state, the estimation of (hL~'), is
facilitated by the fact that all the attainable singlet
states cluster around the ionization limit, and transi-
tions to the triplet states are forbidden. Foreign gas
broadening of double resonance lines in mercury has
been observed by Piketty-Rives. ' Table II gives the
various parameters for the mercury-noble-gas systems,
along with the theoretical cross sections for e*H,——4.2
and. n*u, =4.3 (in all cases, Z*H, ——4.35 as in cadmium
and zinc). Slater lists n*=4.2 for mercury, " but the
definition of rl,* is probably not good enough to sustain
a distinction between n*=4.2 and m*=4.3. Table II

x rock
0=

6 v
(18)

SVO
= (0.31+0.03)X 10 'n cps.

"H. Kuhn and W. Vaughan (to be published). We wish to
thank Professor Kuhn for communicating his results to us before
publication.

where X and f refer to the resonant transition to the
grolrId state. Recently, Kuhn and Vaughan" have
measured the broadening of lines terminating in the
lowest 'I'1 state of helium. This state is connected to the
ground state by the 584-A line which has an oscillator
strength of 0.38 (&10%) as measured by Kuhn and
Vaughan. " Vsing this value, the half-width due to
broadening is, by Eq. (18),
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Kuhn and Vaughan found for the transition 2'—3'S at
7281 A

h~~p
——(0.2'7+0.02) )&10 'n cps

case,
4m rpckf

15 v

—in excellent agreement with our result. They also
verified over a wide range of temperatures and densities
that the broadening is independent of velocity and
linear in density, as predicted. It is thus seen that the
general theory developed above explains very well the
results of optical resonant broadening, as well as ac-

counting for the apparent anomalous behavior of the
cross section for self-broadening of double resonance
lines in cadmium and zinc and foreign gas broadening
of double resonance lines in mercury. The second-order

effects in the double resonance cases are necessarily

treated in a rather approximate manner, although the

expression for the first-order resonant eBect—in this

—should be quite accurate. Unfortunately, no reliable
measurements have been made on double resonance
curves at suKciently high densities in the case of moder-
ately large oscillator strengths. Mercury (f=0.025) is
a good example of such a case, and a measurement here
would be of interest.
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