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should be noted that due to the presence of these overt
effects a spin-orbit coupling constant deduced from a
single multiplet that follows the Lande interval rule
need not be representative of the entire configuration.

When the parameters are derived from a least-squares
method it is impossible to distinguish the contributions
to the spin-orbit coupling constant that arise from the
eGects of electrostatically correlated interactions with
other configurations and those that arise from the
spin-orbit interactions within the configuration. Like-
wise, in empirical determinations of the spin-other-orbit
interactions for a configuration, it is impossible to
decide whether the derived spin-other-orbit parameters
represent a real spin-other-orbit interaction within the
configuration or whether they are attributable to a

pseudo-spin-other-orbit interaction that arises out of
the effects of electrostatically correlated spin-orbit
interactions.

Electrostatically correlated spin-orbit interactions
are by no means the only possible correlated inter-
actions that couple configurations. In fact, these
interactions are probably of lesser significance than the
electrostatically correlated two-particle orbit-orbit,
spin-spin, and spin-other-orbit interactions between
configurations. The properties of these interactions will

be taken up in a later paper.
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The nonadiabatic theory is applied to the inelastic S-wave scattering of low-energy electrons from atomic
hydrogen. The zeroth-order (angle-independent) approximation for excitation of the 2s level from the
ground state is described by the same equation used to describe elastic scattering below the 2s threshold,
but with more complicated boundary conditions. The solution has been effected by expanding the wave
function in terms of separable solutions. With the assumption of reciprocity it is also possible to obtain the
2s—2s cross sections. The elastic (1s—1s) cross sections are within 1% of the close-coupling results in the
triplet case, but are about 20% greater in the singlet case. The inelastic (1s—2s) cross sections are reduced
about 20% in the triplet case and 20 to 40% in the singlet case, relative to the close-coupling results.

I. INTRODUCTION

' 'N previous papers' a nonadiabatic theory of elastic
- - scattering has been developed and applied, among
other things, to the low-energy scattering of electrons
from atomic hydrogen. At present the theory is being
extended to cover inelastic S-wave scattering, and hence
obtain the scattering cross sections f71, 1, and 0-1, ~,
above the 2s excitation threshold. This paper deals
with the solution of the zeroth-order (angle-independent
or relative s wave) problem described in Sec. II of this

paper. Only a brief review of the nonadiabatic theory
is given since a full description is to be found in I. As
pointed out in Sec. III, the elastic scattering cross
section 0-2, 2, may also be found from our calculation if
it is assumed that the reciprocity condition is fulfilled.

The accuracy of the solution is discussed in Secs. IV
and V. In Sec. VI the nonadiabatic results are presented
and compared with the results from the 1s—2s close-

*Submitted by one of the authors (H.L.K.) to the faculty of
the University of North Carolina in partial fulfillment of the re-
quirement for the degree of Doctor of Philosophy.' A. Temkin, Phys. Rev. Letters 4, 566 (1960); Phys. Rev. 126,
130 (1962). The latter paper will be referred to as I in the text.
Equations referring to it will be prefixed by a I.

coupling expansion. ' ' The latter has been shown to be
a variational approximate solution of the zeroth-order
problem. ' Finally, the implication of our results for
both the experimental and theoretical determination
of the total inelastic cross section, 0.1, ~, is discussed in
Sec. VII.

II. ZEROTH-ORDER NONADIABATIC THEORY

It will be recalled from I that the nonadiabatic theory
starts with a decomposition of the S-wave function

%(rrrsers) = 1/rrrs P (2l+1)'t'C t(rrrs)Pt(cosers), (I2.3)

from which by substitution into the Schrodinger equa-

s R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
3P. G. Burke, H. M. Schey, and K. Smith, Phys. Rev. 129,

1258 (1963).
K. Omidvar, in Proceedings of the Third International Conference

on the Physics of E'/ectronic and Atomic Collisions (North-Holland
Publishing Company, Amsterdam, to be published). Dr. Omidvar
has kindly calculated for us the Is—2s close-coupling results just
above threshold. Cf. also, K. Omidvar, Phys. Rev. 133, A9'70
(1964).

5 R. Damburg and R. Peterkop, Proc. Phys. Soc. (London) 80,
1073 (1962).
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tion an infinite set of coupled two-dimensional differ-
ential equations results. One defines a zeroth-order
problem by neglecting the coupling terms of the 3=0
equation:

To facilitate the solution of certain nonlinear equa-
tions which appear in the problem, we let'

case (i) 2 =kr(1 —ia),

where
(Err+2/rs+E)Co &(rrrs) =0 (rr)rs), (I3.3)

a= x+is'
?&= (kr/ks)'~'se"'.

(2 5)

Ars = i3 /err +r7 /r?rs.

Our units are lengths in Bohr radii and energy in
Rydbergs.

Equation (I3.3) can describe only relative s states
and is therefore also called the relative s problexn. In
this paper we will consider incident electrons with
energies greater than 10.2 eV. In such cases the target
atom may be excited to the 2s state by collision. Hence
the zeroth-order wave function Co"~ will be required to
have the asymptotic form

lim C'o«&(rrrs) = t.(A/kr) sinkrrr+ae'~'""J
T]~00

XR&,(rs)+be'" "'Rs, (rs) . (2.1)

4'o "& (rrrs) I „=„=0 triplet,

(&/ae)C o«& (rrrs) I „,=„,=0 singlet,
(I2.6)

c,«&(r„o)=o. (I2.'?)

For incident electron energies greater than 12.09 eV
higher s states may be excited and for completeness
should be included in (2.1). However since each new
term added to the right-hand side of (2.1) adds greatly
to the complexity of the problem, only the (1s) and
(2s) channels are included in our calculation.

In (2.1) kr is the wave number of the incident electron
and ks ——(krs —0.75)'is is the wave number of an in-
elastically scattered electron. The function R„,(r) equals
r times the eth radial hydrogenic s state. A is an arbi-
trary normalization of the incident plane wave, while
a and b are constants which govern, respectively, the
elastic and inelastic scattering cross sections.

The zeroth-order wave function must also obey the
additional boundary conditions'

As a check on the calculations the singlet case was
also solved with~

case (ii) A=kr,
and

a= (xe""—1)/2i
b=-,'L(k&/ks) (1—x')$'~'e'~"+"&. (2.6)

In both cases the form of b is so chosen that Eq. (2.4)
was automatically satisfied. Hence the complex numbers
a and b are fully determined by the real numbers
Re(a), Im(a), and Arg(b). The method of solution of
Eq. (I3.3) follows that used in I:C o&o& is expanded in a
series consisting of separable eigenfunctions of (I3.3):

)A
C o"'(rrrs) =

I

—sinkrrr+ae'""'
I

XR]8 (ro)+ $e'"s"'Rss (rs)

+I P+ dP IC.e """'R., (rs) . (2.7)
n

The sum plus integral means, as usual, that the con-
tinuum s states of hydrogen in addition to the discrete
states must be included. For the discrete states

~ =(1—e '—krs)'I'

and for the continuum

z„= (1+P'—krs)'I'.

(2.8)

(2 9)

With this relationship each term of (2.7) is an exact
solution of (I3.3)

The expansion (2.7) automatically satisfies two of the
boundary conditions (2.1) and (I2.7) but not the third
(I2.6). In order to satisfy (I2.6) we determine a, ?&, and
C„by the variational conditions'

Here (8/Bn) is the normal derivative. Equation (I2.6)
simply states the spatial symmetry of the wave
fm.nction:

~Is/», =0
X;=a, Arg(b), C„x=3, ,X+2. (2.10)

r&Ir/BX; =0
C o«& (rrrs) =+C o«& (rory) .

E is the number of terms, beyond the first two, in-
The scattering cross sections obtained from (2.1) eluded in the expansion (2 7)

are

ag, g, =4m (2.2)

4k, lbl
0 1a—2a (2.3)

k, IAI'

In order to ensure conservation of current, the con-
stants A, a, and b are required to obey the relationship

Im(~*a)=krlal'+kslbl' (24)

IC'o~ & (rr=rs) I'dr

oo 2—eo "&(r,r,) dr.
0 Bs rj=r2

(2.11)

H. S. Massey and B. L. Moiseiwitsch, Proc. Phys. Soc.
(London) A66, 406 (1953).Our case (i) asymptotic wave form was
suggested by this paper.' R. Karplus and L. S. Rodherg, Phys. Rev. 115, 1058 (1959l.
Our case (ii) asymptotic form was taken from this paper.
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TABLE I. Satisfaction of the diagonal boundary condition I&=I+——0 at various incident momenta kI.

kI (atomic units)

Is
IT

0.8662

1X10-
3X10-5

0.9

3X10 '
2X10 5

0.94

2X10 '
3X10 ' 3s

threshold

0.95

1X10-3
1X10 4

1.0

5X10-3
1X10-3

2X10-'
2X10 3

1.2

4X10-'
4X10 3

1.5

1X10 '
1Xi0-2

Since a and the (C„) are complex, 2%+3 real equa-
tions result from (2.10). These equations are linear in
the C„, hence 2E of them may be solved immediately
to obtain the (C„) in terms of Re(a), Im(a), and Arg (b).
The procedure followed is analogous to that outlined
in part four of I, although some of the integrals involved
are slightly different in form. The integrals were ob-
tained in analytic form and were checked by numerical
integration. However, in the singlet case due to the
difhculty of the numerical integrations the analytic
results were in some cases only checked to one or two
significant figures. In order to obtain sufhcient accuracy
it was necessary to solve for the C„using double pre-
cision arithmetic; i.e. 16 significant figures were retained
in the calculations. The remaining three equations are
highly nonlinear in Re(a), Im(12), and Arg(b) and were
therefore solved numerically. All calculations were done
on the IBM 7094 computer of the Theoretical Division
of the Goddard Space Flight Center.

III. THE SCATTERING MATMX

If an exact solution were obtained for the zeroth-order
Eq. (I3.3), then the reciprocity condition' should be
fulfilled and the scattering cross sections o-2, 2, and
o-2, 1, could also be obtained from this same calculation.
Although we have no direct check on how closely the
reciprocity condition is fulfilled, it is expected that when

Iz and I& are small enough, reciprocity is satisfied to an
accurate degree of approximation. The cross section
o-2, 1, follows immediately from the reciprocity condi-
tion, one form of which is

&2s—1s (kl/k2) srls —2s ~

It is however necessary to introduce the scattering
matrix S in order to obtain o.2, 2,.

Many forms of the asymptotic boundary condition,
Eq. (2.1), have been introduced by various authors.
Two of the more common variations are of the following
types:

lim sI1200 (rlr2) = (Sinklrl+ Tile'"'"')Rl, (r2)
r 1~00

+ (k /k )')2T1 e'"2"'8 (r,), (3.1)

@2i0)—(e
—i)slsl Sllei22rl)gl (r2)

'P ]~OQ

—(k2/ki)'i'S12e'""'R2s(r2) . (3.2)

A derivation of the reciprocity theorem as it applies to scat-
tering matrices is given by J. M. Blatt and V. F. Weisskopf,
Theoretical Xmclear Physics (John Wiley k Sons, Inc. , New York,
1952), p. 528.

In (3.1) the T;, are elements of the transmission
matrix T while in. (3.2) the S,, are the elements of the
scattering matrix S. The coefficient (k2/kl)U' multi-

plying T12 and S12 is introduced so that T,; and S;, will

be symmetric.
Equations (2.1) and (3.1) are related in the following

way:
T»=klo~*/I~ I', (3.3)

T12=k, (k,/k2)"W. */
I
a I'. (3.4)

The S and T matrices defined by (3.1) and (3.2) are
related by

S= 1+22T. (3 3)

Here 1 is the unit matrix.
If the S matrix is required to conserve probability

current, then it will be unitary:

55|=1. (3.6)

If the reciprocity condition also holds, then the Smatrix
will be symmetric:

(3.7)512 521 ~

From (3.6) S22 may be found to be

S22 Sll S12S21/
I
S12

I
(3.8)

Finally, the reaction cross sections are given by the
formula

.. .,= IS,,—S,, I2/k, ', (3 9)

where 5;; is the Kronecker delta function. The o-2, 2,
thus obtained are listed in Table VI.

IV. INTERNAL CONSISTENCY OF THE SOLUTION

The integrals Ie and I&, Eq. (2.11), should ideally be
zero. Presumably if enough terms could be taken in the
wave-function. expansion, (2.7), this should occur to an
arbitrary precision, however, for E)8 the determinant
of the C;, (j= 1, Ã), was generally too small for accurate
results to be obtained. By trial and error sets of terms
in the expansion were chosen which minimized Iq and
Iz. The confidence we have in our results depends both
on the smallness of I~ and IT, and on the consistency
of the cross sections obtained by choosing different sets
of virtual eigenstates. The magnitude of the obtainable
Iq and Iy are shown in Table I. As can be seen Iq and
I~ are both quite small for energies less than that re-
quired to excite the 3s level of hydrogen. As soon as the
3s threshold is passed, there is a marked increase in the
size of the diagonal integrals (particularly in the singlet

case). The size of the diagonal integral continues to
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TABLE II. Investigation of the internal consistency of the singlet nonadiabatic calculations. This table is discussed in Sec. IV.

~1
Atomic
units

09
0.9
0.9
0.9
0.9
1.0
1.0
1.5

3X10 '
1X10 5

1X10 4

5X 10-4
8X10 4

5X1o-
7X10 '
1X10-1

1X10-6
7X10 '
SX10-5
3X10 4

7X10 4

3X10-3
4X 10-3
8X10-2

0.0339
0.0339
0,0334
0.0309
0.0289
0.0469
0.0463
0.0131

0.0338
0.0339
0.0335
0.0310
0.0291
0.0488
0.0481
0.0196

+18—28

Case (i) Case (ii) Case (i) Case (ii)

0 1s—ls

Case (i)

0.4674
0.4674
0.4676
0,4680
0.4672
0.3263
0.3283
0.0958

Case (ii) Discrete

0.4674
0.4674
0.4676
0.4684
0.4680
0.3290
0.3319
0.1126

34
3

Virtual states

Continuum

0.05, 0.3, 0.6, 0.9, 1.1
0.05, 0.3, 0.5, 0.7, 0.9, 1.1
0,05, 0.3, 0.5, 0.7, 0.9, 1.1
0.05, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3
0.2, 0.4, 0.6, 0.75, 0.9, 1.05
0.05, 0.25, 0.45, 0.65, 0.85, 1.0, 1.15, 1.30
0.05, 0.3, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6
1.15, 1.23, 1.33, 1.43, 1.53, 1.63

increase out to 30.6 eV. At these higher energies there
is also a marked decrease in the agreement of the cross
sections obtained by choosing different sets of virtual
continuum states. Again this was most bothersome in
the singlet case.

For the singlet case this behavior is illustrated in
Table II by the two top entries for k&

——0.9 and the
entries for k~ ——1.0 and k~ ——1.5. These entries represent
some of the better runs obtained at these energies. The
uncertainty in the singlet results can be gauged by com-
paring case (i) and case (ii) results. [In Table II the
cross sections are in units of mao' and the statistical
weight 4 is included. The columns labeled Discrete and
Continuum virtual states refer to the e and p included
in (2.7).]At the higher energies the triplet results seem
to be quite a bit more accurate than the singlet results.

It should be remarked that it is an assumption that
the zeroth-order Eq. (I3.3) can be exactly satisfied
subject to the more limited asymptotic boundary con-
dition (2.1) in an energy domain in which we know that
the 3s state, for example, is accessible. The above dis-
parity in the quality of results on the two sides of the
3s threshold may tend to indicate that this assumption
is in fact incorrect. However, it is our opinion that the
chief diS.culty above the 3s threshold is not in the
boundary condition (2.1) but in the loss of Qexibility in
the wave function in the region of interaction caused
by the absence of the 3s state. Partial con6rmation of
this can be found in the last four k~=0.9 entries in
Table II which illustrate the effect of omitting various
low energy discrete virtual states from the expansion.
Nevertheless because there is a provision for including
a flexible choice of continuum states, we feel that any
theoretical incompleteness in our expansion above 12.1
eV can be largely compensated for.

A more relevant question is how these cross sections
will change by virtue of the redistribution of current
when the totality of open channels is included. Clearly
the present calculation cannot answer that question,
although in some sense the assumption must be made
that their effect is small. For if it were not, then the
calculation of scattering in the ionization region would
be a complete impossibility, because their inclusion
would entail a wave function containing not only a dis-
crete infinity of bound excited states but a dense in-

6nity of ionized states as well. It is our opinion therefore
that in close coupling, for example, when additional
states are added at an energy where they may be
excited their main effect arises from the increased Aexi-

bility they allow the wave function in the region of
interaction rather than in the opening of the channels
that they afford. Thus the present method, which places
virtually no restriction on the number of terms that can
describe the wave function in the region of interaction,
is expected to contain most of the effects on the 1s and
2s channels of a close-coupling expansion with a similar
number of terms.

V. EFFECTIVE RANGE EXPANSION ABOUT
THE 2S THRESHOLD

A final check was made to insure that our calculation
was compatible with previous nonadiabatic (NA)
calculations below the 2s threshold. Ross and Shaw'
have recently developed a multichannel effective-range
theory. This is an extension. of the ordinary (single
channel) effective-range theory which can in principle
describe all channels of a reaction both above and below
the threshold for a new channel. The correlation is
accomplished in terms of an M matrix whose elements
around threshold may be expanded in a power series
in the energy. The first two of these coeS.cients reduce
essentially to the scattering length and effective range
in the one channel case. The M matrix has been used
by Damburg and Peterkop' to extrapolate the results
of 1s—2s close-coupling calculations immediately above
the 2s threshold to infer the elastic scattering below
threshold. In the same spirit we have extrapolated our
present NA results to below threshold. In this case,
however, the extrapolation was in the nature of a check
as the NA results below threshold have already been
calculated. "For compatibility the extrapolated values

' M. H. Ross and G. L. Shaw, Ann. Phys. (N. V.) 13, 147 (1961).' A. Temkin and R. Pohle, Phys. Rev. Letters 10, 22 (1963).
It should be emphasized that only results of the zeroth-order or
relative s-wave problem of this reference are being considered and
these show only one resonance. On the other hand, the inclusion
of higher relative partial waves introduced more resonances. Cf.
the erratum to the above, Phys. Rev. Letters 10, 268 (1963);
A. Temkin, NASA Tech. Note D-1720 (unpublished); A. Temkin,
in Proceedings of the Third International Conference on the Physics of
Electronic and A tomic Collisions (North-Holland Publishing
Company, Amsterdam, to be published); and Ref. 12.
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pro. 1. Comparison of the singlet nonadiabatic (1s—1s) cross
section (solid line) near the 2s threshold with eRective-range
extrapolations. Circles are the nonadiabatic e8ective-range ex-
trapolation. Triangles are the (1s—2s) close-coupling effective-
range extrapolation of Damburg and Peterkop.

of O.i, i, should then closely match the computed
zeroth-order NA o-i, i, below threshold. The usefulness
of this check was brought home in our present calcula-
tions, when the values which had been computed at an
earlier stage gave an extrapolated singlet o.i, i, that was

not compatible with the explicitly calculated values
below threshold. This helped lead to the discovery of
a machine programming error which had caused earlier
singlet results to indicate a spuriously high peak in
0.~, 2, cross section just above the 2s threshold. "

The T and 3f matrices are related for relative s-wave
scattering by the equation'

T= k'"(M ik)k'"— (5.1)

In this equation k is considered to be a diagonal matrix
with diagonal elements k;. The elastic scattering is then
given by

ot, t, ——4zr(Msss+kss)/i (Mtt —zkt)

&& (Mes —zkz) —MtzMst
~

'. (5.2)

Expanding the elements of M;; about a reference
incident-electron energy Eo, we obtain

M;;(E)=M;,(Ee)+ ',R,;(—E Es)—+ . (5.3)

In the effective range approximation the series is cut
o6 after the second term. We take Eo to be 10.2 eV, the
energy required to excite hydrogen from the 1s to the
2s state. The expansion is valid for 8&10.2 eV, but in
this case we must put ks ——ixz in Eqs. (5.1) and (5.2).

In the triplet case the expansion (5.3) is valid over a
fairly long range, however in the singlet case the
presence of a resonance just below the 2s threshold
sharply limits the applicability of the expansion. Ac-
cording to the analysis of Ross and Shaw, ' the effective
range approximate formalism can describe only one
narrow resonance below threshold. Below this resonance
the formalism will not accurately predict the true scat-
tering cross section.

Our expansion parameters M,t(Ec) and R,; were ob-
tained by fitting a two-term polynomial of the form
(5.3) to the computed values of M@ in the range
0(k2'&1.5)&10 '. They are given in atomic units in
Table III together with the coefficients obtained from
the 1s—2s close-coupling values by Damburg and
Peterkop. ' In Fig. 1 the computed NA elastic cross
section is compared with our effective range extrapola-
tion. As can be seen the extrapolation quite accurately
reproduces the resonance near kts=0. 297. The second
peak at ki2=0.735 is spurious in the present zeroth-
order problem but more resonances are actually present
when relative p waves are included in the calculation. ""

VI. RESULTS

The results obtained for the spherically symmetric
portion of the 1.=0 scattering cross sections O.i, 1„
0-~, 2„0-2, 2, are shown in Tables IV to VI and in
Figs. 1 to 3. For comparison purposes the (1s—2s)
close coupling results are also given. As previously

.08

NA =nonadiabatic
Singlet

CC

CC =close coupling'
Triplet

CC

Mg, (0)
m&1 (0)
3f22(0)
~11
812
E22

1.0610—0.0569—0.0368
4.2267—3.9292

11.489

1.300—0.0629—0.0356
4.82—4.32

11.54

0.0293—0.0017
0.1208
1.1373
0.0642
5.1528

0.0301—0.0017
0.1206
1.20—0.06
5.14

TABLE III. The first two coefFicients in the expansion of the
3E matrix elements at the 2s threshold, Eq. (53). —.OS-

Q.04 1"

cn
CA
CA
ED

~.02

0 e

10.2

(CLOSE COUPLING)
1S-2S EIGENSTATE EXPANSION.

kORADIARATIG (7RIPLET x 2)+
I I I I I I I I I I I I I I I I I

15 20 25
ELECTRON ENERGY (EVj

30

~' H. L. Kyle and A. Temkin, in Proceedzngs of the Thzrd Inter-
national Conference on the Physics of Electronic and Atomic Colli
szons (North-Holland Publishing Company, Amsterdam, to be
published).

"M. Gailitis and R. Damburg, Proc. Phys. Soc. (London) 82,
192 (1963).

a Close-coupling coeKcients taken from Damburg and Peterkop (Ref. 5)' Fxo. 2. Comparison of zeroth-order nonadiabatic fs —2s excitation
cross section with the close-coupling 1s—2s expansion.
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TABLE IV. The spherically symmetric portion of the 1.=0 elastic (1s—1s) cross section for the scattering of electrons
by atomic hydrogen in units of ma0'. NA=nonadiabatic; CC =close coupling 1s—2s.

kg (au) Energy (eV)
Singlet

CC
Triplet

CC
Sum

CC

0.810
0.863
0.864
0.86429
0.8645
0.865
0.8654
0.8656
0.8658
0.866
0.86601
0.86602
0.866025
0.86604
0.8661
0.8662
0.870
0.880
0.89
0.90
0.94
1.0
1.1
1.2
1.5

10.061
10.132
10.155
10.163
10.169
10.179
10.189
10.194
10.198
10.203
10.2033
10.2036

10.2040
10.2055
10.2085
10.298
10.536
10.777
11.02
12.02
13.605
16.46
19.6
30.6

0.635
0.760
1.20
1.337
0.0
0.2925
0.3893
0.4255
0.4465
0.4743
0.4768
0.4795

case (i) case (ii)
0.4790 0.4789
0.4755 0.4754
0.4742 0.4740

0.4955
0.4954
0.4825
0.4673
0.399
0.330
0.250
0.190
0.113

0.4244
0.4235
0.4541
0.4568
0.4454
0.4324

0.2824
0.1865
0.1397
0.0905

3.995
3.994
3.958
3.864
3.773
3.684
3.349
2.905
2.300
1.833
0.974

Threshold

3.995
3.993
3.957
3.864
3.772
3.684

2.903
2.297
1.829
0.9716

4.470
4.468
4.454
4.359
4.256
4.151
3.748
3.233
2.550
2.023
1.087

4.4194
4.4165
4.4111
4.3208
4.2174
4.1164

3.1854
2.4835
1.9687
1.0621

a The statistical factors ) and ~ aA included in the cross sections. When available case (ii) results were used to find the total scattering cross sections.
b All close-coupling results were computed by K. Omidvar, Ref. 4.

stated this latter calculation is a variational approxi-
mate solution of the zeroth-order problem. ' The internal
consistency of our calculations has already been ex-
tensively examined in Sec. IV. For the nonadiabatic
entries in Tables IV—VI the number of significant
6gures given indicates the internal consistency of the
calculation with the last significant figure being in
doubt. For the singlet entries at k~ ——1.5 even the first
significant figure is uncertain. The NA singlet-case (i)
cross sections are the ones which are plotted in those
figures, however the case (ii) calculations are of equal
weight.

In Fig. 2 the nonadiabatic o-~, ~, cross sections are
compared with the close-coupling expansion with the
1s and 2s channels open. The close-coupling results just
above threshold were kindly computed for us by
Dr. Omidvar of the Theoretical Division of the Goddard
Space Flight Center. They appear to be in good agree-
ment with those of Damburg and Peterkop. ' The other
close-coupling results were obtained from Marriott'
and Omidvar, 4 which in turn are in good agreement with
those of Smith and his co-workers. ' "The nonadiabatic
results are about 40% lower than those of the close-
coupling calculation. In fact the case (i) nonadiabatic
0-~, 2, cross sections agree quite well with the variational
calculation of Massey and Moiseiwitsch. '

Figure 3 shows the zeroth-order nonadiabatic elastic
singlet cross section in the neighborhood of the thresh-
old (10.203 eV) and out to 30 eV. A definite Wigner cusp

"P.G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
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FIG. 3. Comparison of the zeroth-order nonadiabatic elastic scat-
tering cross section with the close-coupling 1s—2s expansion.

is indicated at threshold. The close-coupling results,
dashed line, also indicate a cusp at threshold. Above
30 eV the case (ii) nonadiabatic oi, i, remains 20%
larger than the close-coupling results and as such are
larger than the plotted case (i) results which at these
energies are within 5% of the close-coupling values.

The 0-&, &, curve is shown as varying smoothly above
the 2s threshold. Actually tentative results indicate
that there is probably a slight ripple in the elastic cross
section just below the 3s excitation threshold. The rnag-
nitude of this ripple appears to be only a few percent
of the total cross section and it is di%cult to separate
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TA&LE V. The spherically symmetric portion of the I=0 (is—2s) cross section for the excitation of atomic hydrogen
by electrons in units ~uo'. NA=nonadiabatic' and CC= close coupling is —2s.

kg (au) Energy (eV)

Singlet
NA

Case (i) Case (ii) CC

Triplet

CC

Sum

NA CC

0.86604
0.8661
0.8662
0.870
0.880
0.890
0.90
0.94
1.0
1.1
1.2
1.5

10.2004
10.20176
10.2041
10.294
10.536
10.776
11.02
12.02
13.605
16.46
19.59
30.61

0.0066
0.0142
0.0204

0.0313
0.0318
0.0339
0.0448
0.046
0.035
0.031
0.013

0.0066
0.0142
0.0204
0.0354
0.0314
0.0319
0.0338
0.0448
0.048
0.040
0.039
0.019

0,0168
0.0266
0.0420
0.0356
0.0355
0.0375

0.0725
0.0701
0.0547
0.0241

9.9X10 '
1.5X10 '
7.8X10 '
1.8X10-4
2.7X10-4
3.8X10-4
9.1X10 4

1.9X10 '
3.3X10 3

4.7X10 '
5.6X10-3

9X10 6

1.6X10-'
8.3X10 f'

1.9X10 4

2.9X10 4

4X10 4

2.1X10 '
4.4X10 '
6.1X10-3
7.3X10-3

0.0066
0.0142
0.0204
0.0355
0.0316
0.0322
0.0342
0.0457
0.050
0.043
0.044
0.025

0.0168
0.0266
0.0420
0.0358
0.0322
0.0379

0.0746
0.0745
0.0608
0.0314

a See Table IV footnotes.

TAnLE VI. The spherically symmetric portion of the (I.=O)2s —2s cross section for the scattering of electrons by
atomic hydrogen in units of mao'. NA=nonadia, batic"; CC =close coupling is—2s.

k, (au)

0.00503
0.0114
0.0174
0.0831
0.1562
0.2052
0.245
0.365
0.500
0.678
0.831
1.225

Energy (eV)

0.0003
0.0018
0.0041
0.094
0.332
0.573
0.819
1.82 '
3,40
6.26
9.39

20.41

Case (i)

654
622
579

19.6
3.69
0.441
0.43
1.8.)
1.8 I
1.3
0.60

Singlet
NA

Case (ii)

654
622
579
137
19.6
3.68
0.441
0.41
1.9 '

1.8 "-i

1.3
0.55

CC

650.3
602
135.55
19.36
3.515
0.3303

1.532
1.115
0.8980
0.5702

205
204
170.6
110.4
71.21
45.99
7.37
0.02
1.37
2.45
1.94

Triplet sum

CC

206.8
172.3
110.5
71.20
45.94

0.2102
1.36
2.112
1.811

827
783
307.6
130
74.89
46.531
7.78
1.92
3.17
3.75
2.49

CC

808.8
307.85
129.86
74.715
46.27

1.7422
2.475
3.010
2.3812

a See Table IV footnotes.
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FIG. 4. The top four curves represent the total close-coupling
theoretical and the experimental cross sections for the is —2s excit-
ation of H by electron impact. The tvro bottom curves give the
1.=0, angle independent portion of this cross section.

it from the ordinary scatter in the calculated cross

section at this point. This effect also occurs in the

(1s—2s) and (2s—2s) channels, and it may be analogous

to the resonance in tT~, ~, below the 2s threshold but
much reduced in scale.

Our triplet elastic cross sections agree with the close-

coupling results to better than 1%%u~. Since the triplet
cross sections dominate in this region, the total non-

adiabatic elastic cross section (o,+o~) lies within 2%
of the close-coupling result.

It would be of interest to be able to solve the zeroth-

order Eq. (13.3) exactly by numerical means. A con-

tinuing effort is being made to do this with the non-

iterative method which has already been used in the

triplet case below threshold. " So far the results have

been unsatisfactory. This is at least partly due to the

large effective interaction radius between the 2s state
of hydrogen and the scattered electron.

"A. Temkin and E. Sullivan, Phys. Rev. 129, &250 (1963).
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VII. DISCUSSION

Figure 4 compares the spherically symmetric portion
of the inelastic cross section with the total close-
coupling theoretical cross section and with the total
experimental cross sections obtained by Stebbings
et al. '5 and Lichten and Schultz. "Examination of the
graph indicates that the nonadiabatic L=O, 1s—2s
cross section is reduced from the 1s—2s close-coupling
(CC) results by about the same percentage as the
Lichten and Schultz cross section is reduced from the
is—2s —2p CC results around the region of maximum
cross section (15 eV) or as the Stebbings el al are .from
the Lichten et al. results over most of the energy range.
Thus this calculation reinforces what one would be
tempted to believe on looking at the is—2s —2p results
in comparison with the experimental results: a more
exact theoretical calculation will reduce the theoretical
cross section toward the experimental results.

As to the amount of this decrease one must be infi-
nitely more circumspect in guessing. In the language of
the nonadiabatic theory the L=0 part of the 1s—2s—2p
calculation refers to the relative s+p wave problem
whereas the 1s—2s calculation refers to only the relative
s-wave problem. From that point of view, the latter
appears to be a better approximation relative to its
complete solution (to which the present paper is ad-
dressed) than the former is to its complete solution. In
either case, it might seem ridiculous to try to approxi-
mate by two or three terms what in principle is de-
scribed by a singly or doubly (discrete plus continuous)
ininite set of functions. Here, however, one must recall
what Seaton" long ago emphasized, that the explicit
(anti) symmetrization of the wave function in fact
doubles the number of terms and goes a long way in in-
cluding the effects of the continuum in these calcula-
tions. Secondly, with regard to the is—2s —2p calcu-

'5R. F. Stebbings, W. L. Fite, S. C. Hummer, and R. T.
Brackmann, Phys. Rev. 119, 1939 (1960).

"W. Lichten and S. Schultz, Phys. Rev. 116, 1132 (1959).' M. J. Seaton, Phil. Trans. Royal Soc. London A245, 469
(1953).

lation, the singlet L=O gives only the second largest
contribution to o~, ~,. The largest contribution comes
from the triplet L=1 state. Experience thus far indi-
cates that the close-coupling approximation is much
more accurate in triplet as opposed to singlet states.

Thus it is very dificult at this time to infer the correct
normalization of the experimental result. In view of the
many competing elements which are either included or
left out of the close-coupling calculation, our own
opinion is that the correct normalization of the experi-
mental result is between those of Lichten et ul. and
Stebbings et al. and closer to the latter, very close, in
fact, to that curve where the error bars of the respective
experiments overlap. ""This conclusion is supported
by a recent (1s—2s—2p —3s—3p) close-coupling cal-
culation by Taylor and Burke" which produced more
than a 30% decrease in o ~, s, at 16.5 eV from the close-
coupling (1s—2s—2P) calculation. 'e

Our results and those of Damburg and Peterkop' also
show that one must be very cautious in naively ex-
trapolating cross sections to threshold using the Wigner
threshold behavior law."The present results, Table V,
indicate that the law's range can be exceedingly small.
When the 2p state is included in the calculation the 2s
and 2p states are degenerate and Wigner's threshold
laws no longer necessarily apply. "
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