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Transport Theory for Electron-Phonon Interactions in Metals*
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By extending Migdal s approximation for electron-phonon interactions in metals to the nonequilibrium
case, it is possible to derive a set of transport equations which are exact to order (m/3f)'I'. This coupled set
of equations for the electron and phonon distribution functions is correct even in the situation in which
the electronic excitation spectrum has considerable width and structure so that one might not expect a priori
that there would be well-defined quasiparticles. Nonetheless, one of the forms of the electronic transport
equation is identical to the transport equation suggested by Landau for the case in which the quasiparticle
energy is well defined. The transport equations may be written in two different forms: In the first form,
the electronic distribution function is labeled by a momentum vector; in the second, the labels are excitation
energy and the position on the Fermi surface. Despite the width in the spectrum, the momentum-space form
is identical with the Landau quasiparticle theory. The energy space form is slightly simpler because no wave
function renormalization constants appear in the definition of the energies or in the scattering matrix
elements. In fact, in the case in which there is space dependence but no time dependence this form of the
transport equations looks identical to the weak-coupling Boltzmann equations. This identity is used to
prove that to the accuracy of the adiabatic approximation the several transport coefficients are completely
unchanged by the many-body eGects of the electron-phonon interaction. These coefFicients, which include
the spin diffusivity and the viscosity as well as the ordinary conductivities and all the classical galvano-
magnetothermal effects are thus correctly predicted by the standard weak-coupling theory. Many-body
effects are also absent in dn/zlzz and the spin susceptibility; however, they do appear in the specific heat
and in the response to time-dependent disturbances.

I. INTRODUCTION since it catalogs completely the phenomena of the
systems that it describes, and since it provides a target
for theorists who wish to start from a less phenom-
enological viewpoint. Several important advances have
been made along this line. We mention the work of
Luttinger and Nozieres, ' who show that as long as
perturbation theory is formally correct, the Landau
theory follows. That is, if the formal sum of perturbation
series has certain crucial properties shared by individual
terms in the series, then the Landau theory holds.
Baym and Kadanoff' made rather different arguments
based upon the theory of Green's functions.

The theories of quasiparticles so far mentioned have
relied upon the following idea: If one considers an
electron of definite momentum near the Fermi surface,
one finds that it has a component with well-defined

energy, that is, its lifetime is very long. The reason is
that the phase space for the possible decay products of
the electron is very small, because of the Pauli principle.

In this paper, we investigate the question of whether
a quasiparticle theory can be said to hold for the system
of electrons and phonons. The previously mentioned
work has been restricted to a system of Fermions
interacting by means of instantaneous forces, as, for

' T is remarkable that many experiments on many-
& - body systems can be described by the independent-
particle model. Especially for metals, it was unclear
why many-body effects were not more pronounced, but
a number of years ago, Landau, ' in a famous series of
papers, shed a great deal of light on the problem.
Landau pointed out that the low-lying excited states of
a Fermion system might very well have a natural one-
to-one correspondence with the low-lying states of the
noninteracting system. On the basis of this corre-
spondence, he was able to obtain the equilibrium
properties, and also the transport equations describing
situations not far removed from equilibrium. The equa-
tions describe a set of weakly interacting quasiparticles.
The main difference between this case and the limit of
really weak interactions is that the quasiparticles have a
modified energy-momentum relation and that there is
a modification of the scattering matrix elements.

The Landau theory is phenomenological, since it
introduces unknown functions as phenomenological
parameters. Nevertheless, it is of enormous importance,
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example, Coulomb repulsions. There have been sugges-
tions recently that the quasiparticle picture fails for
electron-phonon systems. 4' Partially, this is a matter of
semantics. We shall say that we have a quasiparticle
theory if the system is described by a Boltzmann
equation of the form suggested by Landau, even though
various matrix elements, as well as the energy-momen-
tum relations, are "renormalized. "We shall not regard
it as a failure of the quasiparticle concept if it turns out
that the matrix-element (wave function) renormaliza-
tion is nontrivial.

A more profound objection to the use of the quasi-
particle concept in the electron-phonon system is that
an electron injected into the system with a definite
momentum cannot be said to have a definite energy, if
this energy is above the Fermi energy by as much as
coo, where coo is a typical or maximum phonon energy
(the Debye frequency). Such electrons so rapidly emit
phonons that their energy cannot be defined. If such
comparatively highly excited electronic states are not
of importance, there is no difficulty in extending the
usual arguments leading to the Landau theory to the
electron-phonon case as well. This will be the case
provided we consider only perturbations varying slowly
enough in space and time, and provided we restrict the
temperature to be well below the Debye temperature.
On the other hand, if the highly excited states are
important, the usual arguments justifying the quasi-
particle concept fail.

There have been a number of previous attempts to
justify the Boltzmann equations in the case in which
the electron lifetime was not infinitely long. ' However,
all of these attempts have been based on the approxima-
tion that the decay processes involve no change in the
electronic energy. Thus, the electronic energies have to
be at least well defined. In the electron-phonon system,
this situation occurs at temperatures well above the
Debye temperature. Our theory includes this as a
special case.

There are many ways in which highly excited and
short-lived electronic states can be practically obtained.
One is to apply a microwave field whose frequency is
comparable to the Debye frequency. Another is to
apply a magnetic field so strong that the cyclotron
frequency is comparable to the Debye frequency. A
third is to raise the potential across a tunnel junction to
a value of the order of the Debye frequency measured in
electron volts. A fourth is to raise the temperature of
the metal to the Debye temperature. We have been
able to show that in the third and last cases, a quasi-
particle theory (with a definite energy-momentum
relation) holds and is essentially exact, in spite of the
short lifetime of electrons of definite momentum. We

'L. P. Kadanoff, Phys. Rev. 132, 2073 (1963); also, L. P.
Kadanoff, in Rave/lo 1N3 Spristg School Notes (Academic Press
Inc. , to be published).' S. Engelberg and J. R. Schrieil'er, Phys. Rev. 131, 993 (1963).

6 J. S. Van Wieringen, Proc. Phys. Soc. (London) A67, 206
(1954); C. V. Chester and A. Thellung, ibid. A73, 745 (1959).

shall only treat the "high" temperature case in this
paper, since the third case is a trivial extension of the
temperature problem.

The results of this paper are based upon the approxi-
mations of Migdal ' which are believed to involve only
errors allowed by the adiabatic (Born-Oppenheimer)
approximation. This is not much of a restriction since
the adiabatic approximation is always made in any
theory of solids. This approximation regards as small
the root of the ratio electron mass divided by ion mass.
An equivalent small quantity is the ratio of the sound
speed to Fermi velocity. Another equivalent parameter
is the ratio of maximum phonon frequency (Debye
frequency) to typical electron energy (Fermi energy).

Although the frequency shale of the phonon system is
small in comparison with the electronic frequencies, the
wavelength scale is quite comparable. Wavelengths of
typical phonons or electrons are comparable with the
lattice constants. We shall follow Migdal in exploiting
these facts characteristic of the electron-phonon system.

In the next section we describe the starting point for
our calculation, the Migdal approximation for the
self-energy in the electron-phonon system and the
exact transport theory of Kadanoff and Baym. In the
third section the kinetic-energy variable is integrated
out of the transport equation so that we may write an
equation of motion for an electronic distribution func-
tion which depends upon the excitation energy and the
direction of the momentum vector. Section IV describes
how the energy space equation of motion may be trans-
formed back into momentum space. The resulting
transport equation is exactly of the Landau form. In
Sec. V, Landau s identifications of the densities and
currents of conserved quantities is specialized to the
electron-phonon case. The identifications are verified
by a comparison with exact expressions for these
densities and currents. In the final section we use these
identifications and the transport equations in order to
evaluate some thermodynamic derivatives and trans-
port coefFicients.

II. FORMULATION

The model electron-phonon system which we wish
to study has the Hamiltonian

H=P ekck ck+s P cos (its Gq+tt sG s )
k q

+2 v'(tl)ok+&'ck(a&+~-s') (1)
k, q

We have made a number of assumptions in order not to
encumber the notation. The electron spin and band

' A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
[English transl. : Soviet Phys. —JETP 7, 996 (1958)7; see also
Ref. 5.

Migdal's ideas are extended to finite temperature in A. A.
Abrikosov, L. P. Gor'Kov, and I. E. Dzyaloshinski, Methods of
Quantum Field Theory in Statistical Physics, translated by R. A.
Silverman (Prentice-Hall, Inc. , Englewood Cliffs, New Jersey,
1963), pp. 176—189.
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indices and the phonon polarization indices have been
suppressed. The bare electron-phonon matrix element
tl" (q) has been taken to depend only on q. It is supposed
to have the usual properties and is not necessarily very
small. Umklapp processes have been neglected so that
"momentum" is conserved. Anharmonic effects (direct
phonon-phonon interactions) have been ignored. None
of these simpli6cations is essential to the subsequent
argumentation.

In Eq. (1), ckt is a creation operator for an electron
of momentum k, ek is the electron kinetic energy (energy
of the Bloch state), and cu»' is the zero-order phonon
frequency. We work in a box of unit volume and set
5=1. The a~ operator destroys a bare phonon of
momentum q.

A convenient way of proceeding is to introduce at
once the physical phonon operators, de6ned by the
transformation

o!q=lqGq+VqG q .
The transformation coeKcients, which are to be
determined self-consistently, are given by the relations

g,~(k,E r t)=Q Ct'e'E'+'k"

X(c;k,.t(t——,'t') ck+,k. ..i t—-', t')), (4b)

which represent, respectively, the local density of
electrons and holes with spin quantum number a.

momentum k and energy E in the neighborhood of the
space-time point r, t.

In the same way, we define

r (qa) r t)=P dt'e'"'+'q"

X(n, ;, (t——,'t')n„;;(t+-', t')), (5)

which gives the local number density of phonons of
momentum q and frequency co. We shall also need the
functions

dE g&(k,E)+g~(k,E)
g(k, s) =

2% s—E

u '—V'=1,q

u~=u ~, V~= V ~,

&q'+ Vq'= (~q'/~q)+ (IIq/mq')

20,V, = IIq/(oq',

(2a)

(2b)

(2c)

(2d)

and

dE A (k,E)
)

27r s—E

da) r&(q, to) —r&(q, to)
r(q, s) =

2' S—CO

(6)

and the relation between 1T~ and co~ is

Mq = (cdq ) +2IIqcvq. (2e)

The frequency or, will turn out to be the renormalized
phonon frequency, while the quantity II~ will have the
signi6cance of the polarization part. Under this trans-
formation the Harniltonian becomes

H=P ekcktck+s P (dq(Gqkxq+rr qQ qt)
k

+ Z ~(q) ek+q'ek(~q+~-q')
k, fi

—
s Z IIq(~q'+~-q) (~q+~-q'). (3)

g &(k g. r t) —P dt~ cist'+ik"r
kf

X(ck+-k,.(t+-,' t,')ck;k,. (t—-', t')), (4a)

Here the averages indicate that the system has been perturbed
from an equilibrium distribution in a way analogous to Eq. (8—18)
of Ref. 3. However, we differ from this reference in looking only at
times $ after the disturbance has been shut oG. This specialization
is made solely to simplify the writing and can easily be removed.

We have introduced the renormalized coupling constant

~(q)'= ~'(q)'(~q'/~q)

In order to derive a transport theory, we define,
following Ref. 3, the functions'

where s is a complex variable and we have not explicitly
indicated the r, / dependence or the spin dependence.

In the equilibrium case, g(k, s) and r(q, s) are in-
dependent of r, $. There, it is more usual to define only
the propagator D, given by

D(», t—t') =-'t(2'( (t)+ '(t))( —(t')+ '(t'))).

Perturbation theory can be expressed entirely in terms
of D in view of the form of the coupling terms in the
Hamiltonian. Transport theory can be expressed
entirely in terms of D also, but we have chosen to
introduce r to make the analogy between the electron
and phonon transport equations more transparent. We
shall also have to define temporarily the functions
S& ~(q, a&) and S(q,s) by

S (q,~) =g dt' exp(iq' r+ia&t')

X(o'q —'-, q~ (t—st')n q, q~r (t+st )).

The functions 5 will be shown to be negligible
when the phonon renormalization is correctly carried
out, as must be the case if the phonons are to be
successfully interpreted as nearly independent elernen-

tary excitations.
In the equilibrium case, g(k, s) and r(q, s) can be

determined with the aid of the Migdal approximation"

'0 See Ref. 8, Eqs. (21.8) and (21.22). These approximations are
here rewritten in the language of Ref. 3.
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[s—pg —Z, (k,s))g.(k,s) =1, (8)

[s—~.—11(q,s))r(q, s) —11(q,s)5'(q, s) =1, (9a)

[—s—kp, —II(q, s)75(q, s)—1I(qs)r(q, s) =0, (9b)

where

[~—~,—«II, r )—[II&, R«)
kp —ReII,r&7—[II',«r) (16)

=-II.(q,-)"(q,-)+II (q,-)"(q,-).
In writing Eqs. (15) and (16), we have used a general-
ized Poisson bracket notation in which, for Eq. (15),

Z. lk, s) =
dE Z,&(k,E)+Z,&(k,E)

BA BB BA BB
[A,B]= — +V,A VgB —VgB V,A. (17)

BE Bt Bt BE

dkp II& (q, kp) —II& (q, kp)

II(q,s) =
2x 3 M

dE r.(k,E)
(10)

2x s—E

dk0 p(q, kp) —11,. (11)
2x s—G)

dE A (k,E', r, t)
(18)Reg= Reg(k, E; r, t) = 0'

2x E—E'

In Eq. (16) the brackets have the same meaning except
that for 8/BE we read 8/kid and for V'i, we read V', .
Finally, in Eqs. (15) and (16) the notation Re means
that the complex frequency variables in g(k, s), r(q, s),
Z(k, s), and 1I(q,s) are to be moved onto the real axis
and the integrals in Eqs. (6), (7), (10), and (11) are to
be interpreted in the principal value sense. Thus, for
example,

The widths Z» and II» are given by

Z.&(k,E)=

and

II&(q,kp) =P

d3qdco

[~(q))'[r (q,~)
(2s)4

+r'(-q, —~)]g.'(k-q, E—~) (12)

d'kdE
v(q) '

(2s)',

Xg.&(k+q, E+~)g.&(k,E). (13)

%e have already neglected the contribution of S» ~ in
Eq. (12). The mathematical justification for this
neglect, as well as for the neglect of s(q, s) in Eq. (9a)
will be deferred until after we have had a chance to
discuss the st.ructure of II(q,s). The widths Z& and II&
are defined by equations identica! to (12) except that) and ( are everywhere interchanged.

The state of thermodynamic equilibrium at ternpera-
ture p ' and chemical potential tk is described by the
solution of Eq. (8)—(13) with the subsidiary conditions

g (k,E)=exp[—p(E—tk)]g (k,E),
r&(q, kp) =exp[ —Pkp)r&(q, kp). (14)

If we follow the ideas of Ref. 3, we see that when
r & and g»& vary slowly in space and time (r and t),
Eqs. (8)—(13) remain equally true in the nonequilibrium
case if we simply consider all the functions in these
equations to depend upon r and t. However, the detailed
balancing conditions represented by Eq. (14) fails.
These conditions must be replaced by the generalized
Boltzmann equations:

[E pi,—Re+, g&]—[Q—&, Reg7

[E @—Re+,g&]+—[g&—
, Reg7 (15)

= —Q&(k,E)g&(k,E)+P&(k,E)g&(k,E)

III. DERIVATION OF TRANSPORT EQUATIONS
IN ENERGY SPACE

To make any progress with the equations of the
previous section, we must employ a simplifying feature
of this problem first noted by MigdaP and subsequently
used by many other authors. 4' This simplifying feature
results from the fact that all the phonon energies co,p

are much smaller than p, . For this reason, the only
electrons which participate in the electron-phonon
interaction are those with energies very close to p. In
fact, we usually need only consider electrons with
~E p,

~

and
~

p~—p,
~

—of the order of a typical thermal
energy p ' or a typical phonon energy kpp.

The smallness of the phonon energies is rejected in
a great sensitivity of Z(k, s; r, t) to changes in s. In fact,

a, z(k, s)—Z(k, s) =0 (19)
Bs (dp

where p, , the chemical potential, is far larger than Mp.

)We remark that Eqs. (20) and (21) fail for super-
conductors because a new fundamental length, the
coherence length, appears. $

Because of the insensitivity represented in Eq. (21),
we shall consider Z(k, s; r, t) to be completely independ-

On the other hand, the mornenta of the important
phonons are quire comparable with electronic momenta.
For this reason we cannot expect any corresponding
sensitivity of Z to changes in k. We can see that

v',z(k, s) =O(z(k, s)/kp), (2o)

where kp is the typical electronic momentum, the
Fermi momentum. From (20) it follows that

8 Z(k, s)—Z(k, s) =0 (21)
B6k p



A570 R. E. PRANGE AND L. P. KADANOFF

A(l, E; r, ~)
I'(k,E; r, t)

ent of pi, . We replace k in Z by kr(k) which indicates
that we consider k to be confined to the Fermi surface.
Therefore it depends only on the unit vector k= k/

~

k
~

.
Henceforth we shall write Z(k, s; r, t) as Z(k, s; r, t) and
consider Z, Z~, and 5& to be completely independent
of 6g.

This independence enabled Migdal to find A(k, pi)

quite explicitly; it will permit us a considerable simpli-
fication of our transport equations. To begin this simpli-
fication we notice that Eqs. (6), (10), and (15) imply
that

where J'dQ is a solid angle integration. The p integral
contributes only very near e =p, so that we may replace

d'k dQ—Xp(k) dp, (26)
4x(2ir)P

where
N p(k) =E(p,k)

(k E):(4ir) dQ dE Ep (k)['v (kr kr )]

is the density of states in angle and energy evaluated at
the Fermi surface, for electrons of one spin in the
noninteracting system. If we make this replacement
Eq. (11) implies that

The function A, in contrast to Z and I', is strongly
peaked in e&. It is just this peaking that limits our in-
terest in the dependence of Z on e~ to values of e~ in the
neighborhood of E ( w). Any slowly varying function
of k multiplying A(k, E) can be evaluated at k=kr,
with possible errors of order pip/ii being incurred. Since
we can see explicitly all the dependence of A upon e& in
(22), it is possible to compute the area under the peak as

(2~)—' dpi, A (k,E; r, t) =1. (23)

These properties of A (k,E,r, t) form the keystone of all
our subsequent analyses just as their equilibrium
analogs served as a keystone of Migdal's paper.

This method differs from the usual justi6cations of
the Landau theory which are based on the smallness
of the width I". It is well known that I' is negligibly
small if the conditions ~E p~&& piapnd P '&—&pip are
satis6ed. If these conditions are relaxed, as is done in
this paper, A (k,E,r, t) will have considerable width and
structure when regarded as a function of E. The usual
simpli6cation of integrals over E will not then occur.

Equation (23) enables us to define a distribution
function f(k,E,r, t) by

(2ir) ' dpg, &(p,k,E; r, t) = f,(k,E; r, t), (24)

which is the density of electrons with total energy E
with momentum in the direction k. From (22),

(2~)
—' dpg. &(p,k,E; r, ])=1 f.(k,E'; r, t) . (2—5)

Since, in full thermodynamic equilibrium the condition
(14) holds, it follows that in equilibrium, we have

f(k,E)=(exp'(E —~)3+1) ',
which is the usual Fermi distribution function.

Next we rewrite II and Z in terms of the
distribution function f To do this w.e use the fact that

d'k dQ

dpi'(p,

k),
(2p-) P 4ir

X[1—f(k', E')][r (k,—k, ', E—E')

+r&(k, ' —k„E'—E)$, (27a)

Xf(k', E')[r&(kr —kr', E E')—
+r&(kr' —kr, E'—E)]. (27b)

Exactly the same manipulations applied to Eq. (12)
give

Ii~(q, p~) = II&(—q, —
pp)

=P (47r)
—' dQdQ'Sp(k)Ep(k')

&( [p(q)]'(2n-)'8'(kz —kr' —q)

y[1—f.(k, E+pi)]f.(k', E). (28)

It is worth noting that Z,~ ~ depends only on the
density of electrons of one spin, whereas II ~ depends
on the distribution of both spins in equal measure.

As is explained in Ref. 8, Migdal's arguments for the
approximation of II break down when q is too small,
i.e., only those phonons for which q/kp) p~p/p can be
treated accurately by the perturbation theory method.
This is not a serious drawback because the long-wave-
length phonons are few in number and do not contribute
appreciably to the electron self-energies, or to transport
processes, except in special circumstances. The long-
wavelength sound waves can be treated a Postiori by
means of the electron phonon transport equations
themselves.

To find the electronic transport equation we integrate
Eq. (15) over p. Because of Eq. (20) we can neglect
V'&Z and V'&Z&. Then Eq. (15) implies"

[pi pp z(k, E), f—(k,E—))—z&(k,E), —g(p, k,E)
2~

~~(k, E)f(k,E)+&&(k E)[1 f(k,E)3. [29)
"In this equation and below, we shall drop the notation Re

from Reg and ReZ because we shall have no more use for the
complex quantities themselves.
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We can eliminate the term involving g in Eq. (29) if
we notice that

dc—g(p, k,E) = tP
2T

d»de A (p, k,E')
=(P

(27r)' E E'—
dE 1

2g E—E'

The values of ~ of greatest interest to us are of order ~0.
As Migdal has shown, the values of co' contributing
appreciably to the integral in (31) are much larger, of
order y. Consequently, the electron distributions on
which (31) depends must be evaluated at energies
remote from the Fermi energy. Far from the Fermi
surface, the electron states are either full or empty,
independent of the slight ripples on the Fermi sea
which represent the deviation from equilibrium. Indeed,
these electron states are uninfluenced by the electron-
phonon interaction altogether. We may therefore
compute RelI(q, pp) with great accuracy by using the
formula (12) for II& &(q,pp) and putting for the electron
distribution functions in (12), the functions of the
noninteracting system at zero temperature.

It follows from the above arguments that ReII(q, pp)

is practically independent of frequency, for frequencies
of order coo. We choose it to vanish by picking II, to be

(32)

By this choice, we achieve the relation, valid for all ~,

ReII (q,pp)/pp =0 (cop»/p, '),

This is not, strictly speaking, well defined but all
derivatives of this object certainly vanish. Therefore,
Eq. (29) becomes

8 „ 8 „ 8Z, „ Bf
z.(k,z) f.(k—,z)+ (k,z) (k,z)

BE Bt Bt BE

+(v„p„).v,f.(k,z)
= —Z. (u,Z)f. (X,Z)yZ. (t,z)L1—f.(u, Z)), i30)

when the brackets are evaluated and terms like

~~& ~.f=0E(&/&p)
I
~.fl)

are neglected. This neglect requires Z(&p, which is
certainly very well satisfied in the metal.

The derivation of the phonon transport equation is
slightly more complicated. We first study the quantity
ReII(qa&), given by

(P II (q,pp') —II (qp&')
ReII (qa&) =— dpp' —ll». (31)

2' GO
—

GO

and

leo
E(q; r, t) = —r&(q, pp; r, t)

2'
(34a)

E(q; r, t)+1= r~(q, ~;—r, t),
2'

(34b)

where the integration is over the peaking of the inte-
grand. Integrating Eq. (16) over the region of the
peaking gives at once

B—E(q; r, t)+V»pp» ~ V',X(q; r, t)
Bt = II (qpp») $N(q)+1) —11&(qu&»)$(q) . (35)

We are able to drop the term $11&, Rer), because
II&, is smoothly varying at co=or~.

Equation (35) is the phonon Boltzmann equation.
We shall require the form of r~ &(q,~) for larger values
of pp —~, later. It is evident from (33) that we expect
these quantities to drop off as (~—~,) '. Direct sub-
stitution shows that the relation

quency range. Migdal has computed this quantity in
the equilibrium case, for which it is true that

'Y.„;i(q,(o)/pp =0
(happ/y)

.

One finds an additional contribution to y arising from
the deviation of the system away from equilibrium.
This contribution is easily estimated as»none»nil�

(qp&) +4'p/p q

where U is a certain average displacement in energy- of
the electron states at the Fermi surface, away from
their equilibrium values. This deviation from equili-
brium we have assumed is small, so that we have
U &coo. It is important to note, and easy to verify, that
the frequency dependence of p is entirely contained
in the equilibrium term which is simply proportional to
pp. This is the case for the interesting range ~&u ~((y.

Thus we conclude that both the dispersive and
absorptive parts of 1I(q,s) are very small. For nearly
all purposes, we can completely neglect both. This
result immediately justifies the neglect of the function
s(q, s) which appears in Eq. (9). If s is allowed to
approach a real positive frequency, the correction in
Eq. (9a) can be estimated as being of order LII(qw))'/
(Ql+ppp), which is completely negligible.

From Eq. (16) it follows that

«'(q, ~)—«'(q, ~) =7(q,~)/L(~ —~»)'+4~'), (33)

which is strongly peaked as a function of frequency
about co,. The peak has an area 2x. Thus, we are enabled
to define the phonon distribution function as

which allows us to neglect ReII completely.
Next we remark that the absorptive part of 1I(q,s),

which we have denoted by y(q, s), is very small. It can
be easily computed from Eq. (28) for, the entire fre-

r ~ (q,a&) = —II~ &8/Bpp(Rer) =5»~ &

holds for large co—~~. The quantity Rer is

Re»= (~—~»)/L(~ —~»)'+-'v')

(36)

(37)
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dQ'
Z.&(k,E)=2~ d'qdE' Xp(k')[. (q)7'B'(k, —1 &'+q)

4m.

)&f.(k,E ){B(E-E+.)[1+%(q)]
+B(E-E'-,)&(-q)}. (»)

The self-energy is

dQ'.(k,E)= tp d'&dE' tVp[p(V)]'B'(1, —lr, ' —q)
4x

f,(k', E'+pe,) f.(k',—E' po,)—
X . (4o)

Terms proportional to X(q) do not appear in (40)
because these terms are proportional to

(P dE'(E E')—
which vanishes.

If we now finally collect all our results, the transport
equations for the quasiparticle distribution function
tV(q) and f become

and can be approximated as (P(1/(cu —cop)) in view of
the smallness of y.

Thus, r~(a&) for example, has approximately a
Lorentzian shape, with tails dropping oG as (a&

—co,) '.
There is some important structure in the tail, in the
neighborhood of zero frequency, since r~ must vanish
exponentially as ej' for negative frequency. This
structure depends on the deviation of the system from
equilibrium. Only the response of the ions represented
by the main peak of r~ & can truly be considered as a
phonon response with a definite energy-momentum
relation. The incoherent contribution of ()r~ ~, which is
rarely important at all, will turn out to give the ionic
contribution to the electronic quasiparticles. We shall
return to this point later, when we have seen the explicit
role played by the line shape.

The fact that A(k, E) and r r~ are Lo—rentzian
rather than true () functions in the variables ei, and co,

respectively, is of no consequence in the calculation of
those values of Z and II ~ which enter the equations
of motion, Eqs. (30) and (35).Thus we can immediately
write,

dQ'
Z,~(k,E) =2or d'qdE' Xp(k')[v(q))'Bs(kp —kp' —q)

4x

X[1 —f.(k', E')]{B(E—E'—,)[1+Zr(q)]j8 (E E'+po,)N ( q—)} (38)—

BZ, (kE) Bf,(k,E) BZ.(kE) Bf,(kE)
1— + + (7xo ego) .&.f, (k,E)

BE Bt Bt BE

dQ'
= —2or d'q dE'Ep[p (q)]'Bs (kg —kg' —q)

4~

&& {8 (E—E' —&v,)([1+1V (q)]f.(k,E)[1—f.(k',E')]—E(q)[1—f,(k,E)]f.i k', E'))

+8(E—E'+so, )([1V(—q)]f.(k,E)[1—f.(k',E')]—[1+tV(—g)]f.(k',E')[1—f, (k,E)])}, (41)

[(B/Bt)+V', pop V', ]tV(q)

dQ dQ'
= —(2or)'Z — &p (k)&p (k') [p (q) ]'B'(lr~ —&o'' —«)

4m. 4m.

X{$(q)[1—f, (k,E)]fo.(k', E—(op) —[1+%(q)]f, (k,E)[1—f, (k', E—cop)]}. (42)

Equations (41) and (42) represent one form of our
basic transport equations. Notice that, except for the
terms BZ/Bt and BZ/BE these equations are identical in
form with the standard weak-coupling transport
equations. " The only difference is that where the
kinetic-energy variable e& appears in the weak-coupling
equations the total energy variable E now appears. If
the distribution function depends upon space but not
upon time, the transport equations are identical to
those of the weak-coupling theory.

's J. M. Ziman Etectrons agd I'1gonorss (Oxford University
Press, New York, 1962).

IV. TRANSPORT EQUATIONS IN THE
LANDAU FORM

We shall refer to Eqs. (41) and (42) as the energy-
space or (E-space) form of the transport equations.
This form does not look like the Landau equations for
a I'ermi liquid because Landau works with the momen-
tum variable k rather than E. In this section, we shall
find equations which look similar to Landau's by
transforming from E space into ir space.

In order to transform into k space, we begin with a
definition of the quasiparticle energy of the Landau
theory

E,(k;,r, t) = eg+Z.(E(k; r, t),k; r,t). (43)
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We can defiiie a new variable

p, (k,E; r, t) =E.—Z, (E,k; r,t), (44)

which can be used as a basic variable instead of E. This
variable clearly has the significance of the local kinetic
energy of a quasiparticle with total energy E.

For the remainder of this section, we assume that for
each pq there exists a unique E(k; r, t) which solves
Eq. (43). This uniqueness is known to fail in several
cases of interest. "

A k-space distribution function can be defined as

tl (k; r, f) = f~(E,k; r, f)
~

@=@&g,, i~. (45)

The last relation follows because 7'qZ(k, E) is negligibly
small. Equations (48) may be used to rewrite the trans-
port equations, since

de(k) = [df(k,E)+ (8f/8E) (k,E)dE(k) j, (49)

where df(k, E) is to be taken at fixed E. After some
algebra we discover that the electronic transport
equation, Eq. (41), may be expressed in k space as

[(8/R)+VIE(k). V',—V',E(k) 7'g7e(k)
= —z(k) I z&(k, E(k))N(k)

—z&(k,E(k))[1—~(k)$, (5o)

which is exactly the Landau form of the transport
equation. Notice that we have not assumed. that F is
small compared to pip or P ' in the derivation of this
equation. Therefore, we can conclude that the Landau
transport equation is valid for all temperatures much
lower than the degeneracy temperature. This is a much
wider range of validity than we might have guessed a
priori.

To complete the transformation into k space, we
rewrite Z&, Z~, II, and II~ in terms of k-space variables.
From (48c)

The transport equations can now be transformed into
k space. However, from (43)

dE, (k; r, t) =Z.(k; r, t)
X[dEk+d'Z (E» r ~) I x=s.(~, , i)&

where dZ is to be computed at fixed E and

BZ,
Z, (k; r, t) = 1— (E,k; r, t)

BE
(47)

E=E~ (k„r, t)—

This Z(k) is called the wave function renormalization
constant. From (46) it follows that

7'~E(k) =z(k) [v~z (k,E)]@=@(g&, .

B,—E(k) =z(k) [(8/Bt)z (k,E)fg
Bf

dQ dQ dEk

|7j,E(k) =Z(k)v'„&„.

()
(48a) —dEXptk) =

dpi'

Np = Z(k) . (51)
4n- 4ir dpg (2ir)'

t48b) Therefore, the collision terms in the Landau-8oltzmann
equation may be rewritten with the aid of (41) and

(48c) (51) as

Z(k)z&(k, E(k)) = (27r) ' d'qd'k'[n(q))'Z(k)Z(k')P(k —k' —q)

X [1—e(k )](6(E(k)—E(k )—iraq)[X(q)+1)+8(E(k) —E(k')+ppp)X( —q)), (52a)

z(k)z (k,E(k)) = (2ir) ' d'gd'k'[v(q)5'z(k)z(k')P(k —k' —q)

Xn (k') (8(E(k)—E(k') —pi,)$(q)+ 5(E(k)—E(k')+(p,)[1+/(—q))), (52b)

These collision terms diRer from those of the weak-
coupling theory only in the appearance of the exact
energies and of the extra factor Z(k)Z(k') in the
scattering matrix element. In the weak-coupling theory
this factor is replaced by unity.

In the transformation from E space to k space, the
only part of the phonon-transport equation, Eq. (42),
that is modified is the collision terms II~ ~. These

"If the inverse to Eq. (44) is not unique, ave must dehne several
branches to the quasiparticle spectrum, such that integration over
e& and summation over the branch index is equivalent to integra-
tion over K The interpretation of the several branches is similar
in spirit to the interpretation of the several poles found on the
second Riemann sheet of g(k,Z) by Fngelsberg and Schrie6er
(R.ef. &5).

become

[v(q) O'Z(k)Z(k') P (q —k+k')
(2m.)'

X~(~p—E(k)+E(k'))&(k)[1—n(k')$; (53a)

d'kd'k'

II&(q,pi) =P

II~(q, p~) =P [v(q))'Z(k) Z(k') P(q —k'+k)
(2ir)'

Xb(pi, —E(k')+E(k))N(k)[1 —N(k')$. (53b)

Again the only change from the weak-coupling limit is
in the modification of the energies and in the appearance
of wave function renormalization constants.
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that expression (62) vanishes. Therefore, Eqs. (SSa),
(59a), and (61a) all give equally valid expressions for
e(r, t).

Next consider the "momentum" density which is
exactly

G(r, t) =P(2pr) 4 d'kdEkg~(k, E)

+ (27r) 4 d'qd(oqr~(q, ar) .

Equations (34), (36), and (60) enable us to simplify
this as

dQ Pg
G(r t) =P dENpkpf(1p E' r, t)+ qN(q; r, t)

4x (2n.)'

d g de) 1 BII
+ q& — . (63)

(2pr)' 27r pp —cup cjpp

The last term is the contribution of the structure of
the line shape of r&(q,co). The principal value has the
eGect of eliminating the contribution of this term in
the immediate neighborhood of co=orq, which contribu-
tion is taken into account by the second term.

We may substitute the identity

d3qdco Q BII+
(q, pp)

(27I ) pp ppp BM

dQ „ BZ
dENpf, (k,E—)kp (k,E) (64)

4m. BE

into (63) and immediately verify that the identification
(59e) is correct. Equation (64) follows from Eqs. (28)
and (40) after a few manipulations.

We can now understand why Eq. (56) is not true.
This equation would set the electronic mass Qow
current equal to the part of the momentum density
which comes from electronic quasiparticles. However,
the quasiparticle is part of the time a combination of
electron and ion motion, so that the quasiparticle
momentum is partially electronic, and partially ionic.
In the usual Landau theory, the quasiparticle momen-
tum belongs partially to one electron and partially to
its surrounding cloud of correlated electrons, but all of
the momentum is electronic.

The following interpretation can be given to the
terms of Eq. (63). The first term is the electronic mass
liow. The second term is the part of the ionic momentum
that we associate with the true phonons which have the
dispersion relation co,. The final term is the part of the
ionic momentum which cannot be associated with the
phonons, but which we have been able to incorporate
as part of the quasiparticle momentum.

The great virtue of the Landau theory is that it
manages to associate all the necessary physical quanti-

ties with the quasiparticles, in this case, with the
electrons and phonons. Because of the definite energy-
momentum relations, calculations are simplified and
made more intuitive. There are no terms in the Landau
theory, besides the collision terms, which are not
associated de6nitely with one or the other type of
quasiparticles. In the straightforward Green's function
theory, on the other hand, contributions like the last
term of (63) are commonplace. These off-energy-shell,
away-from-Fermi-surface contributions are difhcult to
deal with.

One may ask why it is that it is possible to lump such
quantities into the quasiparticle terms. Why are we
able to find such miraculous identities as Eqs. (62)
and (64)? The answer seems to lie in the existence of
the conservation laws. On the one hand the Green's
function theory satisfies the conservation laws whether
or not we take into account the peaking of the distribu-
tion functions g and r . On the other hand, we have
seen that the areas under these peaks, namely, f(k,E)
and N(q), must also satisfy the conservation equations.
Since it is virtually impossible that two distinct sets of
"additive" conserved quantities exist, " there must be
identities connecting the two forms of the expressions
for the conserved quantities.

Since we have verified the Landau-theory expression
for the momentum density, it follows from the conserva-
tion law that Eqs. (55f) and (59f) for the stress tensor
must be correct.

To verify the Landau-like expressions for the energy
density and energy current, we must employ arguments
rather similar to those above, which unfortunately
involve much more algebra. We shall not present these
arguments here but reserve them for an Appendix.

VI. EVALUATION OF PHYSICAL QUANTITIES

We now have two forms of the electronic transport
theory: a momentum space form which looks essentially
identical to that of the Landau theory, and an energy
space form which is somewhat simpler and easier to use.
Despite the greater simplicity of the energy space
results, it is instructive to study in detail the result of
applying the standard Landau approach to our system.

As we have just noted, there is one major point of
difference between the Fermi liquid case and the
electron-phonon system: the failure of Eq. (56) which
results from the contribution of br~ to the momentum
density. This failure in turn invalidates two important
results of the Landau Fermi liquid theory in our case:

dQ'
= 1—Q Np f...( p'krak') kk'/2 (65)

o,o' 4m

and also the relationship of the chemical potential to

"L D. Landau and E.M. Lifshitz, Stutistica/ Physics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1958), p. 11.
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electronic contribution in the intermediate temperature
range. In the low-temperature case, the result can be
shown to agree with that found by Eliashberg. "' In
the range above the Debye temperature, the result is
given by (74), but with m* set equal to m.

Finally, we consider some of the transport coefficients:
the viscosity, the thermal conductivity and the spin-
di6usion coefFicient. These are usually defined by con-
sidering the local equilibrium situation in which the
distribution functions are such that the collision terms
in the Boltzmann equations vanish, and the distribution
functions depend upon space but not upon time. " In
our case, the local equilibrium solutions are"

f, (k,E)=(exp(P(r)fE+ks v(r) —p (r)j)+1) ', (76a)

$(q)= (exp(P(r)L~, +q t(r)])—1)—'. (76b)

Because of the spatial dependence of these terms they
produce forcing terms on the Boltzmann equations (41)
and (42) in that the left-hand sides of these equations
become, respectively, V'~~e&~ V'rf and 7',co, V',5'(q). The
transport coeKcients are then defined in terms of the
currents which appear in response to these forcing terms.
Thus, for example, the thermal conductivity ~ is
defined as the coeKcient which connects the energy
current and the gradient of the temperature

But, in this situation in which there is no time
dependence, the Boltzmann equations (54) and (55),
the expressions (73b), (73d) and (72f) for the currents
are precisely identical in form to those which appear in
the weak-coupling limit. The only change is the
renaming of the variable of integration, e —+E. Thus
the exact transport coefficients which emerge from the
solutions to these exact equations must be the same as
those which are found by solving the weak-coupling
Boltzmann equations. We may conclude that the spin
diffusion coeKcient, the viscosity (which is related to
the damping of low-frequency phonons), and the
thermal conductivity are all predicted quite correctly
by the standard weak-coupling theory. Other transport
coefficients which are unaffected by the interaction are
listed in the final section.

VII. CONCLUSIONS AND DISCUSSION

We have seen that for the model considered, the
electron-phonon system can be described by the
traditional Boltzmann equation, with corrections of the
Landau type, and with matrix elements renormalized.
Thus the concept of quasiparticles can be considerably
extended, even into a region where an energy-momen-
tum relation does not obviously exist. That a precise

's G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 43, 1005 (1962)
[English transl. : Soviet Phys. —JETP 16, 780 (1963)g.

'9 Chapman and Cowling, Mathematical Theory of Eon-Uniform
Gases (Cambridge University Press, New York, 1960), Chap. 7.

's Reference 3, Eq. (10.13).

energy-momentum dispersion relation can be defined at
all rests upon the circumstances that the momentum
dependence of many important functions is weak. In a
certain sense, therefore, the quasiparticle states of this
theory are states of definite excitation energy and
definite position on the Fermi surface, but are smeared
out in an unimportant way in momentum space about
the Fermi surface.

The importance of this result is that it leads one to
believe that there is nothing to worry about in the use
of the Boltzmann equation throughout the entire
temperature range in metals. With the Landau correc-
tions, ordinary transport properties should be capable
of description to a very high accuracy. These Landau
corrections have, to our knowledge, been written down
for the electron-phonon system for the first time,
although the equations are exactly what an educated
guesser might come up with.

However, there exists a simpler statement of the
transport theory for this case than the Landau k-space
description. In E space, the transport equations have
an extra simplicity resulting from the disappearance of
matrix-element renormalizations. Many-body effects
only appear in the time derivative terms in the transport
equation.

This extra simplicity has enabled us here to show
that the spin diffusivity, the thermal conductivity, and
the viscosity are all correctly predicted by the standard
weak-coupling theory in the sense that there are no
many-body electron-phonon interaction corrections to
these quantities. For just this same reason, the tunneling
rate, ' the spin-lattice relaxation time, ' the dc electrical
conductivity, " the anomalous skin e6ect," and the
de Haas-van Alphen effect, " Be/Bp, and the spin
susceptibility" are all unaffected by these many-body
effects. In addition, it easily follows from our equations
(generalized to include the effects of an external static
electromagnetic field) that the thermopower and all

the galvano-magneto-thermal coe%cients are correctly
calculated by weak-coupling theory.

On the other hand, it is known that the low-field

cyclotron resonance frequency" and the specific heat"'
are indeed modi6ed by electron-phonon interaction
effects. Thus, considerable progress has already been
made in sorting out the effects of electron-phonon
interactions in normal metals.

The question arises how well our simplihed model
rejects the properties of real metals. There are at least
three important points. First, Coulomb eGects have

2' S. Nakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto)
29, 341 (1963};see also, K. Baumann and J. Ranninger, Ann.
Phys. (N.Y.) 20, 157 (1962)."S.Xakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto)
30, 271 (1963).

"A calculation of the cyclotron resonance frequency is men-
tioned in Ref. 22. From our point of view this calculation can be
understood by considering F=ma; i.e., d6/Ct= —j)C B/c. Since
G has in it an electron-phonon interaction correction LEq. (72e) j
while j does not LEq. (72b)g, the resonance frequency must be
rood jfj.ed,
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to be included. It is known that with Coulomb effects
alone one can obtain the Landau equations. ' These
strong effects lead to self-energy and vertex corrections,
etc., which are weakly varying in both momentum and
frequency. It seems highly plausible, therefore, that one
can build the electron-phonon Landau theory on an
underlying Coulomb quasiparticle theory. This com-
bined theory, as well as the relationship of the present
theory to graphical analysis, is presently being studied.

The same sort of remarks apply to the additional
complications introduced by the presence of impurities,
which are present in all real metals. '4

Thirdly, lattice effects have been glossed over. The
most important of these is perhaps the existence of
umklapp processes. There is no difficulty in extending
the theory to take these into account although, if
umklapp processes are present, the concept of crystal
momentum density loses much of its meaning. The
result is as expected; all that is needed is to include the
umklapp processes in the collision and self-energy
expressions. Some interesting problems can be anti-
cipated if the structure right at the zone boundaries are
important, or if there are usually small band splittings,
caused by spin-orbit effects, say. In this case, the
distribution function cannot be diagonalized in advance,
but has to be regarded as a density matrix with a small
number of dimensions.

Other extensions of the theory will be needed to take
into account disturbances of high frequency (of order
Mp). Disturbances arising from weak magnetic fields,
and slowly varying electric 6elds are easily included in
the natural way. The response of the system to a high-
frequency microwave 6eld may not have a simple
transport description, since even the energy levels
become poorly defined. However, the problem might
well be soluble, since Migdal's arguments still apply.
On the other hand, there are arguments which indicate
that the classical effects of a strong magnetic field
(cyclotron frequency comparable with the Debye
frequency) can be incorporated in the natural way into
the Landau-B oltzmann theory. Thus, for example,
the high-6eld magnetoresistance can be calculated on
the weak-coupling model. These arguments will be
presented in a future communication.

Finally, it is tempting to speculate that the normal
Quid in superconductors might, after all, be susceptible
to a nearly exact description of the Landau type.
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where
BC /83=8(Ei+ 62)/83+'I+86&/R, (A1)

ei=g(4m) ' dQdENDEf. (k,E), (A2)

(BZ,„=—g(4~)-i dDdEN, E~ j.(k,E),
0 &ATE

e„= (2~)
—' d'yu, N(1),

(A3)

I=—g(4~)—' dQdEf, (t,E)8'./R

Notice that I does not even appear to be a total time
derivative. If our identification of the time derivative
of the energy density is to make any sense at all we
must show that I is a total time derivative. If we use

Eq. (53) for Z we can show after a little manipulation
that

I=BE3/83) (A6)

e3= —-', (4m) 'Q dQdEN g.(k,E)f.(k,E). (A7)

Therefore, we can integrate Eq. (A1) to construct a
quantity,

(A8)' = ei+E2+Ea+E~+C.

Here, C is a constant of integration which is independent
of time and which therefore makes no contributions to
changes in e~.

The quantity ~~ is dirnensionally an energy. It
satisfies a local conservation law

Be'/Bt+Vj, =0.

Since there exists only a limited number of conserved
quantities, it is hardly conceivable that cl can be
anything else but the energy density.

To make this point more 6rmly, we consider the ex-
pression for the energy density

e=g(2")-4 d'k dE-', (E+'")g.'(k, ')

+(2~)—4 d'gd" err'(q, "), (A9)

which is exact when S~ is negligibly small.

APPENDIX: VERIFICATION OF LANDAU-LIKE
EXPRESSION FOR THE ENERGY DENSITY

In the main body of this paper we claimed that the
equivalent expressions (55c) and (59c) defined the time
derivative of the energy density. In this appendix we

investigate this claim and establish its plausibility.
We begin by rewriting the Landau expression for the

energy density by integrating Eq. (59c) by parts to
obtain
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