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The method developed by Boguliubov for an imperfect Bose-Einstein gas is generalized in order to permit
examination of a mixture of an arbitrary number of different species of bosons. The generalized method in-
volves diagonalization of a matrix which has a Hermitian-like property by a unitary-like transformation
in a space with an inde6nite metric. When a neutral mixture of two types of charge bosons is examined, it is
found that two types of elementary excitations exist; one having the energy-momentum dispersion relation
associated with plasma oscillations at low momenta and another having the energy-momentum relationship
characteristic of a free particle with a modi6ed mass at very low and high momenta. Further investigation
shows that the plasma-type excitation consists of an oscillation in charge density while the free-particle-like
excitation consists of an oscillation in mass density.

INTRODUCTION The Boguliubov method was developed in order to
investigate the properties of a system of a single species
of bosons interacting through a two-particle potential
which is a function only of the interparticle distance.
In order to permit the investigation of perhaps an even
wider ranger of problems we consider here a generali-
zation of the method to deal with systems consisting
of several di6erent species of bosons interacting through
more general two-body potentials.

In the Boguliubov method the system is considered
in second quantization with the one-particle states
labeled by a quantum number jt (such as the individual
particle momenta) which is additively conserved in a
two- io B im tion is

''N 1947, Boguliubov' developed a method which,
~ - when applied to an imperfect Bose-Einstein gas,
yielded the first semiquantitative explanation of the
phenomenon of superRuidity. The essence of the method
was the bilinearization of the Hamiltonian by a rea-
sonable approximation and the introduction of quasi-
particles through a canonical transformation which
diagonalized the Hamiltonian. These essential elements
of the method have since been applied with some
success to a wide range of problems. ' "

Copyright 1964 by The American Physical Society.

body interact n. asic to the approx a* Supported in part by the U. S. Atomic Energy Commission.
is paper is based on a thesis submitted by the author in partial the assumPtion that there exists one such one-Particl

fullllment of the requirements for the Ph. D. degree at Case state, say k=0, which is populated on the average by
Institute of Technology. a large number of particles approximately equal to the

t Corning Glassworks Foundation Fellow, 1962—63. Present
address: Weizmann Institute of Science, Rehovoth, Israel. total number of particles in the system. The average

' N. N. Boguliubov, J. Phys. (U.S.S.R.) 11, 23 (1947). occupation number E of this state is then treated as a'S. To o ag, P og . Th o t. Phy . (Kyoto) 5, 544 (1950). b d th'N N. Boguliu. bov, Zh. Eksperim. i Teor. Fiz. 34, 58 (1958)
[English transl. : Soviet Phys. —JETP 34, 41 (1958)j.

4 P. Mittelstaedt, Nucl. Phys. 25, 522 (1961).' L. L. Foldy, Phys. Rev. 124, 649 (1961). C. DeWitt, (John Wiley 8I Sons, Inc. , New Vork, 1958), pp. 343,
'M. Girardeau and G. Arnowitt, Phys. Rev. 113, 755 (1959). 377.
~ M. Girardeau, Phys. Rev. 127, 1809 (1962). 'o R. E. Prange, Nucl. Phys. 22, 283 (1961).
s V. G. Soloview, Nucl. Phys. 9, 655 (1958—59). "J. Hogassen-Feldman, Nucl. Phys. 28, 258 (1961).'S. T. Beliaev, Kgl. Danske Videnskab. Selskab, Mat. Fyz. "A. E. Glassgold, A. N. Kaufman, and K. M. Watson, Phys.

Medd. 31, No. 11 (1959); The Many Body Problem, edited by Rev. 120, 660 (1960).

A543



K. H. BASSI CHIS

for particles in this state are also treated as c numbers,
equal to (N')'~'. The second assumption made in the
treatment is the neglect of all interaction terms which
are not of at least second order in the creation and
destruction operators for particles in the k=0 state.
The Hamiltonian is thereby reduced to a sum of ex-
pressions each of which is a quadratic form in the
creation and destruction operators only in the states k
and —k for fixed k (with no interaction between dif-
ferent k values). Boguliubov then shows that it is
possible to diagonalize the reduced Hamiltonian by a
simple canonical transformation.

GENERALIZATION OF THE BOGULIUBOV METHOD

Iet us use the symbol k to represent collectively
those quantum numbers characterizing one-particle
states which are additively conserved in a collision and
the symbol 0. to represent collectively the remaining
quantum numbers required to characterize a one-
particle state. We require further that the spectrum
of k be symmetric about k=0, that k=O be in the
spectrum, and that k=0 be for given o., that one-
particle state which, in the absence of interaction, has
the lowest energy. Thus, k may represent the linear
momentum of a particle or the s component of angular
momentum of a particle in an axially symmetric po-
tential, while n may label a particle species or a com-
ponent of spin momentum of a particle. Our subsequent
nomenclature will be chosen to correspond to the case
where k represents linear momentum and n represents
particle species, but the extension to more general
situations is usually obvious.

We shall be using a second quantized representation.
We let a (k), a +(k) represent, respectively, the de-
struction and creation operators for a particle in the
state (k,a), and t (k) the energy of a single particle in
this state. The fact that our particles are bosons is then
expressed in the commutation relations

Ca-(k), e(k') 3=Ea-'(k), at'(k') j=0,
L -(k), u'(k')3=~-t~ ' (&)

The interaction between two particles leads to
collisions in which a pair of particles with quantum
numbers (k,n; O',P) undergoes a transition to a state
with quantum numbers (k+E, p; k' E, 8). We repre-—
sent the matrix element of the interaction between such
pairs of states by V '

g s~'(k, k',E). Here V represents
the volume in the case of a gas of interacting particles
so that g is independent of V (provided surface effects
are ignored). We adopt the convention that the sub-
scripts label incoming particles, the superscripts the
outgoing particles, the first argument corresponds to
the momentum of the particle labeled by the first
subscript, the second argument the momentum of the
particle labeled by the second subscript, and the last
argument corresponds to the momentum transfer, e.g, ,
g p~'(k, k',E) is the matrix elemen. t for the interaction

shown in Fig. 1. Symmetry considerations lead to the
following relations between the matrix elements:

g.p~'(k, k', K)= gp '&(k', k, E—)
=g s'&(k, k', k' —k —E)

=gp &'(k', k, k+E—k') . (2)

Furthermore, Hermiticity requires

g P&'(k, k',K)=g, k &*(k+K, k' K, ——K). (3)

The Hamiltoniao in second quantization takes the
form

+ p Q g p&'(k, k', K) a+k(k' K)—
2y ~p, ~, s ~, al, z

)&a,+(k+K)ap(k')a (k). (4)

Q a+(k)a. (k)=N. =n V,

where Ã is large. In this case the Boguliubov approxi-
mation consists erst in assuming that the state k=0
for each a is macroscopically occupied so that a (0),
a +(0) can be approximated by the numbers (N ')'".
E ' is the average number of a particles in the k=0
state. Secondly we drop those terms in the ioteraction
part of the Hamiltonian which do not contain at least
two creation or destruction operators for the state k=0.
We are left with a single sum and for convenience we
write

H=HO+P Hk,
k&P

Hk H—k 2 (kk+k —k) y

kk ——p t (k)a.+(k)a. (k)

+-,' Q L(e ep)'~'(2g p(k)ap+(k)a (k)

+f p(k)ap+( k)a+(k)—
+f-s*(k)at ( k) a-(k) )], —

Ho=+ t (0)N +Q (NpN Ising )'"

& Lg-s(0)+f-s(0) j (6)

The generalization of the Boguliubov approximation
required for a particular problem depends in part on
the constraints imposed on the system (either internally
through selection rules, or externally) with respect to
the total number of particles present belonging to each
species o.. We shall assume here that such constraints
take the form of 6xing the total number of particles of
each species:
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FIG. 1. A pictorial represen-
tation of the matrix element g»ik k K~

g pr'(k, k', Zl. ,&(k, k, K)

In the above
|'n,ng) '~'

g-~(k) =E
I I g.-"(o,k, k)
n.npi

K

operators. The q, ~ are defined by

g, r ',——[f,-(k)»~+(nnr)'~'g;~(k)] j, /=1, 2, . v

= —2[6(—k)»~+(nant)"'g~r( —k)7

j, k=v+1, v+2, . 2v

=-,'(n,n))'I'f&;(k) j=1, 2, v

3=v+1, v+2, 2v

= ——,'(n+&)'~'f, &e(k) j=v+1, v+2, 2v

l=1. 2 '''p

Pn, n,q'~'
f.,(k)=Z(

'
~

g„-v(O,O, k),
v, ~ (n.net

where use has been made of the symmetry and Hermi-
ticity relations (2) and (3).

The next task to be undertaken is the diagonalization
by a canonical transformation of the operators HI, . To
achieve this end it is convenient to introduce a new
notation by introducing operators X,(k), X;+(k), where
the index i ruvs through twice as many values as does
the index 0..Thus, let the values taken byn be designated
1, 2, 3, - v. We now define

With ta+v7 ga+vy p+v, Sa+v& etC. , giVen by ~, gap, e, etC.

It is important to note that if j and l are considered
matrix indices, then the matrix ri and the matrix P
satisfy the relation

or
(Pn)+ =n+P =P~,

ri+= prlp '= pri—p (since p '= p) .

(16)

If X~, ~ X2v are considered as elements of a column
matrix X and X~+, .X2v+ as elements of a row matrix
X+, then H~ becomes in matrix notation

HI, X+priX+E——I,'. (17)

X;(k)=a;(k), X,+(k) = a~+ (k)

and

for z=1& 2& 3 ' p

The required generalization of the Boguliubov
canonical transformation consists now in introducing
new operators F; related to the X; by a linear
transformation.

X;+„+(—k) =X;(k),
X,~,(—k) =—X;+(k) . (1o)

The commutation relations (1) then assume the form

[X;(k),X,(k)]= [X~+ (k),X,+(k)]=0,
[X,(k),X,+(k)]=p,;.

X (k) =a +(—k) X+(k) =a (—k)

for i = v+1, v+2, 2v,

where the index i is defined modulo 2v. Note that ac-
cording to these definitions

X= UI' X+= I'+U+.

This transformation is to bring H~ to the form

(20)[Y Y+]=P"

[Xg,X(+]=Q [Ug, Y,, V,+U, (+]
and

with ) a diagonal matrix. However, in order for this
transformation to be canonical, it must leave invariant
the commutation relations (11). In particular, this

requires

Here P,; is a 2v X2v diagonal matrix whose elements are =2 Uk', jUjl+=Pkl (21)
Pe=0

=1
for

for

for

zWj
z= j=1) 2~ 3~ '''p
i= j=v+1, v+2, 2v.

or, in matrix form,
(22)(»)

Alternatively,
PU+=U 'P

Taking the inverse of both sides, noting that p '= p,
one obtains on a slight rearrangement

We now need not indicate the argument k of the X,,
X;+ operators for what immediately follows. The
partial Hamiltonian HI, takes the following form in
terms of the new operators.

where

HI, = Q X,+perk)X)+Eg',
i, 7, l

EP= —-,'P (t„(—k)+n.g..(—k)}

(13)
P= U+PU.

Thus, it immediately follows that

X+PX= Y+U+PUY= Y'+PY.

(23)

This result can be given a geometric interpretation:
arises from the commutation of operators required to We may regard X+pX as the scalar product of the

bring all X+ operators standing to the left of X vector Xwithitself;ormoregenerally,

define

thescala
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product of X with X' by

(X,X') =X+PX'.

write the partial Hamiltonian (19) as

H2 ——Q (E2'—X +„+X A +(k)A (k)).

The associated linear-vector space then does not possess
a positive-definite metric but, instead, the metric P. A
linear transformation on the operators X; which is
canonical corresponds to a "pseudo-unitary" trans-
formation U which, by (23), leaves the metric in-
variant. A matrix 2t satisfying (16) may be regarded as
a "pseudo-Hermitian" matrix in this space in the sense
that

(X,2tX') =X+P2tX'= X+2t+PX'

= (AX)+PX'= (AX,X') .
(24)

U+P2tU=Px P diagonal). (25)

The symmetry properties of q, i.e.,

n"(k)=-~+ + (—k)
and

2;2;+( k),
= —22.;+„,, (—k) i, j=i, P,

allow one to order the X's in such a way that the I"s
will be interrelated in the same way as the X's, i.e.,

I';+„+(—k) —= I';(k),
I (—k) —= I +(k).

(26)

The U matrix will then have the property

Uv= U'+. ,~+ ',
Ui+v, ~

= U',i+v+ for z, g=1 ~ v.

This choice is consistent with Eq. (23). Equation (25)
can be rewritten in the forms

Thus, the problem of bringing H~, to the form (19) is
reduced to finding a pseudo-unitary matrix U which
diagonalizes the pseudo-Hermitian matrix q.

A NEUTRAL GAS OF TWO SPECIES
OF CHARGED BOSONS

The theory will now be applied to a neutral mixture
of two types of charged bosons. It will be shown that
two types of elementary excitations exist; one having
at low momenta the energy-momentum dispersion
relation associated with plasma oscillations, the other
a dispersion relation characteristic of a free particle
with a modified mass at low and high momenta. The
special case where the particles of the two species have
equal masses and equal, but opposite, charges will be
examined in detail. It is shown here that one of the
excitations corresponds to oscillations in mass density
and the other to oscillations in charge density. Finally
it will be shown that the criterion for the validity of
the Boguliubov approximations is essentially the same
as that found by Foldy for the one species case. It is
not asserted here that there is not a collapsed state of
the system with energy lower than the ground state
found by this method. The following calculation in any
event will serve to illustrate the preceding method.

We consider a volume V containing T~ bosons with
a positive charge q~ and X2 bosons with a negative
charge g2. The case of a mixture of two different types
of bosons with charges of the same sign, neutralized

by a uniform background charge is essentially identical
with this. Assuming the particles to be spinless and
assuming only two-body Coulomb interactions, the
Hamiltonian in second quantized representation is

H =Q Lti(k)a,+(k)ai(k)+t2(k) a2+(k)a2(k) j
+ (1/2 V) Q (gii(k) ai+(k"—k) a i+(k'+ k)

&& ai(k")ai(k')

PU+P2tU= X,

U 'gU=),
+g22(k)a2 (k k)a2 (k +k)a2(k )a2(k )

27
+2g,2(k)a2+(k" —k)ai+(k'+k)a2(k")ai(k')), (30)

Thus,

Q 2t,;Usa =+ &;; &;2&2= U;2&2.
1

(2S)
where

t (k) =A2k2/2m;

gg(k) =42rq, q;/k2, (31)
Thus, the columns of the matrix U (if it exists) are
linearly independent and orthogonal eigenvec. tors of the
matrix r„and the diagonal elements of X are the asso-
ciated eigenvalues. Thus, a solution to the problem
exists and can be found if there exist 2v linearly inde-
pendent orthogonal eigenvectors of the matrix g. At
present we have not been able to determine the con-
ditions for the existence of such a set of eigenvectors.

If a solution exists one may then, using Eq. (26) or
dehning

A (k)=—I' (k)=—I'+,+(—k),

and

~tl+V mal y g CL+V gtl ~

HI, PX~+P;,2t, gX(+Z2'—— (32)

Using the commutation properties of the boson oper-
ators and the neutrality condition (qilVi+q2%2 ——0), it
is easily seen that the k=0 term vanishes.

Introducing the X notation and making the
Boguliubov approximations for both species yields the
following partial Hamiltonian:
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with

E2' ———2(tl(k)+221'gll(k)+t2(k)+222'g22(k)) ) (33)

and
lim 2

—
(k) —1 A2k2/22122.

= +-2, o+(k).

The transformed partial Hamiltonian is vow

(36)

&2=Ko+ ~+t3»
~2+~ll 1 1 1+~21 2 l 2 ~BI 8 1 8

—X4V4+ Y4. (37)

Again taking cognizance of the commutation properties
of the I"s and also ordering the X's such that the I"s
satisfy Eq. (26) we find

and the lt matrix is given. by (15) with

f,, (~k) =f„(~k)=f,,'(~k) =g,, (k). (34)

The secular equation (28) for this case is

4~ [tl +t2 +2t1221 gll+2t2N2 g22]

+lo[tl t2 +2tl t2222 g22+2tlt2 211 gll] o. (35)

This biquadratic equation is easily solved for the four
) I, with the result

& 2 ( 2 [tl +t2 + 2(tl221 gll+t2222 g22)]

+2 ([tl t2 +2(t1221 gll t2222 g22)]

y 16tlt2221'222'g12')'t') '"

Here there is no energy gap and the energy-momentum
relationship is that characteristic of free particles.
Algebraic complexity prohibits further analysis of these
excitations. More insight into their character can be
gained in the following more specific case.

or
q,y, )+q2(X2&=O,

(42)

q.(¹'&+qX '(k) (k)&+q.(¹')
+q2(p a2+(k)a2(k)&=o.

The fact that initially a 6xed total number of particles
were considered to be in the box now takes the form

THE SYMMETRICAL TWO SPECIES
NEUTRAL CHARGED GAS

We consider here the same system as in the preceding
section where it is now speci6ed that the two species
of bosons have equal masses and equal, but opposite
charges. Since the number of particles is not conserved
in the Boguliubov approximation the neutrality con-
dition takes the form

H2=Z2 +22 +24 +22 (Vl Fl+l 2I 2 )
+-2, o (I'2+I'2+ I'41'4+) (N'1&+(¹&=constant,

orand

a=p (z,oy-,+y2o2+,+~,+~,+;~2+~2) . (3g) Pl')+&2 ~1'(k)~1(k))+&¹'&

+(g a2+(k)422(k)) = constant.

(43)

The transformation matrix could be found in accordance
with the procedure described in the preceding section.
This however proves quite cumbersome algebraically
and will not be done here.

It is interesting to note the forms of the pseudo-
particle excitation energies in the limit of very small
and very large momentum. (1V ')=(E ') (44)

By letting ¹o=/lo+141 in the Hamiltonian and calcu-
lating the quantities above it can easily be seen that
the only way of satisfying these conditions is to have

The preceding calculation will therefore be considered
with the additional conditions

(221 ql 222 q2
lim o+(k) —+ (42rk2) 1&2~ +k~

2121 2122

and ng'= n2'= n'.
(4O) The eigenvalues now take the much simpler formlim o+ (k) —+ ft2k2/22rl l.

2121——2222 [and therefore tl(k) = t2(k) = t],
A3 221O P42222+222O 2222212—

ql ———
q2 [and therefore gll(k) = —

g12 (k) =g22(k) =g],
16(2r)"'(22212l42)'" (n,oqp2222+222oq 2212,)2"

This is the plasma type excitation, exhibiting an energy
gap and going over, asymptotically for large mo-
mentum, into the normal energy-momentum relation.

For the second type of excitation we 6nd

X= +2'{t2+2t22og&2t22og)'"= +-'o~

and the ground-state energy is

Uo= -', Q [(t +4t22'g)" (t+222'g)]. —
lt:&0

(45)

(46)

A2k2 221qp2121+222q222222 '"
2(22212222) '-22lql 2122+ 222q2 2211-

In this case the algebra involved in carrying out the
procedure for explicitly obtaining the transformation
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matrix is greatly simplified, with the result

A v2/2 B —0

—A K/2 B O

0 A v2/2

0 —A v2/2.

(47)

and
l&2)= 2 (-" (h) 1&2(k))

(56)

density and of the charge density in a wave packet
composed of superpositions of states of various numbers
of the two types of excitations with a single momentum.
Such wave packets will be given by

lei)= 2 (=. (h)lli(k))

]+242t)g+ g+ /+ 242og g+— n2(k)

p=P+(r)f(r), (57)and thus the I' operators can now be expressed in
terms of the original operators. The result is or for a composite system

4&+ 4~+ where Ak is the momentum of the quasiparticle and the
C„(A,) are the weighting factors for the various states

From the commutation relations it is easily shown;n the distribution
that The number-density operator is given in terms of the

U—'=PU+P, field operators by

Fi——A (Xi X2)+B(X—2 X4), —
I'2 ——V2/2 (Xi+X2),
F'2 ——B(Xi—X2)+A (X2—X4),
F'4 ——K2/2 (X2+X4) .

u=Z 4-+(~)f-(r) (58)

(50) where p(r) destroys a particle at the point r.
For a two-component system the mass and charge

densities are given by
Obviously, as was arranged,

F'4+(—k) = I'2(k),

I'2+(—k) = Fi(k) .
(51) and

P--=Z mA-+(~)0-(~),

Peherge P qadi'a (&)4'a(&) ~

(59)

(60)

The partial Hamiltonian is

&2=&h'+ 2 ~++2 g + 2 g+ (I'i+I'2+ I'2I'2+)
+-2'g (F2+I'2+ Y4V4+) (52)

and, using (51) or (29), |t ( ) =Z (k) U, ( ) (61)

To obtain the second quantized representation of these
operators we expand the field operators as follows:

or

H=Q L(Ett +26 +24 )+4 Fl Pl+4 V2 V2j

H=g $(Eh'+-2g++-2g )+g+Ai+Ai+4 A2+A2j.

where the Ut, (r)'s form a complete set of single-
particle wave functions. The a (k)'s are the usual

(53) destruction operators. In particular we may choose the
U's to be plane waves in which case we find

4+()4()=Z +(k') (k) (62)
The asymptotic forms of the energy-momentum

relationships for the pseudoparticles are now quite
simple:

p8~rPq"
»m g+(k) ~ @ql I +I k4,

k 2Ã ) (16(22rt2'q'2222)'"

A2k2

lim g+(k) ~
Ih-+(O 2'
(the plasma-type excitation relations),

If Aevi, is the energy of a single quasiparticle of
momentum k, then the time evolution of an eigenstate
corresponding to the excitation of e such quasiparticles
is given by

I (k, r))=l (k,o)) -'""'
I

22 (k))& teaet—(63)

It is now a simple matter to calculate the mass and
charge density expectation values in states composed
of superpositions of such wave functions. The results,
for rP))e, are

A2k2

for all k (free particle) . (55)

In order to gain some insight into the nature of these
excitations consider the expectation values of the mass

(Alt -...I
yi)=222',

(4'iI pe»rgelg'i)-cos(kr —~tt+tt),

Qgl p .„I/2)—242' cos(kr —~2/+/),

Q2I Pehergel 4'2)=o

(64)
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(The constants of proportionality and the phase
angle g depend on the chosen C„'s.) Thus, the plasma-
type excitations consist of oscillations in charge density,
while the free-particle excitations consist of mass-den-
sity oscillations.

A similar interpretation arises from calculations of
the transition probabilities between the ground state
and states with one of the two types of pseudoparticles.
Again it is found that

(oi p..„ik,)=0,
(0~p ~P )~& (ttr —wht)

(0
~ p ~

P )~et(ttr —ttht)

(0
~
pchsrge

~
tt 2)=o t

(65)

where
~
k;) denotes a state with one pseudoparticle of

type i with momentum k and (0 ~, of course, corresponds
to the state with no pseudoparticles present. Thus,
excitations of the first type could be induced by an
electromagnetic 6eld and excitations of the second type
by a gravitational 6eld.

In order that the Soguliubov approximations be
applicable the number of particles in excited states
must be a small fraction of the total number of particles

or
(N N—p/N p) =(n —no/no)(&1 (66)

for both species of bosons.
In both cases this reduces to

XSp
8'k'dk&q|, (67)

where 8 is given by Eq. (48).
This integral corresponds to that of Foldy' if his sp

is replaced by 2ep. Thus,

where
(n —np/np) = 2'"Qr, p, (6g)

Q = 1.905,

r p ——(3/4')"'Lmg'/k'(2np)'"g, (69)

and again the approximations are valid at high densities.
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Verdet Constant of the "Active Medium" in a Laser Cavity
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It is shown that the frequency of the intensity modulation observed when the output of a gas laser in a
homogeneous axial magnetic 6eld is veiwed through a polarizer is simply related to the Verdet constant of
the "active medium. "This method is used to determine the Verdet constant of "active" neon at 0.633 p. A
value of 5.9&(10 7 rad/cm-Oe is obtained. Theoretical expressions for the Verdet constant of a dilute mona-
tomic gas at a frequency close to the center of a Doppler-broadened line are derived for the three allowed
transitions, QJ=O and DJ=&1.The results of the experiment and the theory are used to estimate the
threshold values of the absorption coeKcient and the population inversion density in the present case.

I. INTRODUCTION

'ORE than a century ago Michael Faraday dis-
covered the e6ect which today bears his name.

He observed that when plane-polarized light is passed
through matter which has been placed in a homogeneous
longitudinal magnetic field, the plane of polarization of
the emergent light is rotated through some angle 0 with
respect to the incident beam. The amount of rotation
per unit field strength per unit optical path length is
commonly referred to as the Verdet constant V.

Any optical activity exhibited by a medium, be it

this magnetically induced type or its natural counter-
part, is indicative of a nonzero value of the quantity
n„(v)—nt(v), where n, (v) and nt(v) are the indices of
refraction of the medium for right and left circularly
polarized light of frequency p, respectively. In terms of
8, the optical path length d, and the vacuum speed of
light c, we may write for n„(v)—nt(v)

n, (v) —nt(v) = (c/n-v) (8/d),

and in terms of V and the magnitude of the longitudinal


