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Study of the Shubnikov-de Haas Effect. Determination of the
Fermi Surfaces in Graphite
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Measurements of the oscillatory magnetoresistance of a high-quality graphite single crystal were made
for all angles 8 between the magnetic field and the c axis, for magnetic fields up to 24 kG, and for tempera-
tures from 1.22 to 4.22'K. The results were analyzed by a least-squares fitting to a generalized Landau
formula. Oscillations due to electrons were observed for all orientations (including 8J c,where the amplitude
dropped by a factor 10'), proving that the electron Fermi surfaces are closed. Although oscillations due to
holes were not observed beyond 8 84', indirect arguments show that the hole Fermi surfaces are also closed.
Both electron and hole surfaces are elongated along the c axis and have anisotropy ratios of 12.1+1.4 and
about 17, respectively. The electron surface is approximately ellipsoidal, whereas the hole surface is similar
except for extended ends giving it a diamond-like shape. The results are consistent with a moderate degree
of trigonal asymmetry about the c axis. Comparison between the electron density found from the volume of
the electron Fermi surfaces and that determined previously from the nonoscillatory galvanomagnetic data
confirms the theoretical prediction that there are four electron Fermi surfaces in the Brillouin zone. More
indirect arguments show that there are two hole surfaces. Consideration of the size and location of these
surfaces along the six zone edges parallel to the c axis leads to a new determination of 4 —0.12 eV for the
band parameter which represents the diRerence of potential between the two types of atomic sites in the
graphite lattice. Analysis of the temperature and magnetic field dependence of the oscillatory amplitude
yields e&ective mass values in the basal plane of (0.039+0.001)mo for electrons and (0.057&0.002)me for
holes. These masses show an orientation dependence that is consistent with the derived Fermi surface
anisotropies. The large amplitude and asymmetric shape of the oscillations in the magnetoconductivity,
measured for H~(e at 1.26 and 4.22'K, are accurately described by the theory of Adams and Holstein. How-
ever, there is an unexplained monotonic variation with magnetic field in the total magnetoconductivity. The
effective change in temperature due to collision broadening fAhT is about 5 times greater than that estimated
from the conductivity relaxation time. This discrepancy in 0 T is qualitatively explained and is related di-
rectly to the fact, established from the data of Berlincourt and Steele, that the d, T found from magnetoresist-
ance oscillations is greater than that found from susceptibility oscillations on the same sample.

I. INTRODUCTION

t 'HE Shubnikov-de Haas effect, ' an oscillatory de-
pendence of the electrical resistivity on the mag-

netic field, is directly related to the de Haas-van Alphen
effect. Both are produced by the oscillation of the den-
sity of states at the Fermi level caused by the quantiza-
tion of electron energy levels in the presence of a mag-
netic field. '' The oscillations are periodic in inverse
field and the period I' is related to the extreme cross
section of the Fermi surface A perpendicular to the
applied magnetic field by the Onsager4-Lifshitz' relation

P= 2s.ejcl'tA

The period, therefore, depends upon the relative orien-
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tation of the magnetic field with respect to the crystallo-
graphic axes so that the shape of the Fermi surface may
be deduced from such an orientation study. Although
there has been extensive work determining Fermi sur-
faces using the de Haas-van Alphen effect, ' somewhat
less effort' has been spent using the Shubnikov-de Haas
effect for this purpose.

The present investigation is a continuation of pre-
vious work' on the oscillatory galvanomagnetic effects
in high-quality graphite single crystals at 4.2'K with
the magnetic Geld parallel to the hexagonal c axis. This
investigation represents the first study of the entire
highly anisotropic Fermi surfaces in graphite. The study
was extended to all angles between the magnetic Geld
H and the c axis (defined as 8) in the temperature range
from 1,22 to 4.22'K. Oscillations were observed at all
values of 8, including the most critical orientation of H
perpendicular to c, where the amplitude of the oscilla-
tions was extremely small. In fact, the principal reason
why the magnetoresistance was used in this study was

' D. Shoenberg, Phil. Trans. Roy. Soc. London A245, 1 (1952)
7 See literature cited in Ref. 8 and in A. H. Kahn and H. P. R.

Frederikse, Solid State Physics (Academic Press, Inc. , New York,
1959), Vol. IX, p. 257.

s D. E. Soule, Phys. Rev. 112, 708 (1958).
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that it afforded a very sensitive and accurate method
for observing the oscillations at all orientations.

The determination of the Fermi surface shape in
graphite has added importance because it has been the
subject of controversy. The de Haas-van Alphen effect
showed two periods. ' As all the measurements were for
small 8, two interpretations of the results were possible:
(1) The periods correspond to the maximum and mini-
mum cross sections of one surface which is open in the
direction of the c axis, 4' or (2) the periods correspond
to the maximum cross sections of two closed surfaces
which are elongated along the c axis. ' "Both interpreta-
tions were given theoretical support. The Sloncewski-
Weiss modeir' (hereafter referred to as SW), which ex-
presses the most general behavior of the energy in the
neighborhood of the Fermi level, can give either possi-
bility (1) or (2) by a suitable choice of parameters.
Haering and Wallace" reasoned that the observed value
of the steady magnetic susceptibility could be under-
stood only if the main resonance integral between planes
y& were very small ((0.005 eV). This assumption, to-
gether with the values of the de Haas-van Alphen
periods, led to interpretation (1).Haering and Wallace
obtained agreement with Kinchin's measured Hall co-
efficient, "but they could not account for later galvano-
magnetic" and cyclotron resonance" measurements
which indicated that both electrons and holes were
present. Further, they did not obtain agreement with
the measured de Haas-van Alphen effective masses. ~

On the other hand, a choice of parameters based on
interpretation (2) could account for both the de Haas-
van Alphen periods and masses. " This work led to
theoretical Fermi surface anisotropy ratios (ratio of
length in the c direction to width in the a direction) in
the range 11 to 13. Further agreement with this view
was obtained by an analysis of the cyclotron resonance'
and the nonoscillatory galvanomagnetic results. "'7

More recently it has been shown that the steady mag-
netic susceptibility can also be explained by using inter-
pretation (2)." From the cyclotron resonance results,
the electron was found to have a smaller effective mass
than the hole. From the de Haas-van Alphen type re-
sults, the oscillatory term with the largest period was
associated with the smaller mass, thereby identifying
the Fermi surface with the smallest cross section as that
due to electrons.

Since the above arguments were indirect, it was felt
important to Inake a direct experimental determination

' D. Shoenberg, Ref. 5, p. 259."J.W. McClure, Phys. Rev. 108, 612 (1957)."J.C. Slonczewski and P. R. Weiss, Phys. Rev. 109, 272 (1958).
'~ R. R. Haering and P. R. Wallace, Phys. Chem. Solids 3, 253

(1957).
's G. H. Kinchin, Proc. Roy. Soc. (London) A217, 9 (1953).
'4 D. E. Soule, Phys. Rev. 112, 698 (1958)."I.K. Gait, W. A. Yager, and H. W. Dail, Phys. Rev. 103.

1586 (1956)."P.N. Nozieres, Phys. Rev. 109, 1510 (1958).
'~ I. W. McClure, Phys. Rev. 112, 715 (1958).
's J. W. McClure, Phys. Rev. 119, 606 (1960).

of the Fermi surface shape by means of the Shubnikov-de
Haas effect. A discussion of this work constitutes the
first part of the paper. As the observed oscillatory struc-
ture was complicated by the interference of the two
components (electron and hole), a least-squares fitting
to a two-carrier "generalized Landau formula" was per-
formed on an electronic computer. At high 0, the elec-
tron term could be seen alone, since the hole term was
damped below the detectable level. The results dis-
cussed in Sec. III show that the electron and hole sur-
faces are closed, proving interpretation (2). The aniso-

tropy ratios were found to be 12.1 and approximately 17,
respectively. This information supports the previous
conclusion, based upon the equality of carrier concen-
tration' "' and effective mass evaluation that the
carriers contributing to the oscillatory component of
these galvanomagnetic effects represent the major part
of the Fermi surfaces. The shape of the electron sur-
face is approximately ellipsoidal whereas that of the
hole is roughly "diamond-shaped. "

Not only does the extension of the range of the experi-
ment provide the first direct determination of the
Fermi surface shape in graphite, but it also pro-
vides some of the largest and most asymmetrical
Shubnikov-de Haas oscillations observed to date. Thus,
a strong test is provided for recent theories of the effect,
which constitutes the second part of the paper. A de-
tailed study was made of the magnetoconductivity
tensor at 1.26 and 4.22'K, for H parallel to c. Although
the Onsager-Lifshitz relation is satisfactory for the
period behavior, and the susceptibility oscillations are
well described by the Landau' and Lifshitz-Kosevitch"
theories, there has been disagreement between theories
in the literature concerning the amplitude and shape of
the magnetoresistivity oscillations. In addition to the
period variation, all theories also agree on the thermal
damping factor which describes the dependence of the
amplitude of the oscillation upon temperature. This
factor, which was 6rst derived by Landau, is

0=I/sinhu, (1.2)

where N=27r'kT/hE, T is the temperature and AE
=AeH/risec, the spacing between energy levels, where
m~ here is an orbital effective mass. The early calcula-
tions by Titeica, Davydov and Pomeranchuk, and
Zilberman" used an intuitive diffusion-like method. Al-

though later calculations by density matrix methods23 "
gave results that disagreed with these, a more rigorous
density matrix calculation by Adams and Holstein"

' I. M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor.
Fiz. 29, 730 (1955) [English transl. : Soviet Phys. —JETP 2, 636
(1956)j."S.Titeica, Ann. Physik 22, 129 (1935)."3.Davydov and I. Pomeranchuk, J. Phys. (USSR) 2, 147
(1940).

"G. E. Zilberman, Zh. Eksperim. i Teor. Fiz. 29, 762 (1955)
[English transL: Soviet Phys. —JETP 2, 650 (1956)].

ss P. N. Argyres, Phys. Rev. 109, 1115 (1958).
24 I. M. Lifshitz, Phys. Chem. Solids 4, 11 (1958)."E.N. Adams and T. D. Holstein, Phys. Chem. Solids 10, 254

(1959).
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(hereafter referred to as AH) justified Titeica's method.
At present, a number of calculatioos by different
methods" " also agree with Titeica's results. There is
still some variation in the final formulas, however, de-
pending upon the treatment of collision broadening"
and the calculation of the transition probabilities. "The
AH formulation is the most complete and most easily
compared with experiment. In Sec. IV we show that
their formulas give a very good description of the
oscillations.

Although one might, in principle, apply the AH
formulas to the total magnetoconductivity at all
orientations, in this case there are considerable experi-
mental and theoretical complications. Consequently,
we applied the Landau relation to the magnetoresis-
tivity data as a function of orientation. This method
was satisfactory because our principal interest was in
the determination of the individual electron and hole
periods. The relationship between the two methods of
analysis was established at the orientation 8=0'. This

arrangement allowed a determination of the orbital
effective masses from the temperature and magnetic
6eld dependences of the oscillatory amplitudes for all
orientations. The variations of the effective mass with
orientation could be qualitatively correlated with the
period behavior. The results of this analysis are also
given in Sec. III.

Finally, the results are summarized and conclusions
are presented in Sec. V.

II. EXPERIMENTAL PROCEDURE

The purified graphite single crystal used in this
study, EP-14, was described previously. "Also, the dc
methods used in measuring the galvanornagnetic pro-
perties were essentially the same and the current,
usually about 1 rnA except at the highest values of 8,
was always directed along the basal plane perpendicular
to the a axis. The usual magnetic field ranged from 4 to
24 kG and the temperature range was extended from
4.22 down to 1.22'K by pumping over the liquid helium
with a Kinney KDH-130 pump. Mercury and octoil
"S"manometers were used for the vapor pressure de-
termination and the error- in the temperature was con-
sidered to be &0.01'K when operating below the lambda
point. A Moseley X-Y recorder was employed to record
the oscillatory curves, where the I axis was propor-
tional- to the voltage drop due to the magnetoresistance
V„or the Hall voltage V~, and the X axis was pro-
portional to the magnetic 6eld II, measured by a rotating

26R. Kubo, H. Hasegawa, and N. Hashitsume, J. Phys. Soc.
Japan 14, 56 (1959).

'~ P. N. Argyres and L. M. Roth, Phys. Chem. Solids 12, 89
(1959)."P.N. Argyres, Phys. Rev. 117, 315 (1960).

'~A. M. Kosevich and V. V. Andreev, Zh. Eksperim. i Teor.
Fiz. 38, 882 (1960) LEnglish transl. : Soviet Phys. —JETP 11, 637
(1960)).

'0V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 38, 1304 (1960)
/English transl. :Soviet Phys. —JETP 11, 941 (1960)).

s' A. H. Kahn, Phys. Rev. 119, 1189 (1960).
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FIG. 1. Relative orientation of crystallographic axes with re-
spect to the magnetic field 8 and the current I. The transverse
magnetic field rotation scheme consists of rotating 8 from a direc-
tion parallel to L0001) to the direction L2110), keeping the
aximuthal angle qb=90'; whereas in the transverse-to-longitudinal
rotation scheme, H starts from the same initial position and ro-
tates to the direction L0110), keeping &=0'.

coil Ruxmeter. These axes were calibrated against a
Leeds and Xorthrup K-2 potentiometer and proton
resonance, respectively. During the course of the study,
over 180 curves were recorded.

The period as a function of orientation was studied by
using two magnetic field rotation schemes (see Fig. 1).
The first consists of rotating H from a direction parallel
to the c axis L0001j, to the current direction I L0110j,
keeping the azimuthal angle &=0. This is called the
transverse-to-longitudinal rotation scheme. Starting
from the same initial direction in the second or trans-
verse rotation scheme, H is rotated down to the a axis
(2110],remaining always transverse keeping P= 90'. In
this investigation, the emphasis was on the large varia-
tion of the periods observed while rotating H through
the angle 8. Of secondary interest was the variation ob-
tained while rotating H azimuthally through the angle

g about the c axis for a particular value of 8. This aspect
will be discussed at more length in the next section.

The mapping of the Fermi surface can be carried out
with the magnetoresistance as with the susceptibility
for although the nonoscillatory component depends on
the rotation scheme, the oscillatory period is inde-
pendent of the direction of I, depending only on the
orientation of H with respect to the crystallographic
axes.

Locating accurately the positiori of 8=90' was im-

portant in the process of running each set of orientation
curves on the recorder. While previously the maximum
of the magnetoresistance as a function of 0 occurring
at 0' was used as the criterion for alignment of H parallel
to the c axis, it was found that the minimum at 90'
in the nonoscillatory component proved to be far
superior, being extremely sharp at low temperatures.
The precision error using this procedure could be kept
&0.2'. The problem then remained to relate this ob-
served minimum to the actual alignment of H with re-

spect to the crystallographic axes for the Shubnikov-de
Haas effect. This can be demonstrated by considering
the two magnetic field rotation schemes used where, for
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(i 1rse- o- ongitu inal rotation occurs when 8 is
scheme, the position of the eff t'

is actually parallel to the basal plane.
e e ec ive minimum in the As a result, for the isotro ic

nonoscillatory longitudinal magnetore t
or e iso ropic case the overall alignment

necessarily exactly the same as the minim b
magne oresistance is not error for this rotation scheme would be &0.3 . How-

pyo grpme as e minimum observed ever, the high anisotro of ra hi
componen, since the still further. In the transvers

fo o tth t o hofH~~I h, w ereas enter even in principle due to the fact that the non-
oscillatory magnetoresistance minimum occurs when H
is parallel to the basal plane which is identical to the case

e of the oscillatory component. Accordingly, because of

20- 0
t is factor and an additional advantage due to the

T=4.22 K

geometrical restriction of the sam le t
D30' ewar, the latter rotation scheme was used for most of
the orientation studies.

Another consideration, of course, is that with such a

~ l4- e icate crystal mounting, the Lorentz force might be
sufhcient to shift the crystal. This force would be of
particular importance for the 8=90' case. However,

& lO-
5 not only is the maximum force about 25 dyn, but its

K
direction is such as to shift the crystal toward or away

8- rom the quartz mounting plate rather than to apply an

6-
unwanted torque about the crystal's transverse or ion i-
tudinal axis resulting in an erroneous evaluat' f g.loi1 0

4- e proof of these statements lies in the behavior of the
actual crystal in sitlo, which is considered further in

BO'

90'
One of the main problems in this study resulting from

graphite's extreme anisotropy was the rapid decrease
o the oscillatory amplitude as the crystal was rotated
toward 8=90'. In fact, whether one could detect oscilla-
tions at all at this orientation was a critical factor in

b
determining whether the Fermi surface was open or
closed. Consequently, though the oscillations could be
detected down to about 83' by conventional means, an

I6
auxiliary method was required to extend the detecta-
bility from 83 to 90'. lt was found that the magnetic

e d dependence of the Hall voltage of an InSb crystal
$97o p aced in the magnetic 6eld in close proximity to the

graphite crystal and stabilized at ice temperature had a

58.3
behavior similar to the low-temperature nono ll tsci a ory
magnetoresistance component of the graphite. This de-
vice was then used as a bucking voltage source to com-

6&.5 pensate for almost all of the latter's nonoscillatory signal.
The difference could then be amplified and presented on
t e recorder. By this means, the sensitivity could be en-

4-
hanced by at least two orders of magnitude and small
voltage differences of (10 ~ V could be detected. Kith

2"
this arrangement, oscillations were seen at 8=90' with a
signal-to-noise ratio of about 3:1.
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FiG. 2. Typical direct X-Y recorder traces of the meas
( oporto al to the a etoro e magnetoresistance) versus magnetic

curves a) aud at 1.22'K (curves b~ for vari
orientation angles 8 from 0 t 90' Th '

e ha
op~algzed for a current of 10 mA.

o . e ordinate scale ha

III. PERIOD AND AMPLITUDE
ORIENTATION BEHAVIOR

Typical magnetoresistance curves versus magnetic
field are s&ohown in Fig. 2. They were taken at orientation
angles 8 from 0 to 90' and at temperatures of 4.22 d

. The increased amplitude and enhanced struc-
ture of the oscillations at the lower temperature is
clearly evident. Also, it will be noted that the amplitude
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falls off rapidly with increasing 8. This fact is shown
clearly in Fig. 3. This very strong dependence is due to
graphite's extreme orbital mass anisotropy causing a
sharp decrease in the thermal damping factor of Eq.
(1.2). Experimentally, this condition posed a severe
problem of detection at high values of |t, as discussed in
the previous section.

Another principal feature of the curves in Fig. 2 is
the interference structure of two oscillatory terms, one
due to majority electrons and the other to majority
holes. Since the ratio of their periods is about 4. , the
separation of terms is a tedious procedure. For this
reason, and because we wanted to extract additional
information, an IBM 7090 was programmed to make a
least-squares fit of the experimental data to a "general-
ized Landau relation. "This formula gives for the oscil-
latory term due to the ith carrier

where s;= 1/P;H, A, =u;AT;/'T= 2ir'khT, /AE;, and
where u and 0 are defined by Eq. (1.2). The quantity
~T is the effective change in temperature due to col-
lision broadening" given by

AT= II/(mkr, .i), (3.2)

where r„i is the collision time. The formula coincides
with the simple susceptibility theory' if e= ——,',
W;(r) =W, (1)r '" cos(r~m, */mo) and f;(r) = (r+f)~.
The generalization consists of letting n, the H/"'s, and
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FIG. 3. Observed dependence of the oscillatory amplitude upon
orientation at 1.24'K and 23 ko, normalized for a current of
10 mA. The arrow at 8=55' represents the approximate limit of
Shoenberg's observations.

32 R. B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952).

G;(r) =II"P W, (r)Q(ru;)
I'=1

)&exp(—Xg) cos[2xrs; —P;(r)j, (3.1)

the f's have arbitrary values. This formula then can
approximately reproduce most of the results of the
various theories of the Shubnikov-de Haas effect. The
computer program represents the effects of two carriers,
including the fundamental and 6rst harmonic (r= 1,2)
of each. For fixed e and d T's, the program varied the
P's, Iu*'s, W's, and ip's to obtain the least value of the
weighted sum of squares of deviations between the
theory and experiment. The manner in which the values
of e and the AT's were chosen will be discussed later.

One of the important practical problems in the fitting
concerned the statistical weighting of the data. If Eq.
(3.1) described the phenomena exactly, the deviations
would be expected to be random; however, the best re-
production of the positions of the maxima and minima
was obtained when the average deviations were made
proportional to the average amplitude of the oscillations.

The least-squares analysis can be applied either to the
oscillations in the measured resistivity or to those of
the measured conductivity. For purposes of analysis,
the latter is preferred, since it more closely approxi-
mates the magnetoconductivity, for which the theory
discussed in Sec. IV applies. The set of curves shown in
Fig. 4(a) shows the oscillations in the resistivity for the
transverse-to-longitudinal rotation scheme at 4.2'K.
The shift to higher fields with increasing 8 of a particular
"destructive interference region" is indicated by arrows.
In Fig. 4(b) are shown the oscillations in the conduc-
tivity for the transverse rotation scheme at 1.23'K,
where the increased amplitude and structure of the
oscillations are evident. Failure of the theory to fit
these curves exactly is due mainly to the fact that the
theoretical expression contains only two terms of the
harmonic series, whereas more terms are important at
the lower temperature.

A second method for isolating the electron term in-
volves an analysis of the "low-field" region. ' Equations
(1.2) and (3.1) show that the oscillatory amplitude de-
creases with decreasing magnetic field and with in-
creasing effective mass. The hole mass is larger than the
electron mass (about twice at 8=0'), causing the rate
of damping of its term with decreasing H to be greater
than for the electron term. At a su%ciently low mag-
netic field, only the electron term remains. Because of
the increase of the effective masses with increasing g,
the upper limit of this "low-field" region progresses to
higher fields, covering an ever larger portion of the ob-
served field region, as seen in Fig. 4. Eventually at
8&84', only the electron term could be observed re-
liably, although traces of interference structure were
observed in some cases as high as 87'. A typical low-
field curve is given in Fig. 5 showing the single electron
term. By observing just this "low-field" region, the
electron period was also determined at lower values of
8 and was found to be in agreement with the results of
the least-squares analysis. The derived periods are
within 1.7% throughout the region of comparison.
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between 1.2 and 4.2'K are included. Also, a comparison
is made between the least-squares value and those found
b the "low-field" method. This figure demonstrates they e ow-
extreme anisotropy of graphite where, for instance, the
electron period drops from (2.07%0.04))&10 s G ' at
8=0' to (0.15+0.03)X10 ' G ' at 90'. The very exis-
tence of an oscillatory term for H in the basal plane
(electron orbit in a plane containing the c axis) proves
that the electron Fermi surface is closed. On the other
hand, since the hole period which at 8 =0' is (1.51+0.03)
)&10 ' 6 ' was not observed at 90', we cannot make so
strong a statement about the hole Fermi surface. How-
ever it will be shown below that it also is closed.
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A. Electron Fermi Surface

It is possible to analyze the shape of the Fermi sur-
faces in some detail since the relative period values are
of sufhcient precision. The electron Fermi surface to a
fi t approximation is an ellipsoid of revolution aboutrs ap

i Xthe c axis. To determine the electron anisotropy ratio
for the best ellipsoid, the measured Pr(8) values in the
range between 80 and 100' were used. For each Pr(8),
a X~ was calculated giving an average electron Fermi
surface anisotropy of X&= 12.1&1.4, predicting a most
probable electron period at 8=90' of (0.17&0.02) && 10 '
G '. The solid curve in Fig. 6 is for a true ellipsoidal
Fermi surface with this anisotropy. To show this fit
more clearly, the deviation from the true ellipsoid is
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Fxo. 4. Oscillatory components of the magnetoresistivity for the
transverse-to-longitudinal magnetic field rotation scheme a
4.2'K (curves a) and of the measured conductivity (inverse re-
sistivity) for the transverse scheme at 1.2'K (curves b) for values
of 8 from 0 to 75'. The voltages (proportional to the resistivity)
are normalized for a current of 10 mA. The solid curves are fitted
by least-squares using the Landau relation Eq. (3.1).

40 4.4 4.8 5.2 5.6
IOs/H i~ sAuss-1

6.0

The over-all orientation behaviors of the individual
electron and hole periods are shown in Fig. 6. Data for
both rotation schemes and for eight temperatures

FiG. 5. Low-field oscillatory component of the magnetoresistance
versus inverse magnetic Geld at 8=83.1' and T = 1.25'K, normal-
ized for a current of 10 mA. The integer plot is linear showing the
absence of the hole term and gives a value of 3.04%0.07&&10 6

G ' for the electron period at this angle.



STUDY OF SHUHNI KOV —DE HAAS EFFECT

I I I l I I I I I I I I i I I
2.2 I

2.0

I.8

I.6

l.4
CO

CO
I.2

X

o I 0
X

CL

0.8

0.6

0.4

0.2

0 ' ' ' I

-50 -20 "IO 0
t I S t I I I I I

IO 20 50 40 50 60 70 80 90 I00 IIO

e IN DEGREES

FIG. 6. Over-all dependence of the electron and hole periods upon
orientation from 8= —30 to +113' for data taken in the range
1.2 to 4.2'K. Results from the transverse (open points) and the
transverse-to-longitudinal (closed points) magnetic Geld rotation
schemes are shown. These are subdivided into the results obtained
from the least-squares and the low-field analyses. The solid curves
represent the behavior of a Fermi surface having a true ellipsoidal
shape with an anisotropy ratio of I= 12.1.The dashed extrapola-
tion of the hole curve from 8=85 to 95' represents the behavior
that would be expected for a hole surface with the extended conical
tips (as shown in Fig. 8), and having an anisotropy ratio of 17.3.
The error limits, for the sake of clarity, are shown only in certain
representative regions; that is, the neighborhood of 8=90, at 55,
and at 0'.

given at the top of Fig. 7, showing it to be within +3%
over most of the range. Although there appears to be a
slight "dumbbell-like" protrusion ( 2.5%) occurring
at 0 between 25 and 60', its reality is doubtful consider-
ing the scatter of points, as well as being a negligible
effect on this highly elongated surface. Around 90', the
scatter is considerably larger ( 10%) precluding any
reliable statement about the exact shape of the actual
electron Fermi surface tip.

The variation of the Fermi surface shape about the
c axis was very dificult to resolve since the period be-
havior of these highly elongated surfaces approximates
the cylindrical behavior 3 cosa regardless of the
azimuthal angle g and the shape of the cross section of
the cylinder A. To obtain an approximate idea of the
behavior of the period due to trigonal anisotropy, let
us consider a rough model of the Fermi surface consisting
of two pyramids with equilateral triangular bases
placed back-to-back. The altitudes of the pyramids are
parallel to the c axis and are ten times the length of a
side of the base. The u axes are perpendicular to the
base sides. The difference in the maximum cross sections
cut by planes having perpendicular rotation axes cor-
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responding to the transverse and transverse-to-longi-
tudinal rotation schemes used experimentally is 2.5% at
0=60', 6.5% at 80', and 14% at 90'. The observed
period values for the two rotation schemes agreed to
within 1%, relatively independent of 0, over the
range for which they were compared, that is, out to
81' for the electron term and to 66' for the hole term.
These results, then, would allow a small degree of
trigonality, but somewhat less than that of the above
extreme model.

Although the actual shape of the electron Fermi sur-
face may differ some from the true ellipsoidal model, its
volume should be very nearly equal to that of the
ellipsoid. The carrier concentration E contained in the
Fermi surfaces is then related to the observed oscillatory
period by

Q(osc) = (z/3) (48/R'jsc)s& gQP(0) & (3 3)

where Q is the number of Fermi surfaces contained in
the Brillouin zone. Previous results'4'~ obtained using
the nonoscillatory galvanomagnetic data on the same
sample studied here gave an average value for the elec-

t s s s I I I s 0
0 lo 20 50 40 SO 60 70 80 So
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FIG. 7. Deviations of the electron and hole Fermi surfaces from
a cylindrical surface shape (two lower curves) and the deviation
of the electron Fermi surface from a true ellipsoidal surface shape
having an anisotropy ratio of 12.1 (upper curve). The deviation
from a cylinder is represented by P;(0) cos8/P;(8), where the P;
are measured periods for the ith type carrier. The curves represent
the behavior of an ellipsoidal Fermi surface having an anisotropy
ratio of X=12.1 (solid curve) and X=15 (dashed curve). The
deviation of the electron surface from an ellipsoid is given by
Pq (0)/Pq (8)r where r = Lcos~8+Xq ~ sin'87 'I, the normalized
radius vector to the ellipsoidal surface. The open points are indi-
vidual measured values, whereas the closed points represent an
average of 3 to 7 measured values.
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tron concentration of Er(nonosc) = (3.0+0.3)X 10"
cm '. If a value of Q=4 is choseti, then from Eq. (3.3),
cVr(osc)=(2.90+0.35)X10rs cm '. Such good agree-
ment is experimental proof that there are four electron
Fermi surfaces of each spin io the Brillouin zone. This
result agrees with the theoretical result predicted by the
parameterized SW model. ' 12,l:I-----

k, l

——l2.I ' l

B. Hole Fermi Surface

Although the hole oscillatory term could not be ob-
served reliably for 0 larger than 84', its Fermi surface
can be shown to be closed by the following arguments.
The lower curves in Fig. 7 show the deviation of both
the electron and hole surfaces from a cylinder. The ratio
Ps(0) cose/Ps(0) emphasizes the strong deviation of the
surface inward, indicating that the hole Fermi surface
is closed. In addition, the SW group-theoretical treat-
ment predicts that if the electron surface is closed, the
hole surface must also be closed.

As seen in Fig. 7, the hole period behavior can be
fitted fairly well over the range it was measured by an
ellipsoidal Fermi surface with an anisotropy ratio of 12,
essentially the same as the electron surface. In fact, the
ratio Ps/P& is remarkably constant" (0.730) with in-

creasing 0. In addition, assuming that the electron and
hole Fermi surfaces just 6t into the Brillouin zone, the
predicted hole surface anisotropy would be 12.3. Al-

though this agreement seems plausible and supports pre-
vious theoretical estimates" of the Fermi surface sizes,
the calculated value for 1Vs(osc) from Eq. (3.3), using
the theoretical values of Q=2, is 2.2X10rs cm '; well

below the previously determined" "value of Es (nonosc)
=(2.8+0.3)X10' cm '. A discussion for the validity
of assuming that there are two surfaces rather than three
in the zone will be presented in Sec. V.

Since the actual period data cover only about 60% of
the length of the hole Fermi surface, there is a reasonable
latitude for adjustment of the shape of the ends. And,
in view of the good agreement between the two types
of carrier densities found for electrons, we have con-
6dence in the nonoscillatory value for holes. Thus, the
reverse procedure is taken starting by equating Xs(osc)
to E&(nonosc). A simple ellipsoids, l surface satisfying
this requirement would have an anisotropy ratio of 15.
However, as shown in Fig. 7, the curve based on this
anisotropy lies well outside of the observed points.

A composite model for the hole Fermi surface that
overcomes the above diKculties to a large degree is one
whose central section fits the 12.1 to 1 ellipsoid out to
about 85' and which has a projection along k, to accom-
modate the additional volume. A simple conical pro-
jection is considered that extends tangentially from the
ellipsoid surface at 85'. This model gives a value of
Es(osc) = 2.4X10' cm ', reducing the discrepancy

3' In the present work each period was determined independ-
ently. In previous work (Refs. 6 and 8), Fourier analysis gave a
simple period ratio of ~3.

K'

ELECTRON HOLE

e 85O

Fzo. 8. Individual electron and hole Fermi surfaces determined
from the 8 variation. The electron surface has been completely
determined experimentally while the hole surface has been de-
termined experimentally to 0 85'. At 85' the proposed conical
tip joins tangentially the 12.1:1 ellipsoid (dashed curve) to give
an overall anisotropy ratio of 17.3. These surfaces are drawn to
scale with the dimension along kz equal to 29.3&(106 cm ' for the
electron surface and 49.2&(10' cm ' for the hole surface. The elec-
tron surface is centered at E' and the hole surface at E' as shown
in Fig. 13. Though the surfaces are drawn as figures of rotation
about kz with maximum radii r1 and r2, the possibility of a small
amount of trigonal asymmetry is discussed in the text.

with the Xs(nonosc) value to 14%, which may be reason-
able in the light of all of the uncertainties. This hole
surface has an anisotropy ratio of 17.3. Such a model
resembles that predicted by theoretical calculations
having an almost "diamond-shaped" Fermi surface. '4

It is worth pointing out that the theory predicts that the
departure from rotational symmetry about the c axis
is greater for the hole than for the electron surface and
this fact should have a bearing on these shape and
volume determinations. The individual derived Fermi
surfaces are shown in Fig. 8, where they are drawn to
scale to demonstrate the extreme anisotropies involved.

C. Orbital Masses

The computer results give effective orbital masses
determined from fitting the magnetic 6eld dependence
of the amplitude of the oscillations at a fixed tempera-
ture; called the "6eld dependence effective masses. "
Since it is assumed throughout, of course, that AT is in-
dependent of temperature, " the correct values of AT

'4 See Fig. 3 of D. E. Soule and J. W. McClure, Phys. Chem.
Solids 8, 29 (1959).

5 The zero-6eld resistivity (6&(10 ohm-cm) is independent of
temperature from 1.2 to 4.2'K.
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for each carrier are those for which the "6eld depend-
ence effective masses" are also temperature-independ-
ent. Actually, there was a scatter in the effective mass
values found (& 15%), so that the AT values were de-

termined by the requirement that there be no systematic
change of these masses with temperature. The hT values
obtained are 0.8'K for electrons and 0.6'K for holes
at all values of 0 that were analyzed. Although these AT
values depend on the choice of m, discussed in the next
section, the effective mass values are rather insensitive
to e.

An alternative method for finding the effective mass
uses the temperature dependence of the amplitude;
called the "temperature dependence effective mass. "
The effects of the two types of carriers had to be separ-
ated 6rst by calculating the amplitude of the funda-
mental due to each carrier at each temperature. The
magnetic field value was chosen in the middle of the
range; for, even if the field dependence of the amplitude
were incorrect, the average amplitude had to be nearly
correct in order to reproduce the experimental curves.
It is this fact which makes the "temperature depend-
ence effective mass" more reliable than the "field de-
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Fio. 9. Electron and hole effective orbital mass determinations
from the temperature dependence of the amplitude. The ordinate
is the amplitude of the fundamental oscillation in the inverse
magnetoresistivity, divided by the absolute temperature, for a
magnetic field of 11.1 kG parallel to the c axis. At each tempera-
ture, the points for each carrier were obtained from W; (1)/sinh(N),
I;=2v'ktm;"c/heH, where W;(1) and m;~ are the parameters for
the best fit of the field-dependent data ut that temperature. The field-
dependent Gts were to Eq. (3.1) with N= —1.2, and aT&=0.8'K
and AT& =0.6'K. The curves are given by 8',%inh(N;), but with
the temperature-independent values of 5'; and m;* adjusted to
give the best fit to the points. The best values of the eGective or-
bital masses are indicated on the graph. The uncertainties given
for the mass values represent the range of values for which a curve
of the type used could give a reasonable fit to the points.

Fn. 10. Dependence on orientation of the effective orbital
masses for electrons and holes, determined by two methods. The
open symbols denote the "temperature dependence masses, "
determined as explained in Fig. 9. The solid symbols denote the
average values for the "field dependence masses" determined by
least-squares at various temperatures. The error limits represent
the mean-square deviations. The values n= —1.5, hT& ——0.8'K
and AT& =0.6'K were used in the least-squares curve fits. The point
at 83.1' was determined directly from the field dependence of the
amplitude of the curve in Fig. 5. The dashed curves represent the
orientation dependence of the orbital masses for a cylindrical
Fermi surface parallel to the hexagonal axis. Up to 8=75', the
curves deviate less than 5% from those for an ellipsoid with an
anisotropy ratio of 12. The square symbol at 8=90' indicates the
value of the electron cyclotron mass m, * predicted from the mass
at 0=0' and the 12.1 anisotropy ratio.

pendence effective mass. "Figure 9 shows a typical plot
of the amplitude for the electron and hole terms versus
temperature at 0=0'.

Both types of effective masses as a function of orien-
tation are shown in Fig. 10, where the points determined
by the two methods agree to about 9% for electrons and
5% for holes. The dashed curves represent the behavior
of the effective mass for a cylindrical Fermi surface
which does not differ for 0&70' from that for an ellip-
soid with an anisotropy of 12 by more than the effective
mass error. With the assumption that the Fermi sur-
faces are true ellipsoids having energies quadratic in
wave number, the cyclotron mass becomes identical
to the orbital mass observed here and so mII /mg =X'
and m.*=(m„*m,*)'~', where m„*and m, *are the eGec-
tive masses parallel and perpendicular to the c axis and
m, * is the cyclotron effective mass for the case where
the magnetic field is perpendicular to the c axis. We
find m«*=5.7mo and m.~=0.47mo for electrons and
m«*= 14mo and m,*=0.9mo for holes. The value of m,*
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for electrons has also been plotted in Fig. 10, where an
extrapolation to the lower curve seems reasonable.

A. Adams-Holstein Theory

The results of AH apply to a simple electron-gas
model in the high magnetic 6eld limit. In this case, a
high magnetic field is one for which ~v))1, where
co=eH/m~c is the cyclotron resonance frequency and r
is the relaxation time. Furthermore, we use the results
of AH for point-impurity scattering (i.e., the potential
of each scattering center is given by a Dirac delta func-
tion). We shall discuss the validity of these approxima-
tions below. The diagonal magnetoconductivity is given

by AH as
0»=00i+~~i+~02 (4.1)

The quantity g-,i is the classical high-field magneto-
conductivity and is inversely proportional to the square
of the magnetic field. This quantity is expressed as
o,i=Pe'/ms*co'r, , where r, is the average relaxation
time, which does not depend upon the magnetic field.
The ~0-i and 60-~ are quantum corrections which de-
scribe the Shubnikov-de Haas oscillations. As Adams
and Holstein point out, ~a-~ is due to transitions between
the Landau level nearest the Fermi level and all other
Landau levels, whereas 60.2 is due to transitions within
the Landau level nearest the Fermi level. Except at very
high magnetic field strengths, Ao.~ dominates. In writing
expressions for these quantities, it is useful to define a
periodic "saw-tooth" function 5,

8=L+-', —s, 0&5&1, (4 2)

where s= 1//PH, and L is the largest integer which is
less than or equal to s ——,. For the absolute zero of tem-
perature and no collision broadening, AH find to a very
good approximation if s) 2:

60 i——(—',)s
—'/'O, F

602——(-', )s 'o, iF'

F—xg—1/2 (g+ i )1/2

(4.3a)

(4.3b)

(4.3c)

Note that F is a periodic function of s.
The effect of temperature is easily introduced if the

o-'s are expressed as a harmonic series, by multiplying
each term in the series by the factor Q. The Fourier
series for F is readily found, but that for F' does not
exist, due to the 8 ' singularity. In order to circumvent
this difficulty, AH introduced collision broadening. The
result of broadening F with a simple Lorentz function

IV. COMPARISON %'ITH THEORY

In this section, the AH theory" will be compared with
the experimental results for the magnetoconductivity
with the magnetic Geld parallel to the c axis (8=0'). The
relation will then be established to the generalized
Landau formula, which was used to analyze the mag-
netoresistivity at all orientations.

is given by

F= g (2r) '/'e ""cos(2~rb —~4m.)Q(ru), (4.4)
r=1

F'~M+ g e ""$C,sin2xr5+D, cos2mrl jQ(ru), (4.5a)
r=1

M = —-', ln(1 —e
—'")

Ci ——0, C„=-,'(~ 3r '/'), r)—1, —

e '" a+8,/(c+X)

(4.5b)

(4.5c)

D„=
2 (1+r)'"

(1+r+1/2X) '"+(1+1/2X) '/'

+2 ln
1+(1+r)"'

(4.5d)

"J.S. Dhillon and D. Shoenberg, Phil. Trans. Roy. Soc. I-ondon
A248, 1 (1955).

37 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge Vniversity Press, Cambridge, 1950), 4th ed. , p, 127.

where X and u are the same as in Eq. (3.1). One may
also write 'A=2m/cur. .i. The coeflicient (2r) '" may be
found by performing a Fourier series expansion of Kq.
(4.3c), neglecting contributions less than about two
percent of the coefficient. It has been obtained before
by using the Poisson summation formula. " In the
latter method, the coefficients are Fresnel integrals with
upper limits depending upon s. To obtain Eq. (4.4),
one must extend the upper limit to infinity. This con-
dition appears to imply that Eq. (4.4) is good only for
large s; but if one uses the asymptotic formulas for the
Fresnel integrals, cancellations are found so that the
error in (4.4) is less than 2% for s greater than 2. The
result also implies that the Landau formula for the
susceptibility' is good for s) 3~ (i.e., for magnetic fields

up to that of the last extremum), a fact which has pre-
viously been noted experimentally. " Equation (4.4)
agrees with AH, except for an error of a factor of two
in their paper. It also agrees with the result of
Zilberman" (who gave only the first term in the series),
with that of Skobov, "and with that of Kahn" (except
for a multiplicative factor).

We treat 60-2 differently than AH, who applied col-
lision broadening to F' and then found an approximate
harmonic series. An examination of the theory leads us
to believe that the density of states should be broadened
prior to working out the conductivity. In the present
case, this means that one should broaden F and then
square the result. To reduce the square of Eq. (4.4) to
a single harmonic series, it is necessary to perform some
intermediate sums. We obtained approximate formulas
for these sums by using the Euler-Maclarin sum
formula. '~ We then adjust the constants in the formulas
to obtain good agreement with a selection of exact
values which were found numerically. The approximate
result is
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where a=0.230, fi= 0.770, and c=0.763. Formula (4.5d)
holds for X greater than about 0.2, which is adequate for
the present case. With the correction of an error of a
factor four, the AH result for the sine series is C,=m/4
for all r. Our result for the cosine series is completely
different from theirs. For a value of 0.25 for X (which is
about as small as that attained in the present data), Di
is equal to 0.35. For this value of ) and the smallest
value of s in the present data (about 2.5), the ratio of
the amplitude of the fundamental term in 60.2 to that in
Aa& is about 0.1. Thus, Ao-& is not very important, es-
pecially for lower magnetic field strengths.

A set of sample theoretical curves are exhibited in
Fig. 11.The curve for the case T=AT =0 was calculated
using Eqs. (4.3).The other curves were calculated by an
LGP-30 electronic computer, using Eqs. (4.4) and (4.5).
At each point, enough harmonics (the greatest number
used was 14) were taken to give an accuracy of 0.02.
Note that the peaks are extremely sharp and that the
minima are more rounded. Note also that as the tem-
perature decreases, the curves calculated from the har-
moriic series expansion approach the curve calculated
from the simple formula (4.3c). The effect of the mono-
tonic term M is interesting. If AT is small, 3E represents
a quantum effect which is present even when the tem-
perature is so high that the oscillations have damped
out.

MT~jn oirsv(2$/oirsv)— (4.6)

From (4.6) we estimate that the minimum d'or at 20 kG
is about 37, and that at 5 kG, it is about 23. Thus, we
see that the high-field approximation is adequate for the
data reported here.

In our analysis we have treated r„ias a constant, and
have chosen its value to obtain the best fit to the ex-
perimental data. In the present data, which exhibits
sharp peaks, the most important effect of the collision
broadening is the reduction in amplitude of the peaks.
Thus, the value of r„i should be characteristic of the
peaks, that is, it should be nearly equal to r;„.The
estimate given in the previous paragraph implies that
the value of AT which gives the best fit to the present

B. Validity of the Theory for Graphite

We now examine the validity of applying these for-
mulas to graphite. First we shall see if the condition
car&)1 is obeyed. Analysis' of nonoscillatory data" on
the same sample indicates that cur is about equal to 100
at 20 kG. However, the AH theory gives a r which
oscillates as a function of magnetic 6eld and, in the
absence of collision broadening, is equal to zero at
points where 6=0. Near these points one may write
r—r, (2s8)'~s, where r, is the value appropriate to the
nonoscillatory phenomena (mobility, etc.). Following
AH, we estimate the effect of collision broadening by re-
placing 6 with (air) in the above equation. This pro-
cedure gives an equation which can be solved for r,
yielding
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data may be as much as three times the value estimated
using a r, obtained from the measured mobility. On the
other hand, the peaks in the oscillatory susceptibility
(de Haas-van Alphen effect) are not so sharp as those
in the conductivity. The harmonic amplitudes in the
susceptibility formula )see Eq. (3.1)7 are proportional
to r '", while those in the magnetoconductivity are
proportional to r '~s [see Eqs. (4.3) and (4.4)7, which
means that there are no singularities in the suscepti-
bility even in the absence of collision broadening at
absolute zero. Therefore, the value of r„i which gives
the best fit to the de Haas-van Alphen data should be
closer to r, . This is in agreement with the experi-
mental results, discussed below, where the value of
AT Lsee Eq. (3.2)7 found from Shubnikov-de Haas data
is larger than the value found from de Haas-van Alphen
data on the same sample.

We have neglected the variation with magnetic field
of the Fermi level, the value of which is determined by
the condition that the total number of electrons (or the
number of electrons minus the number of holes) re-
mains constant. Kahn and Frederikse~ have calculated
the change of the Fermi level at absolute zero for a
single-carrier model. In Table I we give the location of
the singularities in the density of states (which cor-
respond to the singularities in the conductivity), accord-
ing to their model. It is seen that the deviations from the
ideal case (constant Fermi level) are appreciable. Two
effects tend to reduce the variation in the present case:
the simultaneous presence of electrons and holes, and
the thermal damping. If the electrons and holes had
identical effective mass tensors, and if their numbers
were equal, the Fermi level would not change with

magnetic field. Since the present case is not so sym-

105/H IN GAUSS 1

Fro. 11. Diagonal magnetoconductivity, calculated from the
Adams-Holstein theory, as a function of inverse magnetic field
strength. The solid curves are for temperatures of 1.26, 4.22,
10, and 20'K where the amplitude of oscillation decreases with
increasing temperature. The dashed curve represents the un-
broadened conductivity (T=aT =0), which has infinite singulari-
ties. The curves were calculated for one carrier with the following
parameters: 8=2&(10 s G ', m*=0.04mo, and (except for the
dashed curve) DT =0.1'K.
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TABLE I. Calculated positions of the singularities in the con-
ductivity for simple models, taking into account the dependence
of the Fermi level upon the magnetic Geld strength. The cal-
culations are for a temperature of absolute zero and no colli-
sion broadening. The one-carrier results are from Kahn and
Frederikse (Ref. 7). The two-carrier results are for twice as
many electron (carrier 1) ellipsoids as hole (carrier 2) ellipsoids, for
2Lm~~*(1)/m~~~(2) O'I'= —;, and for mi" (1)/ms~(2) =re, , so that
P1 P2 3 ~

Index
I.

Ideal
1/PP

One-carrier
1/PH

Two-carrier
1/Pd& 1/AH

1.5
2.5
3.5
4.5
5.5
6.5

1.31
2.36
3.38
4.40
5.41
6.41

1.39
2.43
3.45
4.43
5.46
6.46

1.36
2.39
3.45
4.50
5.44
6.43

'8 E. N. Adams and R. W. Keyes, Progress in Semiconductors
(Heywood and Company Ltd. , London, 1962) Vol. VI, p. 85.

"N. H. March, Advan. Phys. 6, 1 (1957).

metric, we have calculated the positions of the singu-
larities for a simple model in which the number of
ellipsoids and the effective masses are approximately
the same as in graphite, and in which the number of
electrons and holes are equal. These results are also
given in Table I.Note that the deviation from the ideal
case is less than for the one-carrier model. The lowest
quantum number peak we observe is the I.=2 one for
electrons, which is shifted about 3%%u~ from the ideal
position. The effect of the finite temperature also re-
duces the Fermi level variation, so that the deviations
in the actual experiment are of the order of, or less than,
the experimental uncertainties.

As we have seen in the previous section, the energy
band structure of graphite is very different from that of
a free-electron gas with an isotropic effective mass. A
fairly good approximation is a free-electron gas with an
anisotropic effective mass: m&t parallel to the c axis and
m& perpendicular to the c axis. The formulas given
above would still apply when the magnetic field is
parallel to the c axis; the only effect of the anisotropy
would be to change the magnitudes of 7., E, and o;i.
The anisotropy can have an effect on the shape of the
oscillations for scattering potentials which have a finite
range, as will be discussed below. As Adams and Keyes"
point out, deviations from the effective mass model may
be taken into account using the method of Lifshitz
and Kosevich. "As far as fitting the data is concerned,
the only change due to the latter effect would be to
make the phase of the oscillations adjustable.

Another shortcoming of the formulas which we use is
that they were derived for delta-function-potential
scattering centers. The scattering potential actually has
a finite range: That estimated for graphite by the
Thomas-Fermi method" is 6A (the screening is isotropic
in this approximation). This means that the scattering
probability is reduced for changes of wave vector greater

than about 0.2 of the Brillouin zone height. The case of
scattering by screened Coulomb potentials was treated
by AH for the electron gas model, but they did not carry
the calculation through to formulas which can be used
to fit experimental data. They concluded that the effect
of introducing the finite range of the potential increases
the strength of the 5 ' singularity relative to the 5 'f'

singularity. We have carried out detailed calculations
for the anisotropic effective mass model with screened
Coulomb scattering (the anisotropy simplifies the cal-
culation) for a temperature of absolute zero and with
no collision broadening. We find that the calculated
(7 „/0-,

& is very nearly the same as for the delta-function-
potential case, except that the peaks are stronger. This
result is in substantial agreement with AH. Since the
temperature damping affects the peaks most strongly,
the curves for the two cases should have the same shape
except at very low temperatures. We have neglected
the change of the range of the scattering potential as a
function of the magnetic field strength, an effect which
is very important in the extreme quantum limit and
one which may also be important in the oscillatory
range.

The AH theory treats the scattering in the Born
approximation. Recently, Kahn" and Skobov' have
treated the scattering exactly for the point scattering
center. Their results indicate that the strong singulari-
ties in 60-2 are removed without resorting to collision
broadening. Whether their formulation or that of AH
is the most appropriate depends upon the strength of
the collision broadening. We have not used their formu-
lation, even though rough calculatioos indicate that we
should, for two reasons: %e wished to avoid the added
complications in the analysis; and, since they have the
same result as AH for 60.~, we believe that the results
will not differ very much for the present data.

C. Comparison with Experiment

In order to compare the theory with the experimental
results, we have calculated the experimental magneto-
conductivity4s o, =o/L1+(RoH)'j from the con-
ductivity 0 and the Hall coefficient R, measured on the
present sample at 1.26 and 4.22'K. The simple formula
just given applies only when the magnetic field is
parallel to the c axis (8=0'). Because of the fact that the
contributions of the nearly equal numbers of electrons
and holes cancel in pure graphite, the Hall coefficient is
very small. Thus, the factor RaII is small and 0-„ is al-
most equal to ~, a result which we shall use later to
simplify the analysis. This condition is in contrast to
the one-carrier case (the only one explicitly considered

by AH), in which RoH is very large, and o.„is inversely
proportional to 0-. In Fig. 12 we plot the experimental
values of H'o. against 1/H for two temperatures, 1.26
and 4.22'K. The quantity II'o-, would be a constant at

4e J. M. Ziman, E~'leefrons ond Phonons (Oxford University Press,
Oxford, 1960), pp. 487-494.
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FIG. 12. Comparison of experimental and theoretical diagonal
magnetoconductivities for the magnetic 6eld parallel to the hex-
agonal axis at 4.22 and 1.26'K. The points represent the experi-
mental data. The oscillating curves represent a linear combina-
tion of the Adams-Holstein theory and an empirical correction
(same for both temperatures) represented by the monotonic solid
curve. The parameter values in the Adams-Holstein calculations
were chosen to give the best Qt; the values are given in the text.
The empirical correction is approximated by the function
64/(10'/H)' which is plotted as the dashed curve. This correction
function corresponds to a constant term in 0., of 6.4)&10" cgs
units, which is 0.004% of the zero-Geld value of a„.

high magnetic field strengths if the behavior were classi-
cal. However, the actual curves differ from the classical
behavior in two ways: There are oscillations; and the
mid-line of the oscillations monotonically increases with
increasing magnetic field strength (decreasing 1/H).
The latter effect is not contained in the AH theory; we

represent it empirically by a monotonic function which
approaches zero for small magnetic field strengths. The
empirical function, which is shown in Fig. 12, will be
discussed later in this section.

The corrected curve (which we may think of as the
classical part plus the oscillations) was fitted with a
linear combination of two theoretical functions (to rep-
resent the contributions of electrons and holes):

where the indices 1 and 2 refer to electrons and holes,
respectively, and o„(1)/o,i(1) stands for the AH ex-
pression for the ratio of the actual to the classical mag-
netoconductivity as a function of 1/H with the param-
eters P~, m*~, and AT&. A large number of curves for
different values of the eight adjustable parameters
(8, I', m*, and d, T for each carrier) were calculated and
plotted by the computer. The best curves are plotted in

Fig. 12 for the parameter values given below. Since the
agreement between theory and experiment is not per-
fect, the selection of the "best" curves involves some
subjective judgment. We concentrated upon the oscil-
lations, attempting to reproduce the positions and rela-

tive amplitudes of maxima and minima and to obtain
the correct dependence of over-all amplitude upon mag-
netic field and temperature. As might be expected, the
values of the periods can be determined most accurately,
a change of 10 ~ G ' in either period causing noticeable
deviations from the experimental results. The uncer-
tainties in the best values for the masses are about 5%
and those in the d, T's and 8's are about 10%. These
estimates are made on the assumption that the theoreti-
cal formula is exact; a change in the formula may cause
parameter changes greater than these estimates.

It is seen that the agreement between the theoretical
curves and the experimental results is very good. It is
to be emphasized that the same parameter values are
used at the two temperatures. It is also important to
note that the AH theory gives the correct ratio of the
amplitude of the oscillations to the low-field (say 15 kG)
average magnetoconductivity. This fact alone would
serve to confirm the AH theory, for the theories which

disagreed with AH predict a much smaller amplitude of
oscillation. Furthermore, we see that the shapes of the
oscillations are reproduced remarkably well by the
theory.

The most serious discrepancy is the monotonic in-

crease in the mid-line with increasing magnetic field

strength. The empirical correction functions used in

Fig. 12 is approximately proportional to (1/H), which

corresponds to a constant term in r„.This effect was
noticed in an earlier work, '~ where a few possible ex-
planations were proposed. Another possibility is the
variation of the range of the scattering potential with
magnetic field strength. It has been shown" that tak-
ing this variation into account explains the fact that 0,
is proportional to 1/H in the extreme quantum limit

(s((s). The quantity H'a„ is then proportional to
(1/H) ' in the quantum limit. It would be interesting
to extend the calculation into the oscillatory region to
see if it could explain the mid-line drift.

The parameter values found from the fit to the AH
theory are quite reasonable. The values found for the
periods are 2.02&(10 ' G ' and 1.47)&10 5 G '. These
values differ somewhat from the results discussed in

Sec. III, mainly due to a small calibration error which
was discovered after the AH calculations were com-

pleted, The effective mass values found are 0.040mo for
electrons and 0.058mo for holes. A comparison of the
effective mass values from several sources will be made
below. The values of B~ and 82 are 0.66&(1022 and
1.10&10" cgs units, compared with 0.75)&10" and
0.60)&10"from the nonoscillatory analysis. '~ Although
the agreement in the latter is not very close, there a,re
many effects associated with the complexity of the band
structure and the scattering mechanism which could
account for the discrepancy.

We wish to give special attention to the values of the
collision broadening parameters found, AT& ——0.80'K

"J.W. McClure, Bull. Am. Phys. Soc. 7, 214 (1962).
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TABLE II. Comparison of 6 T, the effective temperature shift due
to collision broadening, from various sources.

Source Method of determination

Present work Fitting of Shubnikov-de
Haas data.

Soule' Collision time from carrier
mobility.

Fitting of Shubnikov-de
Haas data (present
analysis).

Comparison of Shubnikov de
Haas data to present Shub-
nikov-de Haas data.

Berlincourt
and Steeleb

Berlincourt
and Steele

Electron Hole
ATI AT2

0.80'K 0.56'K

0.17 0.07

3.0a 1.0

3.6 3.4

Berlincourt
and Steele

Shoenberg'

Shoenberg

Fitting of de Haas-van
Alphen data.

Fitting of de Haas-van
Alphen data (his analysis)

Fitting of de Haas-van
Alphen data (present
analysis).

0.71

0.5

0.64

0.9%0.6

0.6

a Reference 8.
b Reference 43.
e Reference 6.

4'V. Bychkov, Zh. Eksperim. i Teor. Fiz. 39, 1401 (1960)
LEnglish transi :Soviet Phys. .—JETP 12, 977 (1961l].

4s T. G. Berhncourt and M. C. Steele, Phys. Rev. 98, 956 (1955l.

and AT~ =0.56'K. These values are in good accord with
those found in Sec. III. The values of AT calculated
using the nonoscillatory r, in the place of 7-,„& are 0.17'
and 0.07'K, which are smaller than the values found
here from curve-fitting by factors of five and eight, re-
spectively. We saw above that r„, should be less than

(by about a factor three at 20 kG). This result is in
the right direction to explain the discrepancy, but there
is still not good quantitative agreement. However, the
calculation of r„, from 7., was very approximate. Also,
there is a distribution of relaxation times present even
in the absence of a magnetic field, so that one should
actually use the relaxation time for the states near the
bulge of the Fermi surface for 7, . Recent work by
Bychkov4' indicates that the effect of collision broaden-
ing on the de Haas-van Alphen effect is very complicated
when coo. is greater than s and when 6 is of the order of
(&ur) ', which is the case in the present work. In view
of all these uncertainties, we feel that the agreement is
not unsatisfactory, but believe that more theoretical
work is desirable. It is worth pointing out that the agree-
ment between the two methods of obtaining AT is
much better for certain semiconductors which have
spherical Fermi surfaces, and in which cur is smaller than
that for the present sample. "

The prediction that the AT values found from fitting
Shubnikov-de Haas data are considerably larger than
those found from fitting de Haas-van Alphen data is in
agreement with the experimenta1 facts. For a direct
comparison, both the magnetoresistance and the sus-
ceptibility were measured on the same crystal by Berlin-
court and Steele. 4' We have analyzed both sets of data.

In their magnetoresistance curves, only one carrier
(electron) is prominent. From an analysis of the tem-
perature and magnetic field dependence of this data, a
value of AT~ ——3&1'K was obtained. In addition, both
~T& and ~T& may be estimated by the following quali-
tative argument. ' The interference structure evident in
their magnetoresistance data at 1.4'K is no stronger
than that for our sample at 4.2'K. Thus, the quantity
T+AT for their sample at 1.4'3: should be greater than
the same quantity for our sample at 4.2'K. This reason-
ing leads to estimates of AT~&3.6'K and ~T2&3.4'K
for the Shubnikov-de Haas effect in their sample.

These Shubnikov-de Haas values are about five
times the values obtained by a least-squares analysis
of the de Haas-van Alphen effect, AT~ ——0.71'K and
AT& ——0.64'K. We have also analyzed Shoenberg's sus-
ceptibility data' in the same manner and obtained
AT~=0.5'K and dT2 ——0.6'K, compared with his esti-
mates of 1.5 and 0.3 to 1.5'K, respectively. These values
of ~T are collected in Table II where they are grouped
as derived from the Shubnikov-de Haas effect (upper
half) or the de Haas-van Alphen effect (lower half).

D. Relation to the Generalized
Landau Formula

We now discuss the relation between the analysis just
presented and that using the generalized Landau for-
mula. It is seen by comparison that the quantity Aa i/o.„
may be represented by taking ts= s, W, (r) = W, (1)r '~',

and f, (r) = (r+~r)7r Althou. gh the quantity Ao& cannot
be exactly represented in the Landau form, it is im-
portant only at high magnetic fields. The validity of this
equivalence was verified by applying the least-squares
analysis to test data calculated from the AH theory. The
experimental magnetoconductivity was also subjected
to the least-squares analysis. The results for the periods
are in substantial agreement with those found from the
magnetoresistivity. The effective masses were also in
good agreement, as shown in Table III. The table also
summarizes all of the present results for field and tem-
perature dependence masses, as well as the results ob-
tained by other authors.

Since this analysis was applied to the quantity H 0.„,
which has the same field dependence as o.„/o.„, the
value of n chosen was —,'. For 0, alone, the value would
be ——,'. The least-squares analysis for the magneto-
conductivity in Sec. III was for a =1/p, instead of o„.
The two differ by the factor 1+ (Ro.H)', the maximum
value of which was 1.1 in the data actually used. How-

ever, this factor varies very little with temperature and
should not cause an error in the temperature depend-
ence effective mass. However, it does vary with mag-
netic field by about 5%over the range of fields used; and
so neglecting it could cause some error in the value of
~T. Actually, good agreement was found both for the
effective masses and for the AT's when the magnetic
field was parallel to the c axis (0=0').When the magnetic
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TABLE III. Summary of effective mass values in the graphite layer plane. The adopted values
are weighted averages of values found in the present work.

Source

Present work
Present work
Present work
Present work
Present work
Soule'
3erlincourt

and Steele;b
present work

Shoenberg'
Shoenberg
Nozieresd
Inoue'

Method of determination

Field dependence; magnetoresistivity
Temperature dependence; magnetoresistivity.
Field dependence; magnetoconductivity.
Temperature dependence; magnetoconductivity.
AH theory; magnetoconductivity.
Field dependence; galvanomagnetic ratio.
Field dependence; susceptibility
Temperature dependence; susceptibility.

Temperature dependence; susceptibility; His analysis.
Present analysis.
Cyclotron resonance; theory.
Cyclotron resonance; theory.

Adopted values.

Electron
mg*/ngp

0.040
0.038
0.040
0.038
0.040
0.030
0.039
0.038

0.036
0.037
0.031

0.039+0.001

0.058
0.057
0.056
0.055
0.058
0.060
0.062
0.057

0.07
0.058
0.066
0.053

0.057+0.002

' Reference 8.
b Reference 43.
o Reference 6.
d Reference 16.
e M, Inoue, J. Phys. Soc. Japan 17, 808 (1962).

field is not parallel to the c axis, considerable experi-
mental work and numerical analysis would be necessary
to obtain the experimental magnetoconductivity. How-

ever, since we wanted to obtain values only for the
periods and effective masses, it was sufficient to use

just the inverse resistivity.
Table III also includes the results of our least-squares

analysis of the susceptibility data of Shoenberg and of
Berlincourt and Steele. The adopted values of 0.039
mo for electrons and 0.057mo for holes, listed in the
table along with their uncertainties, were chosen in
order to include all of the different estimates made in the
present work. The periods found from Shoenberg's data
were 2.21)&10 ' and 1.63)&10 ' G ', in good agreement
with his values of 2.20&(10 ' and 1.65&& 10 ' G '. These
values differ from those reported here, and Shoenberg4'

suspects that there was an error of a few percent in his

magnet calibration. The periods found from Berlincourt
and Steele's data are 2.12X10 ' and 1.57X10 ' G ', in
fair agreement with those reported here. In addition,
the absolute magnitude of the susceptibility parallel to
the c axis is related to the curvature of the Fermi sur-
face at the maximum cross section" (perpendicular to
the c axis). This curvature can be expressed in terms of
the anisotropy ratio of the ellipsoidal surface which co-
incides with the true Fermi surface at its "bulge, "and
is thus a rough estimate of the Fermi surface aniso-

tropy. The anisotropy values found from Shoenberg's
data are 10 for electrons and 15 for holes; those from
Berlincourt and Steele's data are 11 for electrons and
18 for holes. These values are subject to considerable
uncertainty, but are consistent with the anisotropies
found in Sec. III.

+ D. Shoenberg (private communication).

V. CONCLUSIONS

One of the main conclusions of this investigation is
that the electron and hole Fermi surfaces in graphite
are closed in all directions. These surfaces are, however,
highly elongated in the direction of the hexagonal axis,
and have anisotropy ratios of 12.1&1.4 for electrons
and about 17 for holes. Although this result is based on
a direct observation of the oscillatory term due to elec-
trons throughout the angular range, the hole component
could be resolved only to 0~84'. At this orientation, the
hole term already showed a strong deviation away from
a cylindrical surface. In addition, both oscillatory terms
showed a codex surface variation about 0=0', whereas
the Haering and Wallace model, with a corrugated
cylindrical Fermi surface, would predict a concave be-
havior for the component with the largest period. The
latter is the component we identify as being due to
electrons and is the very term we see completely around
to 90'. And further, the quite general SW band model
requires that if the electron surface is closed, the hole
surface must also be closed.

Inspection of the shape of these surfaces showed the
electron surface (from 0 variation) to be very close to a
true ellipsoid, whereas the hole surface can be described
more as "diamond-shaped, "having pointed ends along
the k, axis. Cross sections from the azimuthal Q orienta-
tion were considerably more dificult to resolve. Al-
though more indefiDite, the present results do give
sufhcient information to allow a moderate degree of
trigonal asymmetry.

Good agreement between the orbital effective masses
derived from the dependence of the oscillatory ampli-
tude on temperature and magnetic field substantiates a
value of 0.039mo for electrons and 0.057mo for holes for
motion in the basal plane. In addition, the variation of
the orbital masses with 0 is consistent with that ex-



SOULE, MCCLURE, AN 0 SM I TH

RONS

A

I
I
I
I

W P
o

2m/c

RONS

M HOLES

A

FIG. 13.The Brillouin zone for graphite, showing the placement
of the electron and hole Fermi surfaces. The drawing is to scale,
except that the lateral dimensions of the Fermi surfaces have been
magnified by about a factor three. The center of the zone is de-
noted by P. The hz axis is parallel to the c axis (hexagonal axis) of
the crystal, and the kz direction is parallel to an a axis. The figure
is a snPerposition of electron surfaces in the conduction bands and
hole surfaces in the valence band. The degeneracy of the valence
and conduction bands along the vertical zone edge HH' requires
that the ends of the electron and hole surfaces touch as shown.
The part of the electron Fermi surface which overlaps the hori-
zontal faces is in the second conduction band, and is plotted in the
second Brillouin zone. The degeneracy of the two conduction
bands on the horizontal zone faces allows the overlapping part to
be a smooth continuation of the main surface.

T2 T1 T2
&i/&ii — + + = 190.

nt, *(1) nt, *(2) nt „*(1) rn, ~*(2)
(5.1)

This value is in reasonable agreement with the best
experimental ratio of 110 to 175, considering the
approximation of relaxation time isotropy and other un-
certainties involved.

4' D. E. Soule, Proceedings of the Fifth Conference on Carbon
{Pergamon Press, Inc. , New York, 1961), Vol. I, p. 13.

Note addedin proof Since this paper was. written, de Haas-van
Alphen measurements have been made on dilute boron-doped
graphite crystals LD. E. Soule, I.B.M. J. Res. Develop. (to be
published). g A preliminary analysis of the data supports the above
identification of the two major oscillatory periods.

4e W. Primak and 1. H. Fuchs, Phys. Rev. 95, 22 (1954); W.
Primak, ibid. 103, 544 (1956).

pected for the derived Fermi surfaces. All of the above
conclusions rest entirely on the present experiment,
except for the electron-hole identification, which depends
on previous cyclotron resonance work. For a direct
identification, however, a more satisfying and internally
consistent procedure would be to observe the effect on
the periods by shifting the Fermi level in a known way.
This approach is now being investigated by controlled
doping, using the acceptor boron. 4'

These Fermi surface anisotropies allow us to predict
the anisotropy in the electrical conductivity. If we
assume that the electron and hole relaxation times
(ri ——2.0X10 " sec and re=3.4X10 " sec in the basal
plane at 298'K)'r are isotropic and constant over the
Fermi surfaces and that S& N2, then the conductivity
anisotropy ratio at room temperature is

Comparison between the electron density 1Vi (nonosc)
(total from all Fermi surfaces in the Brillouin zone) and
iVi(osc)/Q (that due to one surface) definitely estab-
lishes that there are four electron Fermi surfaces in the
Brillouin zone. From size and symmetry arguments,
there are two possible locations for these surfaces in the
reduced Brillouin zone shown in Fig. 13: (1e) all four
aligned vertically along the center k, axis between 2
and A', and (2e) aligned along the outer six zone edges
HH', one-third of a surface at the top and one-third
at the bottom as shown in the figure. Location (1e) is
impossible on the basis of all band calculations4' which
agree that the energy of the conduction band at the
center of the Brillouin zone, F, is about 10 eV above the
energy at the zone edges. Thus, (2e) is taken as the
accepted scheme.

For the hole Fermi surfaces, we assume initially that
1Vs(osc) fV&(nonosc). Due to the uncertainty in the
anisotropy of these surfaces, values of Q=2 or 3 might
be acceptable. For 2, one would find an iVs(osc) value
14 to 21%%u~ less than Ss(nonosc), whereas 3 results in a
value of 18 to 29/o greater than 1Vs(nonosc). A choice
cannot be made, therefore, on this basis alone, and one
must consider the most probable location of these sur-
faces. For two hole surfaces, two possible locations are
(1h) both aligned along the central k, axis between A
and A', and (2h) aligned along the outer six zone edges
HH', one-third of a surface at the middle as shown in
the figure. For three surfaces, there are also two possible
locations: (3h) all three aligned along the central h,
axis between A and A' and (4h) aligned vertically at
the center of the vertical Brillouin zone faces, one-half
a surface at each point 3f in the figure. Again, locations
(1h) and (3h) are ruled out, "as with the electron case
(le), because the energy of the valence band at the
center is 7 to 10 eV below the energy at the zone edge.
The calculated4~ energy at point 3f is about 2 eV below
the energy at the zone edge E so that possibly (4h) is
also unlikely although the argument against it is not so

strong as for the other cases. However, since group
theory requires that the conduction and valence bands
are degenerate along the vertical zone edges, and since
the two electron Fermi surfaces were established above
to be located along the zone edges with their combined
lengths less than the zone height, then the hole surfaces
also are located at the zone edges (location 2h) as shown
in the figure. This result agrees with the parameterized
SW model and represents that assumed in Sec. III in

calculating the hole Fermi surface length. The Fermi
surfaces as shown in Fig. 13 therefore represent the most
probable configuration for graphite.

' See, for example, R. R. Haering and S. Mrozowski, Progress
in Semiconductors (Heywood and Company Ltd. , London, 1960),
Vol. V, p. 273. The most accurate band calculation is by F. J.
Corbato, Proceedings of the Third Conference on Carbon (Per-
gamon Press, Inc. , New York, 1959),p. 173; and Quarterly Prog-
ress Report, Solid State and Molecular Theory Group, M.I.T.
1956, p. 23 (unpublished).
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Knowing the Fermi surface positions, we can next
consider quantitatively their size with respect to the
reduced Brillouin zone. The maximum Fermi surface
radii perpendicular to the c axis found from Pr(0) and
Ps(0) using Eq. (1.1) are r&

——1.21+0.02 for electrons
and r2 ——1.42%0.02 for holes in units of 10' cm '. These
are 0.72 and 0.84%, respectively, of the distance along
kg from a corner E to the center F of the zone,
4s./3ae=170. 3. In the k, direction, the height of the
zone is 2n/cs ——93.6, whereas the two electron surfaces
have heights of 29.3+3.4 each. Due to the degeneracy of
the valence and conduction bands along the vertical
zone edge, the hole surface tips abut the tips of the
electron surfaces, as shown in the figure. Thus, with a
hole surface height of about 49.2, the electron surfaces
will overlap the top and bottom of the Brillouin zone
by about 7.1.

This result provides a new and direct measure of d,
which represents the difference in potential between the
two types of sites for carbon atoms in the graphite
lattice. "According to the parameterized SW model, ""
the relation between the value of k, at the upper end of
the hole Fermi surface and the Fermi energy f is given by

4= f+2yr cos(cd,/2), (5.2)

where y~ is the nearest layer interaction integral. Then,
using the well established values of 0.02 eV for the
Fermi energy ' ' and 0.30 eV for the y~ parameter, ""
we obtain

Lk~ —0.12 eV.

Previous estimates of this parameter have given
values closer to zero, but these methods were more in-
direct. ' ' "Recently, however, another determination
based on the temperature dependence of the g factor"
gave a value of about —0.1 eV, in reasonable agreement
with the above value.

As mentioned above, the azimuthal orientation re-
sults set a limit on the amount of departure from rota-
tional symmetry about the c axis which the Fermi sur-
faces may have, a limit consistent with the available
information. The band parameter which describes the
departure from trigonal symmetry has been called p3.
The simple tight-binding theory states" that p3 is
nearly equal to another band parameter p4. A value of
p4 has been found from analysis of the g-shift in the
electron spin resonance, " which yielded a value of
y4=0.28 eV. We have calculated the shapes of the cross
sections, perpendicular to the c axis, of the Fermi sur-
faces for y3=0.28 eV. We find that the cross section of
the electron surface resembles a triangle with rounded
corners, as shown in Fig. 14. The radius vector varies as

4s J. L. Carter and J. A. Krumhansl, J. Chem. Phys. 21, 2238
(1953).

9 Y. H. Ichikawa, Phys. Rev. 109, 653 (1958).' J. W. McClure and Y. Vafet, Proceedings of the Fifth Confer-
ence on Carbon (Pergamon Press, Inc. , New York, 1962), Vol. I,
p. 22.

ka
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ELECTRoN HOLE

FIG. 14. Calculated maximum Fermi surface cross sections per-
pendicular to the hexagonal axis showing the trigonal asymmetry.
The point E is at the center of the vertical Brillouin edge and the
point E' is at a ditferent place on the same edge (see Fig. 13).
The lines marked kg represent the Brillouin zone boundaries. The
solid curves are calculated for y3 ——0.28 eV, and the dashed curves
(circles) are for pg =0. Both sets of curves are to the same scale,
with the values of the radii of the circles derived from the periods
at tII=O' given by r1 =1.21+0.02&(10' cm ' and r2=1.42+0.02
X10' cm '. For each carrier the areas enclosed within the two
curves are the same to within 1'%%uo.

5' M. S. Dresselhaus and J. G. Mavroides I,
'to be published).

a function of the azimuthal angle P by about &16%.
The deviation between the extremal periods at 0=90',
as obtained from the two perpendicular magnetic field
rotation axes, would be about 10%. The cross section
of the hole surface is more distorted, resembling a
triangle with rounded corners and with concave sides,
as shown in Fig. 14. The azimuthal. variation of the
radius vector is about *40%,and the deviation between
the two extremal periods at ()=90' would be about 20%.
The expected deviation between periods predicted for
the two rotation schemes is less for electrons and greater
for holes than those deduced from the simple triangular
model discussed in Sec. III. This value for y3 would pre-
dict a deviation of approximately &4.6% for the elec-
tron surface at 8=80', compared with the observed
deviation of 1%. For the hole surface, the predicted
deviation would be &2.9% at 0=60', compared with
the observed deviation of 1%. Although subject to
considerable uncertainty, these results indicate that the
actual Fermi surfaces are closer to rotational symmetry
than the above y3 band model would predict, that is y3
must be considerably smaller than 0.28 eV. Very accur-
ate data at the higher values of g would be needed to
determine the value of p3 reliably from the shape of the
Fermi surfaces. Even so, this fact that ys should be small
has been substantiated by recent results obtained from
magneto-optical reAection measurements, " where
was found to be 0.145 eV at 4.2'K.

The present work provides the most complete test to
date of the Adams-Holstein theory. It is important that
the AH theory correctly describes the amplitude of the
oscillations, since the competing theories predict ampli-
tudes which are very much smaller. " In addition, the
AH theory reproduces the shape of the oscillations,
which are so asymmetric and have such sharp cusps that
many harmonics are needed for their description. Such a



A470 SOU LE, M c CLU RE, AN D S M I TH

fit to the oscillation shape veri6es that the harmonic
amplitudes are proportional to r '" and not to r 'l", as
proposed by competing theories, which would give
sharp miasma in 0 instead of maxima. " There are,
however, two important points of disagreement be-
tween the AH theory and our results. The erst is the
"mid-line drift" observed in 0, . Although there are
several effects which could be responsible, we suspect
that the dependence of the range of the scattering po-
tential upon the magnetic field strength is most likely.
The second point of disagreement is that the AT values
(effective temperature shift due to collision broadening)
found from curve-fitting the Shubnikov-de Haas data
are several times greater than the AT values estimated
using the conductivity relaxation time. Both of these
points indicate that more theoretical work needs to be
done on the details of the scattering process.

We have verified that the generalized Landau formula
may be used to analyze Shubnikov-de Haas data for
the periods, masses, and AT values. This fact was con-
cluded theoretically, since the periodicity and the tem-
perature dependence are the same for all theories of the
Shubnikov-de Haas eBect. The generalized Landau
formula was tested experimentally by analyzing the
magnetoconductivity data at 0=0' obtaining good
agreement with the results of the analysis using the AH
formula. Another simplification which was successfully
tested on the data at 0=0' for the present case of gra-
phite was the replacement of the magnetoconductivity
by the measured conductivity (inverse of the measured
resistivity). These two simplifications considerably re-
duced the work involved in taking data and performing

the numerical analysis. Furthermore, use of the general-
ized Landau formula gave results which do not depend
upon any specific theory.

The use of the least-squares method to analyze the
data was, on the whole, successful. Results for the
periods are in good agreement with those using the
usual integer plot, which was used for the electron
term in the low magnetic field region where the hole
term is negligible. However, the least-squares method
does have certain pitfalls. To obtain reliable results,
extremely accurate magnetic field calibrations must be
used and attention must be given to the statistical
weighting scheme.

We have established that the hT values found from
6tting Shubnikov-de Haas data may be considerably
larger than those found from fitting de Haas-van Alphen
data. It was also found from the AT's (and therefore
the impurity concentration) for Berlincourt and Steele's
sample are about four to Ave times those found in this
work, showing the higher quality of the present sample.
This was expected in view of a previous comparison of
the nonoscillatory magnetoresistance results, " where
the ratio of the average relaxation times was found to be
about three.
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