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Effective Fields in Cubic Lattices with Extended Charges
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The effective field in cubic lattices is calculated for a simple model in which the electrons have spatially ex-
tended charge distributions. For simple cubic, body-centered cubic, and face-centered cubic lattices in which
the electrons in each primitive cell are infinitesimally displaced from rigid cores, the effective field can be
written E,ri= E+ (4ir/3)i P, where E is the average electric field in the medium, and P is the polarization.
The coefficient p varies from zero for very extended electronic charge distributions to 1 for the limit of
point charges. Values of y for Gaussian distributions of intermediate width are given. Effective fields are also
calculated for the rocksalt, zincblende, and cesium chloride structures. These results involve an additional
coefficient y which also varies between 0 and 1. For moderate overlaps between electronic charge distribu-
tions of next-nearest neighbors the effective fields diA'er appreciably from the Lorentz field E+ (4z./3)P.

E,rr= E+ (4ir/3)yP, (2)

where E is the macroscopic average electric field in the
medium, and y is an effective field constant whose
value we shall calculate.

The two simple limiting cases of Eq. (2) are y=0 and
y= 1. The first of these, for which the effective field is
just the macroscopic field in the medium, leads to the
Drude-Sellmeier formula

(3)

* National Science Foundation Predoctoral Fellow.' N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, London, 1948}, 2nd ed. ,
Chap. I.

W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism (Addison-Wesley Publishing Company, Inc, , Cam-
bridge, Massachusetts, 1955), p. 31.

I. INTRODUCTION

~ 'HE effective electric field'' which acts on the
atoms or ions or electrons in a crystal is of con-

siderable importance in calculations of the optical
properties of solids. We present here a simple classical
calculation which shows how the magnitude of the
effective field in several cubic lattices depends on the
spatial extent of the electronic charge distribution on
the atoms or ions.

We first consider cubic lattices with only one atom in
the primitive cell, namely, the simple cubic (sc), body-
centered cubic (bcc), and face-centered cubic (fcc)
lattices, and assume that in each primitive cell the elec-
trons are displaced a distance —d with respect to the
positive cores. If the core itself is rigid and unpolarized,
the total polarization of the lattice js

P=Xqd,

where q is the magnitude of the charge of the electrons
and of the cores in each cell, and X is the number of
primitive cells per unit volume. For this simple model,
the effective field can be written

for the relation between the index of refraction e and
the atomic polarizability n. The case p= 1, which leads
to the Lorentz field E,rr ——E+ (4rr/3)P, gives theLorentz-
Lorenz relation

(e'—1)/(rs'+ 2)= (4m/3)1Vcr. (4)

' C. G. Darwin, Proc. Roy. Soc. (London) A146, 17 (1934);
A182, 152 (1943).' J. A. Ratcliffe, The Magneto-Ionic Theory and its Application
to the Ionosphere (Cambridge University Press, Cambridge,
England, 1959), p. 154.

'M. Born and K. Huang, The Dynamical Theory of Crystal
Lattices (Oxford University Press, London, 1954), Sec. 9.' W. T. Doyle, Phys. Rev. 111, 1072 (1958).

The most detailed investigation of effective fields is
that of Darwin, ' who showed that for free electrons in
metals one has y= 0, while for self-contained atoms or
ions one expects y = 1.Darwin's criteria suggest that one
also has y 0 for the electrons in the ionosphere. ' Quali-
tatively one can understand the difference between the
two cases by noting that a free electron has a uniform
charge distribution, and therefore almost by definition
feels the average field E in the medium. On the other
hand, a point charge feels only the local field, which will,
in general, be different from the average 6eld.

Mott and Gurney' long ago suggested that overlap-
ping electronic charge distributions will lead to values
of y less than 1, but most calculations in nonmetallic
solids use the Lorentz effective field. Many properties
of solids, such as the lattice vibrations of ionic crystals'
and the oscillator strengths of defects in ionic crystals, '
depend for their quantitative interpretation on the
magnitude of the effective field.

In this paper we give the results of a classical calcu-
lation of the effective 6eM in cubic lattices based on the
simplest possible model in which the spatial extent of
the electron distribution can be readily considered. In
the following section the effective field is calculated in
some detail for the simple cubic, body-centered cubic,
and face-centered cubic lattices; the resulting values of
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the effective field constant y are presented in Sec. III.
In Sec. IV we extend the model to cubic lattices with
two atoms in the primitive cell, since most applications
will be diatomic rather than to monatomic crystals.

Ei&&0= Ee&h+ Ei&+Eout+ Eext y (5a)

where E„„is the field of the charges within an in-

scribed sphere, E;„and E,„~ are the fields arising from
the charges on the inner and outer surfaces of the
remainder of the sample, which is treated as a contin-
uum with polarization P, and E, & is the external field.
The charges on the inner surface give E; = (4ir/3)P,
and for samples of simple shapes the outer surface
charges give a uniform field E,„t,

———I-P, where I is the
depolarization factor, ' which is 4ir/3 for a spherical
sample-and 4m- for a thin slab perpendicular to the ex-
ternal 6eld. But the macroscopic field in the sample is

E=E.„,+E, ,= E.„,—LP, (Sb)

' C. Kittel, 1utroductiou to Solid State Physics (John Wiley lit

Sons, Inc. , New York, 1956), 2nd ed. , p. 159.

II. CALCULATION FOR MONATOMIC LATTICES

We shall assume that the atoms of the simple cubic,
body-centered cubic, and face-centered cubic lattices
which we consider contain some relatively loosely
bound electrons, and some tightly bound electrons. The
tightly bound electrons in real solids will contribute
to the polarization and to the effective field, but for
the sake of simplicity we ignore them here. We assume

the loosely bound electrons to have a charge distribu-
tion —qp, (r), where J'p, (r)dr=1. In the numerical

calculations we use a Gaussian charge distribution.

When an external electric field is applied, our model

lattice will be polarized by a relative displacement d
between the cores and the electrons. We shall assume

that this displacement is the same in every lattice cell;
thus the polarization is given by Eq. (1). Our results

apply only to lattice vibrations or electric fields of long
wavelength.

The held acting on one of the atoms of the lattice is
the external field plus the 6eld of the other atoms. The
field due to the atom itself is not included, since it is
taken into account by the atomic polarizability o..
When the electrons have an extended charge distribu-
tion one must use some care in defining the effective
field. Vfe identify the effective field with the held that
tends to separate the positive and negative charges in

the atom. Thus the effective field is the field at the posi-
tion of the core, or the integrated field acting on the
electron distribution. We shall show formally below that
these two are equal, as one would expect from the re-

quirement that the total force on the charges in a
primitive cell vanish.

The local field in the crystal can be written as the sum

of four terms' ':

p(r)=gt pi exp(ik, r),

E(r)=gt Ei exp(iki r).
(6a)

The summation is over the reciprocal lattice vectors ki,
which have rectangular components 2irlt/a, 2irl2/a, and
2irla/a, respectively, where the i; are integers and a is
the lattice constant. For a simple cubic lattice the l;
take on all integral values. For a body-centered cubic
space lattice the reciprocal lattice is face-centered, and
lt+l2+ls must be even. For a face-centered cubic space
lattice, the /; must be either all even or all odd.

If we neglect the magnetic fields associated m ith the
lattice displacements, M Maxwell's equations ~ E=4irp
and V&&E=O lead to

Ei———4~i(ki/ki2) pi.

The charge density in our model can be written

(6c)

p(r) = q g B(r—R;)—q P p, (r—R~+d), (7)

where the Dirac delta functions of the cores are located
at the lattice points R;, and the electronic charge dis-
tributions are displaced by —d. The integration over
the volume of the crystal required to obtain the coef-
ficients in (6a) can be transformed to an integration over
all space involving only the charge of the atoms or
ions in one primitive cell. ' We find

pi= (q/v)L1 —o(ki) exp(iki 8)j=SqG(kt, d), (Sa)

8 The shape dependence of dipole sums is discussed by 3.R. A.
Nijhoer and F. W. DeWette, Physica 14, 422 (1958).

~ See Appendix A of Ref.'7.
' See Sec. 8 of Ref. 5.

so that we can write

Et..——E+ (4ir/3) P+E„t„
which no longer depends on sample shape.

All that remains is the evaluation of E,„q, the con-
tribution of the atoms and ions in the inner sphere. If
the lattice is composed of point dipoles and the center
of the sphere is a point of cubic symmetry, then E,oi,
vanishes there' and (Sc) reduces to the Lorentz ef-
fective 6eld. For our more general model, we want an
expression for the field at any point in the primitive
cell, since we must show that the average field acting
on the electrons is the same as the field at the position
of the cores. We sum first over all lattice points (or
reciprocal lattice points) on a spherical shell, and then
over shells, thus preserving the spherical summation
required by (5c),' but we let the radius of the inner
sphere become infinite. Our method of summation closely
resembles the Ewald method for evaluating lattice
sums. '

In a crystal the charge density p(r) and the electric
field E(r) have the lattice periodicity, and may be
expanded in a Fourier series:
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where v=Ã ' is the volume of the primitive cell, and Gnd that the effective Geld is
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o (k) = (2sr) ' p, (r) exp( —ik. r)dr (Sb)
E.tr=E+(2n') 'o k(k P)k—'o (k)dk

—4ir Pt' ki(ki P)ki 'o. (ki), (13a)

where the prime on the summation indicates that the
term with ki=0 has been omitted. This term is just E,
the average electric field in the medium, and is written
in explicitly.

The Geld acting on the atom at the origin due to the
external Geld and all the other atoms in the crystal is
obtained by subtracting from (9) the field due to the
atom's own charge. We find

p„ir(r) = (27r)
—'q G(k, d) exp(ik r)dk, (10a)

E»ir(r) = —(2n') 'iq (k/k')G(k, d) exp(ik r)dk, (10b)

where the integration is over all values of k. We subtract
(10b) from (9) and find the local field due to all atoms
except the one in the central cell to be

Ei.,(r) =E+(2ir') 'iq t
—

1.—Sn'N Qi' b(k —kt)$

)& (k/k')G(k, d) exp(ik r)dk. (11)

We can now verify that the local Geld acting on the
core at the origin is equal to the average field acting on
the electrons from that atom. These two fields are given,
respectively, by

is the Fourier transform of the electronic charge distri-
bution. From (6b) and (6c) we find

E(r)=E—47riNq Pt'(ki/kP)G(kt, d) exp(iki. r), (9)

where Eq. (1) was used to eliminate d. If we restrict
ourselves to spherically symmetric p, (r) and o (k), the
cubic symmetry of the cases we consider allows us to
replace ki(ki P)kt ' by —,'P in the summation, and a
similar simplification occurs in the integral in (13).
Thus the effective field is

&=1—o 2' p. (R')
Rs

(14)

To proceed with the explicit evaluation of y we now
assume that the electronic charge distribution is a
Gaussian.

p, (r)= (to/sr)'i'exp( —tor'). (\5)

If we introduce the dimensionless constant 8=ma',
Eq. (13c) gives

v=(B/ )'"(/")-2 ' -p(- '1'/B), (16)

where i=s/p+/ +sl ',sand the i; take on the values al-
ready discussed for the three cubic lattices. The primi-
tive cell volume e equals u', ~a', and 4u' for the simple
cubic, body-centered cubic, and face-centered cubic
lattices, respectively.

The reciprocal lattice sums in (16) are conveniently
expressed in terms of the sums

E,rr ——E+ (4n/3)PLop~(0) —Piro(ki) j (13b)

and the eRective field coefficient p of Eq. (2) is

y=op, (0)—Pt' o(kt). (13c)

We can convert (13c) to a summation in the direct
lattice if we replace o (ki) by its definition in (Sb) and
interchange the order of integration and summation.
We find

Ei (0)=E+—(2n') 'iq L1—Sn'N Qt' b(k —ki)$ S+(B)= Q exp( —n'nt'/B), (17a)

&& (k/k')o (k) exp(ik d)dk, (12a) S (B)= g (—1) exp( n'ns'/B)—

Ei.,(r)p, (r+ d) dr

=E+(2~s)-tiq [1—S~sN P, ' S(1 —k,)]

&((k/k')o( —k) expL( —ik d))dk, (12b)

where certain terms which vanish because of the odd
parity of the integral have been omitted. If we substi-
tute —k for k in (12b), it becomes identical to (12a),
and. the two effective fields are equal.

Since we are interested only in effects linear in the
polarization, we retain only the terms linear in d, and

=2S (B/4) —S (B). (17b)

The convergence of these sums is very rapid when 3
is small, but becomes slow for large B.Then we can use
the theta function transformation"

expt —(nil —s)'/B$ = (B/rr) ' ~s

m

X P exp( —BnP+2inss) . (18)

» E. T. Whittaker and G. N. Watson, A Course of 3IIodern
Analysis (Cambridge University Press, Cambridge, England,
1927), 4th ed. , p. 476.
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TAnrEI. Effective Geld constants andfractional charges for cubic lattices. Theeffective Geld constantsp andy are given in Eqs. (20)
and (29), respectively, and f is the fraction of the electronic charge on one atom which is contained within the atomic polyhedron cen-
tered at that atom. 8 is the width parameter nta for the electron distribution, where te is given in Eq. (15) and a is the lattice constant.
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3.5
4.0
5
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8
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Simp le cubic
v

0.0211
0.0561
0.0972
0.1410
0.2309
0.3182
0.3994
0.4733
0.5396
0.5984
0.6959
0.7704
0.8270
0.8696
0.9017
0.9259
0.9577
0.9757
0.9860
0.9953
0.9988
0.9997
0.9999
1.0000
1.0000

0.002448
0.063494
0.116634
0.179277
0.321570
0.464174
0.589576
0.692524
0.773809
0.836261
0.917728
0.960551
0.981769
0.991816
0.996409
0.998453
0.999725
0.999954
0.999992
1.000000
1.000000
1.000000
1,000000
1.000000
1.000000

Body-cen
f

0.0108
0.0295
0,0522
0.0776
0.1327
0.1905
0.2485
0.3052
0.3598
0.4117
0.5064
0.5886
0.6588
0.7181
0.7678
0.8091
0.8717
0.9141
0.9427
0.9746
0.9908
0.9967
0.9988
0.9996
0.9999

tered cubic
7

0.011224
0.031747
0.058323
0.089794
0.164938
0.253354
0.350471
0.449911
0.545238
0.631727
0.769959
0.862990
0.921072
0.955617
0.975495
0.986663
0.996177
0.998941
0.999714
0.999980
0.999999
1.000000
1.000000
1.000000
1.000000

Face-cent
f

0.0055
0.0151
0.0272
0.0409
0.0718
0.1057
0.1412
0.1776
0.2142
0.2506
0.3216
0.3889
0.4517
0.5096
0.5625
0.6106
0.6930
0.7593
0.8121
0.8864
0.9401
0.9686
0.9836
0.9915
0.9977

ered cubic
v

0.005612
0.015873
0.029161
0.044897
0.082481
0.126984
0.177412
0.232865
0.292209
0.353985
0.478282
0.59395/
0.693583
0.774522
0.837465
0,884808
0.944417
0.974253
0.988431
0.997812
0.999749
0.999973
0.999997
1.000000
1.000000

Rocksalt
7'

0.000000
0.000000
0.000000
0.000000
0.000000
0.000003
0.000057
0.000402
0.001619
0.004569
0.019208
0.049183
0.094969
0.153826
0.221669
0.294345
0.440631
0.573365
0.684090
0.837645
0.934996
0.975519
0.991161
0.996907
0.999645

Zincblende
7'

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000001
0.000012
0.000076
0.000310
0.002232
0.008306
0.021171
0.042534
0.072823
0.111366
0.207298
0.316668
0 427192
0.622189
0.793255
0.893573
0.94/481
0.974872
0.994615

Cesium chloride
v'

0.000000
0.000000
0.000012
0.000310
0.008306
0.042534
0.111366
0.207298
0.316668
0.427192
0.622189
0.765429
0.860374
0.919419
0.954581
0.974872
0.992630
0.997928
0.999435
0.99996i
0.999999
1.000000
1.000000
1.000000
1.000000

If z=0 this gives

S+(B)= (B/7r)'tsS+(rr'/B). (19)

Thus even for the worst case (B=7r) no more than three
terms in m' need to be used to give a relative error of
exp( —9s-) or less. Use of Eq. (18) is equivalent to using
Eq. (14) instead of Eq. (13c) to calculate p.

For the simple cubic lattice, Eq. (16) gives

v-= + (B/~)'"—+'(B), ( )

where the 1 arises from the point 1=0 that is excluded
from the sum in (16). For the body-centered cubic
space lattice we omit points for which /t+ls+ls is odd,
and obtain

y „=1+ (B/7r)»' ,'[S '(B)+—S '(B)7—. —(20b)

For the face-centered cubic space lattice, we must
include only I, which are all even or all odd, and find:

vt-= 1+4(B/~)'" k(~+(B)+S (B)3—'-
—'$$ (B)—S (B)j'. (20c)

III. RESULTS FOR MONATOMIC LATTICES

The numerical values of p for the simple cubic, body-
centered cubic, and face-centered cubic lattices given
in (20) have been evaluated for a series of values of the

cell
p, (r)dr, (21)

which is the fraction of the electronic charge contained
in the atomic polyhedron" centered at the center of the
charge distribution. Values of f obtained by numerical
integration are given for each value of 8 in Table I for
the three structures. For the simple cubic case we can
check the numerical integration, since (21) then gives

f-(B)= t. f(lB'")3'. (22)

The listed values which were checked were correct to
the four decimal places given, and we expect the error
in the remaining values, and for the other structures, to
be no more than one or two units in the last place given.
The numerical integration converges most slowly for

'~ See p. 286 of Ref.&7.

width parameter 8, and are listed in Table I. %e see
that they vary smoothly between the expected limits,
y=0 for the extreme diffuse limit 8=0, and y=1 for
electronic point charges, J3~~

It is instructive to present the results not in terms
of 8 .but in terms of a parameter that measures the
compactness of the electronic charge more directly.e use for this purpose the quantity
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the fcc lattice, probably because of the rather sharp
corners in the primitive cell. The evaluation of y is
numerically much simpler, and the values are given to
six decimals.

The effective field coefficients y for the simple cubic
and face-centered cubic lattices are shown as functions
of f in Fig. 1. The curve for the body-centered cubic
lattice falls very close to the fcc curve, and has therefore
been omitted.

For diffuse electronic charge distributions we find
that p f for very small values of f Whe. n the overlap
between neighboring electron distributions, as measured
by 1 f, g—oes to zero, we find that for the Gaussian
case 1—y (1—f)&, where p goes asymptotically to 4
as the overlap goes to zero. This dependence is specific
to the Gaussian distribution. If, as is perhaps more
reasonable for real solids, we have charge densities which
decay exponentially at large distances, then p ap-
proaches 2 in the limit of small overlap.

The most striking qualitative feature of the results
in Fig. 1 is that even for an overlap of 20%, i.e.,
f=0.8, p differs from 1 by less than 3%.This conclusion
will be weakened somewhat if charge distributions with
an exponential tail are considered instead of the
Gaussian distribution we chose for its simplicity, but
it suggests that for the monatomic cubic lattices the
Iorentz field is quite accurate until there is very sub-
stantial electronic overlap.

IV. DIATOMIC LATTICES

Most calculations involving effective fields in real
solids are carried out for diatomic structures, which
include many of the ionic crystals and semiconductors
for which relevant experiments have been carried out.
We therefore extend our results to the rocksalt, zinc-
blende, and cesium chloride structures, each of which
has two atoms (or ions) in the primitive cell.

We assume that the negative ions in the undisturbed
lattice are at the lattice points, and that the positive
ions are displaced by a basis vector b. The rectangular
comPonents of b are -', u, 0, 0; sra, sra, era; and —',a, —',a, isa;
for the rocksalt, zincblende, and cesium chloride struc-
tures, respectively, where a is the lattice constant. The
first two of these lattices have a face-centered cubic
Bravais lattice, while the last has a simple cubic Bravais
lattice.

The charges of the loosely bound electrons associated
with the positive and negative ions, are q+, and q „
respectively, and the displacements of the electrons
from their equilibrium positions are u+, and u „re-
spectively. Similarly we assume that the rigid cores
of the positive and negative ions have charges and
displacements q+„u+, and q „u „respectively. The
total polarization of the lattice is

P= Ã(g-cu+c+ /+supe+/ —cu—c+g—eu —e) i (23)

and charge neutrality requires that

g+c+ g+e+ g—c+g—e= 0 ~ (24)
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The calculation of the effective field acting on the
cores and the electrons of the two ions proceeds exactly
as in Sec. II, and will not be described. For each of the
two ions, we subtract the field of the ion itself from the
total field in the lattice to get the effective field acting
on the core and electrons of that ion. We find the ef-
fective fields to be

E+,= E+ (4srX/3) Ly~q~, (u~, —u+.)
+V—(u— u+ )+'7 —V- ("— u+ )j (25a)

E+ =E+ (4~&/3) Lv+V+. (u+.—u+.)
+7+ g—(u—.—u+.)+7.0-.(u—.—u+.)j (25b)

E,=E+ (4srX/3)(g, (u+,—u, )
+y+'q+. (u+, —u, )+y q, (u,—u, )j, (25c)

E,= E+ (4srX/3)gy' q~, (u~,-u, )
+7 0+ (u+ u-.)+7—V—(u- u- )] (25d)

where, for example, E, is the effective 6eld acting on
the electrons of the negative ion. Here y is the effective
field constant for the Bravais lattice (fcc for rocksalt
and zincblende, sc for cesium chloride) as given in Kq.
(20), and the subscript + or —indicates that we must
use for the parameter 8=ma' the value 8+ or 8 ap-
propriate for the electron distributions on the positive
or negative ions, respectively. The new coefFicient p'
is defined by

y'= 1—Q i o (ki) exp (ski b), (26)

where the sum is over all reciprocal lattice vectors, and
b is the basis vector for the particular lattice. For the
Gaussian" charge distribution of Eq. (15), this gives

7'= 1—P t expL( —srsP/8)+ (27r/a)1 b$, (27)

where 1 has the same significance as in Sec. II. The

'3 A Gaussian model was used to calculate crystal potentials by
J. L. Birman, Phys. Rev. 97, 897 (1955).

FRACTION OF ELECTRONIC CHARGE IN ATOMIC POLYHEDRON

Pro. 1. The eRective field constant v, ss given in Eq. (20) for
the simple cubic and face-centered cubic lattices, is plotted versus
f, the fraction of the electronic charge of one atom which lies
within the atomic polyhedron centered at the atom. The curve for
the body-centered cubic lattice would practically coincide with
the fcc curve.
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subscripts + and —on y' have the same significance as
for y, and the subscript r means that we must use for
8 the value 8,=8+8 /(8++8 ) .

The effective field expressions in (26) have the ex-
pected values in some simple limiting cases. For ex-
ample, if 8+ and 8 (and therefore, also 8„) become
infinite, corresponding to compact electron distribu-
tions, both y and y' go to I, and we can verify that all
four effective fields reduce to the Lorentz field by using
Eqs. (23) and (24). If one of the electron distributions
becomes very broad, corresponding to 8 0, the as-
sociated values of y and y', including y„', go to zero, and
the effective Geld acting on that electron becomes just
the average electric field E. The effective field acting
on the cores does not, and should not, go to E in this case.
One further check on the expressions in (25) is that the
total force on the four charges in the primitive cell van-
ishes identically.

When we substitute in Eq. (26) the values of b
appropriate for the rocksalt, zincblende, and cesium
chloride lattices, we find that in each case y' can be
written

y'=1 —P. exp( —~'P/8)+P& exp( —~'P/8). (28)

For the rocksalt structure the first summation is over
values of the I, all of which are even, and the second
summation is over values which are all odd. Thus, in
the notation of the previous section

v'(8) =1—:LS(8)+S-(8)7'
+sr LS+(8)—S (8)7' (rocksalt) . (29a)

For the zincblende lattice, the first sum in (26) is over
values of the l, which are all even and whose sum is
divisible by 4, and the second sum is over the remaining
even values. For this case we Gnd

y'(8) = 1—LS (8/4) 7' (zincblende) . (29b)

Finally for the cesium chloride lattice the first sum in
(26) is over t; whose sum is even, and the second sum is
over /; whose sum is odd, and we have

y'(8) = 1—LS (8)7' (cesium chloride). (29c)

Values of y' for the three diatomic cubic lattices are
given for various values of 8 in Table I. If we character-
ize the electron distribution by the quantity f for the
Bravais lattice (f describes the overlap of the electrons
with others of the same sublattice), we can plot y'
against f. These curves are shown in Fig. 2.

The rapid decrease in y' when f decreases from 1
arises because y' depends on nearest-neighbor overlap,
while f measures the overlap between next-nearest
neighbors. We see from Fig. 2 that even a small overlap
between next-nearest-neighbor charge distributions
implies a marked departure of y' from 1, and therefore
a marked departure of the effective field from the
Lorentz Geld.
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FRACTION OF ELECTRONIC CHARGE

Fxo. 2. The effective field constant y' for the rocksalt, zincblende,
and cesium chloride structures, given in Eq. (29), is plotted versus
the charge fraction f in the atomic polyhedron for the correspond-
ing Bravais lattice.

The asymptotic dependence of y on f is given by
1—y'- (1—f)",where for Gaussian charge distributions

P approaches 2, ss, and 3, respectively, for the rocksalt,
zincblende, and cesium chloride lattices as f~1. If
the charge distribution has an exponential tail, these
values of p must be replaced by their square roots.

The polarization of the tightly bound electrons, which
has been neglected in our treatment so far, can be taken
into account by a straightforward extension of Eq. (25).
We will have an additional effective field expression for
each group of tightly bound electrons, and their dis-
placements will enter in the effective fields acting on
the remaining charges in the lattice. It is not possible to
simplify all the resulting expressions in such a way that
only the net polarization of the tightly bound electrons
appears.

V. DISCUSSION

The results of the previous section show that the
effective Gelds can deviate substantially from the
Lorentz field when there is overlap of the electron dis-
tributions. This was pointed out by Mott and Gurney, '
and has recently been considered by Brodsky and Bur-
stein4 in relation to the effective charge in III-V
semiconductors. Our results may be helpful in making
possible crude quantitative estimates of the effective
field for actual crystals.

In applying our results to the oscillator strengths of
defects in ionic crystals, one must take into account the
corrections which results because the defect has dif-
ferent properties from those of the defect site in a per-
fect crystal. These corrections have been discussed by
Herring. "

For application to the theory of lattice vibrations we

'4 M. H. Brodsky and E. Burstein, Bull. Am. Phys. Soc. 7, 214
(1962).

» C. Herring, in I'hotoconductivity Conference, edited by R. G.
Breckenridge, B. R. Russell, and E. E. Hahn (John Wiley R
Sons, Inc. , New York, 1956), p. 81.
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note that the effective fields in (25) depend only on
differences of displacements, and therefore lead to force
terms of the same form as the short-range "elastic"
interactions. Thus the equations of motion of the lattice"
will be unchanged, and the only e6ect of the corrections
we have found to the Lorentz eBective Geld will be to
change the interpretation of some of the coefIIcients in
the equations of motion for the long-wavelength optical
modes.

Effective fields for waves of arbitrary wavelength
have recently been considered by Cochran. "His results

"See, for example, Eq. (3.2) of W. Cochran, in Advances ia
Physics, . edited by B. H. Flowers (Taylor and Francis, Ltd.
London, 1960), Vol. 9, p. 387.

'i W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963);

are for rigid ions but, if modified to allow for separate
displacements of the core and one or more electron
shells, they are equivalent in the long-wavelength limit
to the results given here.
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Nuclear-magnetic-resonance-domain magnetization data for ferromagnetic CrBr3 have been extended
over the range 1—20'K. Using the low-temperature ((5.25'K) data and Holstein-Primakoff spin-wave
theory without the usual long-wavelength approximation, we have shown that exchange constants reported
by Gossard, Jaccarino, and Remeika are in error by about 40%. This error resulted from the long-wavelength
approximation, which causes, even at temperatures —,'th the Curie temperature, errors much larger than ex-
perimental errors. In the low-temperature range, we have found a 20% range for the values of the exchange
constants which will explain the experimental results. However, by using spin-wave renormalization tech-
niques to interpret the intermediate temperature data, the acceptable range in values for the exchange
constants is narrowed to less than 2%.We have been able to fit the experimental NMR frequencies, through
out the temperature range of 1—20'K, with the renormalized spin-wave theory. The resulting rms error of
16.2 kc/sec lies within the mean experimental error, thereby giving experimental verification to the approxi-
mations used in developing the spin-wave renormalization. This data fit gives 8.25'K for the intralayer
exchange constant, 0.497'K for the interlayer exchange constant, and 58.099 Mc/sec for the O'K, zero-field
Crs' resonance frequency.

I. INTRODUCTION

ONSIDERABLE interest has been shown in recent~ years in comparisons of experimental results with
predictions of the Heisenberg model of magnetism; e.g.,
measurements of the magnetization of a variety of
magnetically ordered crystals have been made and the
results interpreted by spin-wave theories of varying
degrees of sophistication. ' In particular, two nuclear-
magnetic-resonance (NMR) magnetization rneasure-
ments and their interpretations have a bearing on the
present investigation: (1) The work of Gossard, Jacca-
rino, and Remeika' (hereafter referred to as GJR) on

$ This work performed under the auspices of the U. S. Atomic
Energy Commission.

*Now at Bellcomm, Incorporated, Washington, D. C.
' Exhaustive references may be found in the review article of

P. W. Anderson, Solid State Phys, 14, 99 (1963).
IA. C. Gossard, V. Jaccarino, and J. P. Remeika, Phys. Rev.

Letters 7,. 122 (1961).

ferromagnetic CrBrs, and (2) the work of Narath' on
antiferromagnetic CrC13. At low temperatures, the
structures of these crystals are isomorphic, 4 and can be
represented by Fig. 1 (a). In both cases, the strongest
exchange coupling is the ferromagnetic coupling J~, of
nearest neighbors in the hexagonal basal plane. The
interlayer exchange coupling Jl, is ferromagnetic in
CrBr3 and antiferromagnetic in CrCI3.

We have noticed an inconsistency between J& re-
ported for CrBr3 and the one reported for CrCI3,' that
is, for CrCls the value Jr/k=4. 5'K obtained via spin-
wave theory is considerably larger than the one deduced
from the ordering temperature T, by means of the
molecular field approximation

Jr/k=3T, /(2z5(Sj1)j,
' A. Narath, Phys. Rev. Letters 7, 410 (1961);Phys. Rev. 131,

1929 (1963).' S. Morosin and A. Narath, J. Chem. Phys. 40, 1958 (1964).


