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faces ("fast" and "slow" waves) so formed is shown in
Fig. 5.

In these diagrams the functions P~ are given by

&1+xv'i

In both extremes of vanishing and very large wave
number the fast wave becomes isotropic. For small wave-
lengths the fast wave becomes the vacuum electro-
dynamic mode oP=c'k', while for large wavelengths the
fast wave collapses to the nonpropagating mode
co =t(Qp . Similarly the slow wave, in the limit of small
wavelengths, becomes a nonpropagating anisotropic

wave co'=Qos(1+x sin'0), while in the limit of large
wavelengths it becomes a propagating anisotropic wave
(&o'/k') = (c'/x) (1+x sin'0). These surfaces are sketched
in Fig. 6.
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Several workers have examined the enhancement of nuclear magnetic resonance within a Bloch wall, and
have demonstrated the existence of both bound and free "spin-wave" excitations on the Bloch wall structure.
The free states correspond to precessional excitations akin to ordinary spin-wave excitations, while the bound
states form a convenient basis for the representation of domain-wall motion. We derive the spectrum of
both types of excitations, including exchange, anisotropy, and dipole Geld contributions for an infinite uni-
axial ferromagnet. In contrast to earlier treatments, we treat the dipole field exactly (in the magnetostatic
approximation), and show that this leads to a translational spectrum in which many states are degenerate
with the "uniform translation, "which is the translational mode excited by a uniform external magnetic
Geld. The existence of such degeneracy is required for damping by imperfections to occur. The precessional
spectrum is greatly different from the usual spin-wave spectrum, and, in particular, is not a symmetric func-
tion of k. The dipole Gelds lead to strong interactions, not conserving momentum, between the precessional
modes; such interactions may explain the increase in ferromagnetic-resonance linewidth which is observed
experimentally in the presence of a domain wall (in low dc magnetic fields). The motion of the domain wall,
when it is bound to a certain position in the crystal by linear restoring forces, is studied by a Green's function
technique. The domain-wall effective mass so obtained is identical to the expression given by Doring, and
the domain-wall damping parameter proves to be simply related to the energy dispersion of the uniform
translational mode. We calculate this energy dispersion due to scattering by the dipole Gelds, and due to
"Quctuations, "as used by Clogston et at. to explain the linewidth in disordered systems, such as the ferrites.
The damping due to intrinsic scattering processes is proportional to T, while the damping due to "Quctua-
tions" is essentially temperature-independent. In disordered systems, such as ferrite, the resonance line-
width and domain-wall damping due to "Quctuations" should agree to within a factor of order unity. The
motion is not describable by the Landau-Lifshitz equation. This communication is intended to demonstrate
that a formulation for the quantum-mechanical study of domain-wall motion exists, and has the properties
necessary to explain the losses which occur during such motion; it is not intended to lead to any quantitative
results which can be directly compared with experiment. We also consider the specific heat contribution due
to the domain wall, and we find that this is proportional to T above about 10 ' 'K. It should be possible to
observe such a specific heat contribution in YIG below 1'K.

I. INTRODUCTION

~

~ ~

EVERAL workers' ' have considered the "spin-
wave" excitations on the Sloch wall structure, both

~Based on a thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Science in Electrical
Engineering at the Massachusetts Institute of Technology. This
work was sponsored by the U. S. Once of Naval Research, the
U. S. Army Signal Corps, and the U. S. Air Force.' F. Boutron, Compt. Rend. 252, 3955 (1961).

s J. M. Winter, Phys. Rev. 124, 452 (1961).
3 D. I. Paul, Phys. Rev. 126, 78 {1962).' D. I. Paul, Phys. Rev. 131, 178 (1963).

in ferro- and antiferromagnetic systems. It appears to
be generally true that there exist two types of these
excitations: Those bound to the wall, corresponding to
translation of the wall (these all tend to zero well into
the domains); and those which tend to plane waves
well into the domains, corresponding to precessional
modes in the domain-wall (DW) configuration. Previous
work with these excitations has been aimed at evaluat-
ing the contribution to the nuclear magnetic resonance
linewidth due to the presence of the Bloch wall; the
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present work is based on the realization that the bound
excitations, the "translational modes, " form a con-
venient set of basis functions for the quantum-mechani-
cal analysis of DW motion. The amplitude of a parti-
cular translational mode, the "uniform translation, " is
directly proportional to the displacement of the wall,
and our final object is to calculate quantum-mechani-
cally the amplitude of the mode in response to an
external magnetic Geld. Such a treatment is convenient
for calculation of losses and the associated DW damping.

We choose to discuss a uniaxial ferromagnet of infinite
extent. Provided that the limit of infinite sample
volume is properly obtained, a stable, planar domain-
wall configuration exists'; we choose this con6guration
as a ground state, and consider the excitations on this
ground state. The spectra of these excitations are
derived from a Hamiltonian including exchange, anisot-

ropy, and dipole field contributions. An exact treatment
of the dipole 6eld, within the magnetostatic approxima-
tion, generalizes the calculation beyond those given
previously. ' ' In order to facilitate this treatment of the
dipole field, the entire calculation is carried out in the
continuum approximation, where we work with an
angular momentum density rather than with a lattice
of spins. This treatment shows that the uniform transla-
tional mode is degenerate with a number of other trans-
lational modes when the DW is bound to some position
in the lattice by linear restoring forces. Such degeneracy
plays a major role in theory of DW damping due to
imperfections in a fashion similar to the theory of the

ferromagnetic resonance linewidth. '
In Sec. II, the general formulation of the problem is

discussed, and the operators for small deviations from
static structure are introduced through the Holstein-
PrimakoB transformation. ' In Sec. III, the Hamiltonian
is diagonalized to obtain the energies of both transla-
tional and precessional excitations, plus terms describing
the interactions among these excitations. In Sec. IV, we

discuss the equilibrium properties of the system, and we
find that the temperature dependence of the saturation
magnetization M, (2') depends on position in the sample,
though this eGect is probably not measurable. In Sec. V,
the equation of motion of the domain wall is derived
using a Green's function technique, and finally, in
Sec. VI, we consider some processes which can con-
tribute to the DW damping.

II. GENERAL FORMULATION

We envision an infinite plate of a uniaxial ferro-
magnet, with the easy axis, chosen to be the x axis, lying
in the plane of the plate, and the s axis normal to the
plane (Fig. 1).We take the plate thickness to be 2L, and

W. F. Brown, Jr., Magnetostatic Princip/es in Ferromagnetism
(North-Holland Publishing Company, Amsterdam, 1962), Chap.
7, Secs. 5 and 6.

A. M. Clogston, H. Suhl, L. R. Walker, and P. Anderson,
I. Phys. Chem. Solids 1, 129 (1956).' T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

let L —+ ~. The magnetization at the plane s= —L is
constrained to lie in the +x direction, while it lies in the
—z direction at s=+L. If rr is the exchange constant,
P the anisotropy constant, as defined in Eq. (4) below,
and p, is the angle between the magnetization and the
x axis, it is well known' ' that, in the limit L —& ~, the
free energy is extremal if

sing, (s) =sech, d =

where sp is the value of z for which &p, =pr/2 (coordinate
of the DW center). Brown' has shown that this solution
is stable, or minimizes the free energy, protiided that

pinned-spin boundary conditions are maintained on the
planes s= +L, where L —+ ~. Furthermore, there are
no surface poles, and the internal magnetic field, which
we call the dipole field, satisfies

V hg;, = —V M; VXhd;, =0. (2)

3('.= (-,'nL(VMi)'+ (VMs)'+ (VMs)'j

——,'PM is+-', yphs;p') d V, (4)

when the x axis corresponds to the easy axis, where o. is
the exchange constant, and P the anisotropy constant.
In addition, the Hamiltonian will contain a term
—

lap J'Hp' Md V due to the external field Hp(t); we
neglect this term for the time being, and consider its
effects in Sec. V below.

It is very convenient for our purposes to formulate
the problem in terms of deviations from the static DW

8 I. A. Akhiezer, V. G. Bar'Yakhtar, and M. I. Kaganov, Usp.
Fiz. Nauk 71, 533 (1960) LEnglish transl. : Soviet Phys. —Usp. 3,
56/, 661 (1961)j; Usp. Fiz. Nauk 72, 3 (1960) LKnglish transl. :
Soviet Phys. —Usp. 3, 661 (1961).

It is necessary to approach infinite volume in the ~armer
outlined above in order to guarantee the stability of the
DW structure (the pinned-spin boundary conditions
prevent the ferromagnet from relaxing to the state of
uniform magnetization), and to eliminate internal
fields which depend on the sample geometry.

The problem may be quantized, in the continuum
approximation, by treating the components 3f~, 3f2, M3
of the magnetization as components of a vector angular-
momentum density operator, with the commutation
relations'

PM;(r, t),M, (r', t)j= inks;;sM—k(r, t)b(r r'), (—3)

in which e;,I, is the unit antisymmetric tensor, and y is
the magnitude of the gyrornagnetic ratio y=g~ e~/2m.
We also treat the components of the dipole field, as
determined from Eq. (2), as quantum-mechanical
operators. Use of the continuum approximation facili-
tates the solution of Eq. (2).

The Hamiltonian of the ferromagnet, assuming iso-
tropic exchange, is taken to be
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structure given by Eq. (1).We accomplish this by going
into the wall (primed) coordinates (ai, ao, ao) in Fig. 1,
where the 3' direction lies along M as given by Eq. (1).
The primed coordinates are helical coordinates obtained
by a space-dependent rotation, as follows: let E. be an
operator giving infinitesimal rotations about the s axis,
so that

[R,Mi(r, t)j=iItMo(r, t);

[R,Mo(r, t)j=—iItMi(r, t) 7 [R7Mo(r, t))=0.
(5)

Then the operators giving the deviations from static
structure, in the primed coordinates, are

Mi'(r, t) = e '«"'"Mp(r, t)e'«»'",

(r t) —e i «R/)hM —
(r t)ei«R) o

Mo'(r, t) =e '«»"M, (r, t)e'& R)"
(6)

grata) '(2

M, '(r, t) —iM, '(r, t)=(27hM„)'n(1 —
~

o; (7)
2M. i

It can be shown that the M satisfy the commutation
relations [Eq. (3)$, or in other words that these com-
mutation relations are invariants under space-dependent
rotations of coordinates. The advantage in using the 3I
lies in the fact that for small deviations from static
structure, M~' and M2' are expected to be small, while
M3' 3fo, where Mo is the magnitude of the magnetiza-
tion vector [Mp(Mp+1) =Mo'). Because of the relative
sizes of the operators 3f, and because of the invariance
of the commutation relations, we may introduce the
Holstein-Primako67 transformation to the operators
of a Bose Geld:

grata) 'I'
M, '(rt)+iM, '(rt) = (27h, M,)'"o'(1 ,

—
2M() )

keeping only the first few terms in the expansion of the
square roots in Eq. (7).

In order to consider small displacements of the DW
about its equilibrium position, we introduce into the
Hamiltonian [Eq. (4)j the term'

E(Mi')'d V.

It will be veri6ed below that this term leads to linear
restoring forces acting on the wall.

Suppose that the wall is bound to the point so ——0, and
consider small excursions about the point op=0. Then,
if ( ) denotes the average value of an operator over a
canonical ensemble, using Eq. (1),

(M, (r,t))=Mp cosy, [s—sp(t) j—Mp cosy (s)

dy. (s)
+Mo&o(t) siny, (s)

ds

Mpsp(t)= Mo cosy, (s)+ sin'y, (s) . (10)

On the other hand, Eqs. (6) may be inverted to give

Mi(r, t) =M, '(r, t) cosy,.(s) —Mi'(r, t) siny, (s). (11)

Taking the canonical average of Eq. (11), and com-
paring to Eq. (10), we find'

M o&o(t)
(M, '(r, t) )= — sin y, (s)

M oso(t) (s
sech! — . (12)

d kd
M o'(r, t) =Mo yea"a, —

QS=O

w here Equation (12) connects the wall displacement sp(t) to a

[a(r,t)at(r', t)j=b(r —r'), (8) calculable quantum-mechanical average. By finding how
(Mi'(r, t)) depends on an external magnetic field, we

and we ob«in the second-quanti«d Hamil«»an by obtain the DW displacement from Eq. (12).
It is not necessary to restrict ourselves to small

excursions of the DW from an equilibrium position in
order to apply the formalism of Eqs. (6) and (7). When
the DW may assume any position in the crystal (sp
arbitrary), we can get small deviations and hence
expand the square roots in Eq. (7) by letting the
primed coordinate system move with the domain wall
and treating small deviations from static structure in a

! ~ coordinate system in which the DW is stationary. The
Hamiltonian is the same as that given in Eq. (4) for

= r I
small DW velocities since the lattice oi spina has heen
replaced by continuous 6elds in the continuum approxi-

! 0) mation and an observer at the center of the wall cannot
say whether he is moving with respect to these con-

Z=-L y Z=L tinuous fields. The equations governing the motion of
the wall are obtained by setting (Mi') =0 in the moving
coordinate system. However, this situation is physically

FIG. 1. Coordinate systems. uninteresting, since a DW is always, in reality, bound



ANAKJAM ES

ofona]. izationsimplifies the g
he wall,

tation greatly si P
resence of t e

represen . . Because of the p
but the use «

th Hamilton'an
homogeneou, .

the
atia]}y i.n o

es eliminates
the problem is sp

ay plane waves,
t leas

13), rather than, y '
homogeneity,d' ffcu}ties asso

l modes are conas

A4&4

l ting wall isfreely translating
ivalent to a w

'
force is zero

not eq —the coerciv,
f rthei. We

straining
shall not me

'
d veloped

influences —
entio»former case) ~

t ut that th«orm
11, and

an we s
ma}ism evme

ab
pr
St

F

far as the translat

AMILTONIANALIZATION THE HAIII DIAGONA

in terms of

ikg —tanh( /

g(r)1tI, (r)d V= (2~)'d8 k, —k, ');

rely wis
'

bl to a freely tra
f co

h«
nslating.so a licg, e o

roken free o

sste a n 4t e a n theress the Hamiltonian

ei e
'

n q. (4)$ 1s trans
}1ourier representa io nsi

t &2,e'~" sech (s/d);fa= (1

f t LE.f

ld contri u

k =0). For

diagona izan r stal, then infinite crystal, the or

men t of the magnet

by QI, and Pp are

expand hq;p 1n p a

1

k' .
I, (r)yg (r)dU= (2m)'b(k —k (14)

hg;p(r, t)

»en kXh, =0,=0 and

hg (t)e'"'dk. (17)

QI, (r)&I, (r)d V=O

resentation ish Fourier reprtion to t eThe transforma
'

effected by writing

M)e-"'d V.h„(t) =— (~ e-

'ntot ee c
' '

n h Hami}tonian isThe contribution

r t = i, (t)iP„(r)dk,a(r, t) =

(2')'

i- t(t)P, *(r)dk,at(r, t) = ~ a*

a„(t)y„(r)dk;

hI, h gdk.; 'dU=
2(2~)'

aI, by writing
f

o erators I„aj,
terms of these ope, oents of in e

suits into q.
p

nsform pairs
d 15), andpu

'
su

Using t eh Fourier trans o

(2s-)'
apt (t)yg*(r) dk. sech n-kd/2);e'"' sech(s/d)ds=~d sech ~

tb~) an gy)d a aj, ~ satis yf the equal timeThe operators i I„ fs, a
commu at tion relations

7rkd 2);e'"' tang s/d)ds i7rd csch=(7r (20)

= (2s-)'d8(k, —k, '),
a t =(2s-)'d5(k —k'),aa&ay~ 1 (16)

=s.kd' csch(vrkd/2),e'"' sech'(s/d)de=a. c

for translationse o erators or
li-f the t 1Rtio

st al'e Bose OPela e sl
f "o fo

tu es 1 as
Choice of Eq.

os. , and 607.8, respective y,
'

el
tht fo tho d i t

F ster, Four'
dI

' ' P'-'-t:-
tscaI, APP/icatson, (D. Van os
1948).



QUANTUM THEORY OF DOMAIN —WALL MOTION

operators, second order in the precession operators, we obtain for Eq. (19)

yAMo
Kq;~ =const+

(2z)'
R(k)a„ta„—

R(k) — 1
(asia st+a sag) dk+ dkdk'X(k; k')ushas.

2 (27r)'

(2z.)'
dkdk'Xr (kk') aj, tas 1+conj+

(2z)'
f (k)a&tf I,dk+ conj

(2z.)'

yAMo
Y', (k)asti' stdk+conj+ dk, P(kt)(sigh

(2z.)'d

Q(k )
It: —A: —k k

2

c (k„k,s, k&s)5(k„+k&s—k, s)t »fstf, dk„dk„dk, 3+conj
(2z-)'d'

4(k~rk~s, k~sk~4) b(k&&+k&&—k, s
—k&4)i rid'sti, &4dk, rdk, sdk, sdk~4+«nj

(2z.)sd4

4,(k„k„k„;k,4)5(k„+k,s+k, s
—k,4)i»i, tfst|4dk„dk„dk„dk, 4+conj, (21)

(2z.)'d'

where "conj" denotes the Hermitian conjugate of the term immediately preceding, and where

P ad
P(kg) =

k'dk - (z.kdq (~ttd)—
(t'r d)' csch'~ ~+ (1+4„d)' sech'~

tP+t' E 2 )

Q(k~) =—
4 s kP+k'

(z pd l (z.kd)
(k d)' csch'(

)

—[1—(k„d)'] sech'(E2) (2i
po

R(k) = [(P 2d2 P d)2+$2d2(1+/ d)2] ~

2k'd'[1+ (k,d)']
(22)

po
R(k) = [(k 'd' ts 'd')+k'd'—(1—k 'd')]'

2k'd'[1+ (k,d)']

p ad pox'd+(; 4)=—(V~)' +r(;4)=—h~)'

The approximation used in obtaining the expressions for + and +~ is the "Winter approximation"
hq;, ———Ms (r,t)l„which is discussed in more detail below. We shall not need numerical expressions for 7; 7'r,

X, X&, and 4 in what follows, and we therefore do not give expressions for these quantities.
The Hamiltonian is now diagonalized by the method of Bogoliubov. "We introduce the unitary transformations

fs=usts+vs*t st,

aI =~I&s+&s & I 1, —

(23)

and choose the c numbers I&, v&, zv&, and x& so that ts and c& satisfy commutation relations like Eq. (16), and also
so that the two-body Hamiltonian, excepting the terms in X, X&, Y, and Y&, is diagonal in the number operators

'~ N. Bogoliubov, Zh. Eirsperim. i Teor. Fiz. 19, 256 (1948l.
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momentum (components of k) are not conserved. When
these terms are small, as they are for k nearly perpen-
dicular to the plane of the DW, they may be treated as
scattering terms; these terms probably offer an explana-
tion of the enhancement of the resonance linewidth due
to the presence of the wall. If these terms become
su%.ciently large, however, the precessional Hamiltonian
cannot be regarded as diagonalized (the excitations at eq

are too short-lived). We are not directly concerned with
the precessional states here, except as they may act as a
reservoir for the scattering of the translational modes
through the terms of H;„~, and we do not consider this
problem further.

We show in Sec. V that a uniform external magnetic
field excites only the translational mode with k=0, the
"uniform translation, " and does not excite any preces-
sional modes in the first order. The scattering due to the

terms in H; t conserves the transverse wave vector k~,

and also conserves energy, since H;„t, is Hermitian.

Because ei,)ei for all k~, as we show below, such scatter-

ing does not occur, and the precessional modes are

completely decoupled and unexcited in the 6rst order.
Hence we may neglect H„„and H;„t altogether, and

concentrate on the translational states, in order to
obtain the 6rst-order response of the system to an

external Geld.

Finally, the terms C, C», O', N~, and 42 in the transla-

tional Hamiltonian describe interactions involving three

or more translational modes, in which the momentum is

conserved. We show in Sec. VI that only the terms in
0' contribute to the DW damping.

In order to obtain the translational spectrum, we

must And the integrals

x2

„x'+a'
csch'xdx; I2(a) = sech'-xdx,

„x'+u'
(26)

in terms of which P, Q, and ei, are

P (k,) = (iso/4) (k~d cos pr)'Ii (n k ~d/2)+ (iso/4) (1+kid sin pq)'I2(n k~d/2);

Q(k ) = (lip/4) (—kid cosy')'Ii(~kd/2)+ (isa/4) (1 kPd' s—in'yi)I&(sk&d/2);
ep/&AMo= (lip /2)k~dI2(7rk~d/2) sin ion+ {LnkP+ (po/2)I2(7rk, d/2)gL2E+nkP+ (iso/2)kPd'

&((It(sk,/2) cos'qi+I2(7rk, d/2) sin'q r)1)'".

(27)

With the help of the relations

1
Qt gt g2$7Igg)y px'+a' 2a

ysech'x=- $+1fdy e

2 „sinh(s y/2)

Ig(a) =It(a) —2I,(2a),

7r 00 /a)"——2+2

+sees(

—1) +'1 (s~r+1)i —i, u& —;
8 m=1

It(~) = '
7r2

G~ 'X)
q

(.38

integrals Ii(u) and I2(a) are plotted in Fig. 2, and the
spectrum eq/yAMa is plotted against k~d in Fig. 3. The
spectrum is not symmetrical (e&We &), which we

emphasize by plotting t, I, in the left-hand quadrant in

Fig. 3(a). The minimum energy occurs for k/0,
yq=3n/2, and the form of the minimum is shown in
Fig. 3(b) for several values of P/lsp and 2Z'/lsp. All eg

curves pass through the same value, ea ——y&Mo(2lsojC)'l'
for k~ ——0; however, since ei, &eo for some ki, there exist
states in the spectrum which are degenerate with the
uniform translation k~=0. The existence of this de-

2.0

00 (g tS

2+2 g (—1) (2 +'—1)ml (m+1)~—
m=1 7r

l.5

I2(a) = a&—; (28)2'

I.o

0.5

g~
,6a'

where t (nz) is the Riemann zeta function. " The
"E Jahnke and F. Emde, Tables of Fvnolloas (Dover Publi-

cations, New York, 1945).

0
0

(
7T

Fro. 2. The quantities Is(xx/2) and xI~(xx/2)
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eit/yhMo

=vr/2

ek/e,

l,0

0.75

from our results bj' setting Ii and Is equal to their values
at hi=0. This follows since

BM3' BMg' BM 3'
V M= cosy, — siny, + siny,

fk =3'/2

0.50

0.25

(29)
Bs

83f2'

cosy, +

k~d
l I

ktd 3. 2
(b)

0

Fin. 3. Translational eigenvalue spectrum: (a) complete
spectrum; (b) detail of spectrum for yq=3~/2.

generacy essentially solves the problem of the origin of
DW damping.

Winter' has obtained a translational spectrum some-
what similar to that shown in Fig. 3 by writing the
dipole field in the form hs;n ———Ms'(r, t)1,. This is a
long-wavelength approximation, which we can obtain

which we get from (6). For %&=0, 8/Bx= 8/By=0, and
Winter s results follow immediately. In this approxima-
tion, which we call the "Winter approximation, " the
degeneracy in the translational spectrum is removed,
and we use the Winter approximation for the dipole 6eld
wherever this degeneracy is not essential in the present
work. We have already used it in obtaining approximate
forms for the quantities 4 and 4t in Eq. (22), since these
terms are merely scattering cross sections.

The precessional spectrum is obtained from Eq. (25),
if 8" is the angle between k and the s axis, y" the angle
between kt and the x axis, as

e" pskd sin'8s sin ys (1+k'd') (1+k'd' cos'8')
+ Po sin'81 sin'

yAMp (1+

(1+k'ds cos'8')

k'd' cos'8") (1+ksds cos'8 )'
(1+sin'8q sin'ys+k'd' cos'8"+k'd' sin'8s sin'ys) 1/2

+2&(uo+p+&k')+ (p+&k') vo +p+nk' (30)

and is shown in Fig. 4. The precessional spectrum is also

asymmetrical; the smallest es occur at k=0, 8s ——0, and
is es/yHEs ——L(2E+P) (ps+P) j'i'. Since P)0, it follows
that co) eo, since both ej and e~ increase no faster than
ak', it follows that e")e'. There is thus no value of k' for
which ~1 = e~, and no interactions occur between the
translational and precessional modes.

The precessional spectrum e~ does not reduce to the
ordinary spin-wave spectrum in the limit d —+ ix), as it
should. This occurs because, in this limit, both X and
Xt of Eq. (24) approach 8 functions. When this is
taken into account, and the precessional Hamiltonian
is properly diagonalized, we recover the ordinary spin-
wave spectrum.

Neither the precessional nor translational spectrum is
synimetric under the operation k„—+ —k„. Because the
chosen DW structure is degenerate with another,
different structure (obtained by putting y,. ~ —y, , or
M„~ —M„), this lack of symmetry does not violate
any general spatial or time-reversal symmetry con-
siderations. We can understand how the lack of sym-
metry is induced by the dipole 6eld by considering a
long-wavelength (kd«1) precessional excitation with k
in the y direction:

«/A %M. «/yhMo

=O,m

$(2K+P)(„o+P)—
f(2K+P)(p, o+P)

We satisfy the long-wavelength condition by setting
d ~ 0, in which case siny, (s)~0, cossy, (s)~1, and

+1 s&0)
cosy, (s) —1, s)0

(the deviation M, always points toward the wall); the
dipole 6eld is then the solution of

VXh=0; V h= VM=2B—pb(s) ikAp, —
or

k, =Bs cosy, (s) —iksA s.
For ks(&1, this dipole 6eld also points toward the wall.
The energy of the spins in the dipole field is proportional
to —M h, and this increases for positive k, decreases for

M =Ms cosy, (s) —A "e"&siny. (s) cosy, (s)

M„=Ms siny, (s)+A "e'""cos'y', (s)

M, =Bye'"" cosy, (s).
fk =YI'/237r kd

FIG. 4. Precessional eigenvalue spectrum.

kd
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negative k, so that the spectrum is as shown in Fig. 4.
The same sort of thing happens for the translational
excitations; the lack of symmetry occurs because the
s-directed dipole 6eld depends on k„, which in turn
occurs because of the peculiar form of the excitations.
The 2' dependence of these excitations is precisely what
is required to produce a dipole 6eld h, such that the
product —M,h, increases for positive k„and decreases
for negative k„. Furthermore, every excitation consists
of a propagating wavelike disturbance plus a translation
of the wall so that while the disturbance is propagating
along the +y direction, say, the domain walt is moping
out from underneath it The .field seen by the disturbance
in this situation is so nonuniform that all bets are off
regarding the symmetry of the spectrum.

(tkttk') = (2m)'db (ki —ki') nk ——

(2s ) '8 (k—k')
CIe CIe

exp(sk/ke T) —1

(27r)'d h (k,—k,')
)

exp (ek/ke T)—1
(31)

where, as before, ( ) denotes the average over a
canonical ensemble. The only nonvanishing (M,') is
(Ms'), for which

IV. EQUILIBRIUM PROPERTIES

We now consider the evaluation of the saturation
magnetization M, (T) of the sample. In thermal equilib-
rium we may write

7A sech'(s/d)
(Ms') =Mp—

2 (2ir)'d

yh sech'(s/d)

2 (2ir)'d

yA /k, sd'+tanh'(s/d))
sk 'dk, — IxkI'I Idk

(2~)s k k 'd'+1
I'+

I
p I' ~@ Iw I'+

I
& I' (k'd'+«nh'('/d)l

Idk. (32)
exp(ek/kii T)—1 (2ir) s exp(ek/hoT) —1 E k,'d'+1

The last two integrals in Eq. (32) have different tem-
perature dependence. Well into the domains, only the
last contributes to M3', and we recover the Bloch T@'
law. "Within the wall, however, the next-to-last integral
also contributes, and adds the term

yhtip ke T /s
in[1 ecolksr-

16irnd ep kd

in the Winter approximation. It is doubtful that the
existence of such a spatially inhomogeneous temperature
dependence of the magnetization could be verified
experimentally, since one cannot measure the magneti-
zation within a domain wall. However, the speci6c heat
contribution of the domain wall for k~T))eo is C,
=Nke'Ti (2)/27ryhMprr (in joules/'K-m'), where N is
the number of walls per unit length in the s direction,
and it is possible that such a linear term in the specific
heat could be detected at sufficiently low temperatures
in insulating ferromagnets. Putting in the numbers for
YIG, for example, and assuming ep/k~100 Mc/sec
N=1 wall/micron, we get C„=0.5T erg/cm'-'K for
T))10 "K. The magnitude and temperature depend-
ence of C„depend on the details of the binding mech-
anism, and measurements on good single crystals are
indicated.

V. GREEN'S FUNCTION THEORY OF RESPONSE
TO APPLIED FIELDS

A small, uniform magnetic 6eld applied along the x
direction leads to the perturbing Hamiltonian

Xl ppH p(t) [Ms' cosy, (z) —Mi' sin &p, (z)]d V. (34)

"F.Bloch, Z. Physik 61, 206 (1930).

(2yAMp) 'I'
Mks (uk &k) (t—k 4) ~

2i

(37)

De6ning the Green's functions

(2ir)'dP, ,(kk'; t) = (i/A)8(t)([Mk, '(t),Mk i'(0)]), (38)

wh-ere

1, t&0
0(t) = (39)

0, t(0,
'~ D. N. Zubarev Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :

Soviet Phys. —Usp. 3, 320 (1960)7.

If we put in the Fourier expansions of M~' and M3'
according to Eqs. (7) and (15), we find that the Mi'
term excites only the translational modes, and, to first
order in tI, t and tl„excites only the uniform translation,
k& ——0. The Ms' term excites only precessional modes,
and does so only in the second order in cy't and c~. We
neglect the excitation of precessional modes, and con-
sider only the first-order terms in tI,~ and tI, arising from
Eq. (34). By going to the interaction representation
where

Xi(t) =exp(iXpt/h)Xi exp( —iXpt/h) (35)

we find that (Mi') and (Ms') are given by"
i g

(M,') =— ([Xi(t'),M, '(t)])dt', i =1, 2. (36)

Let Mki'(t) and Mks'(t) be the operator coeflicients in an
expression of Mi'(t) and Ms'(t) in the translational
eigenfunctions. To first order in tj, t and tI„

(2ybMp)"'
Mki = (uk+ok) (t k +4) j
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we write Eq. (36) in the form

(M, '(t)) = —po sech(s/d) dkte'""

X dh'Ho(t')P, ,(kO;1—t'), i=1, 2. (40)

equation approach, it can be shown" '4 that

8(k+k')
Gr (kk'; op)

ep +M+ii'~

b(k+k')
G, (kk'; ot)

eg —L)—zI"J,.

(46)

Ho(t) = (1/2') Ho(o&) e-'"tdot,.

P;,(kk', t) = (1/2~) P (kk 'ot)e t&~ to &tdot

Introducing the Fourier transforms

(41)

neglecting corrections to eq due to the scattering. The
quantity I'I„which we consider in more detail in Sec. VI,
is the energy dispersion of the state kt, and is closely

related to the probability per unit time of a transition
out of this state LEqs. (46) are valid only for collisions

which conserve momentumj. Putting Eq. (46) into

Eq. (43),

with the slightly negative imaginary part of co included

to guarantee convergence of the integrals for t)0, we

finally obtain from Eq. (40)

de
(~)~ t(at-

— 27r

- /, '+I', ' ) 2l'o
—to'

i

—i to, (47)

P, p

(M )= ——sech(s/d) dkte'""
2' corresponding to the equation of motion

pzo+rii o+«o= 2poMoHo(t), (48)

X dotHp(ot)P, j(kO; po), ',i= 1, 2. (42) where

Comparing Eq. (42) with Eq. (12), we obtain the result

A=2/7 Pptf

ri =4I'p/y'pohd;

a=2(ep'+I' o)/pPIPppd

(49)

Pp&
sp(&) =

2+Mp
dk t,"" dtoHp(to)P„(k0; ot) . (43)

y&Mp
Pra(kk'; ot) = (Nt+rtp) (Np +rta )

2

Results are complete when we find E'~~ and E'2~.

It is easy to verify that the terms (Ltzt(tI), t& t(0))) and

(L4(t),4(0)j) are higher order terms in the scattering,
and vanish when the Hamiltonian includes only the

term in tj,~tl, . Neglecting these two Green's functions,

Eqs. (37) and (38) reduce to

We identify p, as the DW effective mass, identical to the

mass, identical to the expression given by Doring, "q as

the DW damping parameter, proportional to the disper-

sion of the uniform translation, and ~ as the restoring-

force constant. If t,o))1'p, as is necessary for Eq. (46) to
be true, we 6nd

(50)tt=4EM '/d

verifying that the expression in Eq. (9) describes a linear

restoring force. Equations (49) may be regarded as a
derivation of the DW effective mass and damping

parameter from the first principles.
The equations of motion for (M&') and (Mp'), as

obtained from Eq. (42), are

yAMp
Ppr(kk'; op) = — (Nt, —vp)(up +rtt, )

2i B(M ') I'o
+ (M, ') = yIt, pM pH p

—sinop, (s)
Bt A

+2vMpupo&(M'). (»)
XLG, (kk'; op) —Gp (kk', ot) $,

in which

XLGr(kk', op)+Go(kk'; ot)1;
B(M&') I'p

+—(Mr') = yM pIJ p(M p')—
Bt

(2~)'d G, (kk', 1)= (i/a) |t(&)(LL,&(1),&,. (0)j); (45)

(2~)'d G, (kk'; t) = (i/trt) g(&)((1,(&),L, &(0)j).

In an approximation equal in accuracy to the kinetic

The damping is of Bloch-Bloembergen form

PM (aM/a~) col,
~4L. Kadanoff and G. Baym, Quantum Statistical Mechanics

(W. A. Benjamin, Inc. , New York, 1962), Chap. IV.
tt ttV. DorinS, Z. Natnrforpch. 3a, 373 (1948),
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and we are forced to conclude that DW motion cannot
properly be described by the Landau-Lifshitz" equation
unless I'o——0. This is rather curious, since Eq. (48) can
be derived from the Landau-Lifshitz equations, but only
by assuiiliilg that (Mi ) ec zo.

VI. SOME CONTRIBUTIONS TO I p

The contributions to Fp arising from the terms in
C, 4y, 0', 0'~, and +2 in the translational Hamiltonian
(24) are, in the second order of perturbation theory,

Fp —— Ic (10; —1)I'(xi+a i+1)
(2w) sds

X5(@i+8 i &o)d—k»i+ Ie(0, 1;2, 1—2)I2
(2»r)'d'

XLni(no+1)(Ni s+1)—(vi+1)msni o]

X8(co+et s—ei —eo)dk, idk, &, (52)
where

rig, = t exp(es/k g T) 1]——'. (53)

(These results may be compared to the scattering arising
from similar terms in the theory of magnetic reso-
nance. s) Since es+e s)eo, the first term in Eq. (52) is

zero, and the entire contribution to Fp arises from the
second term. We can rewrite this term in the form

Fo= Lexp(eo/k&T) —1]
(2s-)'d4

I+(0, 1; 2, 1—2) I'(rii+1)nsni s

X&(es+ei 2
—ei—eo)dk»idk»s (54)

We get an order-of-magnitude estimate of Fp by writing
&s—&o+7&Monks». Then

1'o 1 (uo )'(V@yo)'

so 256(2~)s&2Z.) Vr~d)

The damping corresponding to Eq. (56) becomes quite
appreciable above about 100'K. However, measured
DW mobilities are usually found to increase with tem-
perature, while Eq. (56) leads to a mobility which
decreases with increasing temperature. It is important
to note that Fp measures the linewidth of the DYE reso-
nance, while mobility is usually obtained experimentally
for a wall which has broken free of constraints. The dis-
crepancy in temperature dependence presumably arises
because the assumed binding is a poor approximation to
physical reality, but it would be interesting to see how
the linewidth of the DW resonance in the initial
permeability spectrum depends upon temperature.

We also suppose that DW damping can arise from
extrinsic sources (impurities, imperfections, internal
fields dependent on sample shape, etc.), and consider
as an example the "Quctuations in internal fields" pro-
posed by Clogston et al. ' as a possible source of scatter-
ing in disordered systems. We add to the Hamiltonian
the scattering term

X„,,»= 8D(r, r') M(r, i) M(r', t)

LM(r, i). (r—r')]LM(r', t) (r—r')]—3 drdr' 57( )
r—r' '

where 8D(r, r') is a function describing fluctuations in
the internal fields due to the irregularity of the system.
Clogston et al. show that if it is assumed that the Auctua-
tions are uncorrelated, that is that

'5D(ri r2)»(rs, rs+r)dl sdl i=
I »I'~(r) ~ (58)

the contribution to the resonance linewidth in a
spherical sample in a strong dc magnetic field (Ho&)Mo)
is approximately

(yAMo)'
1'FMa=

I
&DI' &(eo—e&)dk

27r2

X (our notation) . (59)

'kBT
e
—epl kgb T

7

kBT
On the other hand, it is possible to show that, if the
translational Hamiltonian includes the term

ep

(»
p'

ep
(55)

kBT
))&.

ep

~10—'T', T)&10-2 K.
(56)

' L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153
(1935).

Assuming 2E/ps=10 s, n=10 erg/cm, d=10 cm,
and IsoMo 1000 G, so that ——eo/k 200 Mc/sec, this
becomes

Fp
10 'Ts " ', T((10 ' 'K

ep

F(1;2)ti tsdk, idk„,
(2ir) 4d'

(60)

describing the scattering arising from Eq. (57), the
dispersion of the uniform translation is"

Fp=
(2ir)4d'

F(0; 1)F(1;2)8(eo—ei)dk»idk»s. (61)

"Equations (46) are the leading terms of the Green's functions
expansions in F. In addition to these terms, the Green's functions
contain terms not proportional to 8 functions when the momentum
is not conserved during scattering. These terms describe the
population of states degenerate with ep by the scattering and will
be neglected here; this is equivalent to assuming that the popula-
tions of the degenerate states are close to their thermal equihbrium
values.
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The quantity F arising from Eq. (57) is approximately

J (ki', kp) —yAMp(pp/2E)'i' AD(r r')e"~"" ~"'

Xsech(s/d) sech(s'/d)dVdV'. (62)

If we make the assumption that bD is also uncorrelated
in the presence of the wall, or that

The ratio of Eq. 64 to Eq. 59 is

rp 'r(pp)

rFMa d &2E)

B(ep—ei) dk(

5(pp —e p) dk

(65)

Using Eq. (27) for e&, a,nd the spin-wave spectrum for a
sphere, P and assuming that 2E/yp((1, P/pp((1, we can
evaluate the integrals in Eq. (65) approximately to find
that rp/rFMa 1, completely independent of E and p,
provided that neither E nor P goes to zero (so that a
domain wall exists, and the uniform translation has
nonzero energy). Identifying the resonance linewidth as
Ae=2rFMa/pflpp and using Eqs. (48) and (49) to
obtain the DW mobility i = (ppp)'cMpkd/2rp, we thus
6nd

pDH 'rp p3Epd = 10' cm/sec, (66)

where the value 10' crn/sec is obtained for Mp ——10' A/m

( 1000 G), d=10 m. The values of p obtained from
Eq. (66) are in reasonably good agreement with
mobilities ( 1000 cm/sec/Oe) obtained in ferrites when
the DW has broken free of any restraining influences,
although the analysis applies only to a wall performing
small excursions about an equilibrium position.

VII. SUMMARY AND CONCLUSIONS

A quantum-mechanical formalism for the description
of domain-wall motion has been developed, which

bD(r p, rp+r) 8D(ri, rp) sech(si/d) sech(sp/d)

Xsech(zp+z/d)dVid Vp=
~
8D ~'5(r), (63)

then Eq. (61) reduces to

(PAMp) pp
p

~

BD~' b(ep ei,)d—ki
(27rd) 2E

embodies as a basic feature the degeneracy of other
states with the state excited by a uniform magnetic Q.eld.
This degeneracy is an important part of the theory of
DW damping due to irregularities and imperfections.

The equations describing the motion of the magneti-
zation include loss terms which cannot be obtained from
any formalism in which the magnetization is preserved;
DW motion is properly described by a combination of
Bloch-Bloembergen and Landau-Lifshitz damping. The
damping due to intrinsic scattering processes is small in
the model we have used, and most of the damping (in
the absence of after-effect, fast-relaxer and eddy-
current damping) appears to arise from scattering by
imperfections.

It is most important to recognize the essential feature
of the model, i.e., that internal magnetic fields due to
the sample geometry have been eliminated. It is these
internal fields which make the DW structure possible in
the first place, and they will, in general, supply strong
interactions which greatly enhance the scattering.
Presumably, they can also give rise to terms in the
Hamiltonian which lead to binding of the wall to an
equilibrium position in the crystal. The effects of such
geometry-dependent internal fields are minimized only
in certain very special configurations, such as picture
frames, and the model used above is expected to apply
qualitatively to these special configurations.

It is much more difficult to assess the scattering
effects produced by the demagnetizing fields associated
with crystalline imperfections; the fluctuating fields in
a ferrite are quite a different matter from the magnetic
field associated with a crystalline void. Such fields are
the real origin of the restoring-force terms, such as
Eq. (9), but may also give rise to strong scattering,
which we have not taken into account.

The theory presented thus applies to domain walls in
relatively perfect crystals of the proper shape. We have
examined only two types of damping mechanisms. There
are other interactions, such as magnetostrictive inter-
actions with phonons, which may have to be invoked to
explain DW damping in such highly ordered materials
as YIG. Treatment of such interactions, with the use of
the present formalism, should be no more difTicult than
in the theory of magnetic resonance.
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