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Nuclear Magnetic Relaxation of Three Spin Systems Undergoing
Hindered Rotations*f
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The longitudinal nuclear magnetic relaxation of an ensemble of spin systems exposed to a constant mag-
netic field Ho% is calculated. Each spin system consists of three identical spin--, nuclei located at the vertices
of an equilateral triangle. Each spin system undergoes hindered rotation about an axis that is perpendicular
to the plane of the three spins, and is oriented at an angle P with the constant field. Two models for the ro-
tation are studied: In one model there are only three possible equilibrium orientations of each system about
its rotation axis and the group makes random jumps between these orientations; in the other model each
group performs stochastic rotational diffusion about its rotation axis. Both models lead to results of the
same form, which differ only in the definition of the correlation time r, of the motion. It is assumed that the
relaxation is due to the magnetic dipole-dipole interactions between the nuclei within each group. The cal-
culation is performed by use of the semiclassical form of the density operator theory of relaxation. The
treatment includes terms arising from the cross correlation of different dipole-dipole interactions with one
another, from the nonzero average of the dipole-dipole interactions, and from the second-order correction to
the Zeeman energy due to the dipole-dipole interactions. The relaxation is, in general, the sum of four de-
caying exponentials. For P=O, the relaxation does not decay to zero. By use of an electronic computer,
explicit solutions have been calculated for cosP =0, +0.1, &0.2, , ~1.0 for many values of the correlation
time. Also, explicit solutions have been calculated for situations in which the axes of hindered rotation are
isotropically oriented. All results are compared with the results of a calculation in which cross correlations
are omitted, and are shown to differ significantly. The results are presented in a form which can be compared
with experimental data, and used to determine the correlation time of the hindered rotations.

I. INTRODUCTION

HE nuclear magnetic relaxation of spin--, nuclei in
matter is due in many cases to nuclear magnetic

dipole-dipole interactions, which are time-dependent as
a result of the motion of the nuclei. The calculation of
the nuclear magnetic relaxation involves certain cor-
relation functions of each dipole-dipole interaction with
itself (autocorrelations) and with other dipole-dipole in-
teractions (cross correlations). If the cross correlation
terms are omitted, the calculated relaxations of the
longitudinal and transverse components of the nuclear
magnetization are simple exponential decays. ' If the
cross correlation terms are included in the calculation,
the longitudinal relaxation is found, in general, to be the
sum of more than one decaying exponential.

Previous calculations of the relaxation of systems of
three and four identical spin- —, nuclei in spherical mole-
cules undergoing isotropic rotational Brownian motion
in a liquid have shown that the relaxation is the sum of
several decaying exponentials. ' ' However, the values of
the time constants and the coefficients of the exponen-

*This research was supported in part by the National Science
Foundation and the Advanced Research Projects Agency.

)This research has been submitted by one of the authors,
R.I.H. , as partial fulfillment of the requirements for the degree
of Doctor of Philosophy in the Department of Physics of the
University of North Carolina. The thesis contains a more detailed
exposition than is presented in this paper.

/Present address: Department of Physics, North Carolina
State of The University of North Carolina at Raleigh, Raleigh,
North Carolina.

g Alfred P. Sloan Research Fellow.
'-P. S. Hubbard, Rev. Mod. Phys. 33, 249 (1961).
s P. S. Hubbard, Phys. Rev. 109, 1153 (1958); 111, 1746 (1958).
3 P. S. Hubbard, Phys. Rev. 128, 650 (1962).
4 (y, W. Kattawar and M. Eisner, Phys. Rev. 126, 1054 (1962).

A392

' L. K. Runnels (private communication).

tials are such that the predicted relaxation differs very
little from the simple exponential decay calculated by
neglecting the cross correlations.

Runnels' has investigated the longitudinal relaxation
of molecules with three identical spin--, nuclei in equiva-
lent positions at the corners of an equilateral triangle,
and has found that the relaxation is in general described
by four decaying exponentials, although three su%ce for
isotropic motion. He has shown that, for systems ini-
tially describable by a spin temperature, the effect of
cross correlations always is to retard the relaxation.
Runnels has also shown that an effective relaxation time
T„which is defined by the condition that the integral
from 0 to eo of exp( —t/T, ) have the same value as the
integral of the actual relaxation, can be calculated much
more easily than the actual nonexponential relaxation,

We have calculated the longitudinal nuclear magnetic
relaxation of an ensemble of systems each consisting of
three identical spin--, nuclei at the corners of an equi-
lateral triangle. These calculations are for the case in
which the motion of each system is hindered rotation
about an axis that is perpendicular to the plane of the
three spins and is oriented at an angle P with the con-
stant Q.eld. Two types of hindered rotation are con-
sidered: (1) random jumps between three equilibrium
positions, and (2) rotational diGusion about the axis.
It is assumed that the relaxation is due to the magnetic
dipole-dipole interactions between the three nuclei. The
treatment includes terms arising from the cross correla-
tion of different dipole-dipole interactions with one
another, and from the second-order correction to the
Zeeman energy due to the dipole-dipole interactions.
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Ke have also calculated the longitudinal nuclear mag-
netic relaxation of an ensemble of three spin systems
which undergo hindered rotation about axes which are
isotropically oriented.

The situations considered in this paper are the first
examples of cases in which the inclusion of cross cor-
relations of different dipole-dipole interactions in the cal-
culation of nuclear magnetic relaxation results in a pre-
dicted relaxation that differs significantly from a simple
exponential decay.

3 2

AG=AQ Q U,,"V,,",
i&j k=2

(2.1)

II. FORMULATION OF THE CALCULATION

Consider a system of three identical spin--, nuclei at
the corners of an equilateral triangle. The spins of the
nuclei are denoted by I, and their gyromagnel. ic ratios
by p. There is a constant magnetic 6eld Hp in the z di-

rection. The magnetic dipole-dipole interaction Hamil-
tonian can be written as

where

)tt —eight(tr o T)e iEt—

3 2

E= o)pI—'+Q—Q (U;,"&,V~/
i&j /7s=—2

(2.6)

(2 7)

is the Zeeman interaction Hamiltonian of the three
spins with the external magnetic 6eld Hpk= ((op/p)k,
plus the ensemble average over the molecular coordi-
nates of the dipole-dipole interaction Hamil tonian, both
expressed in units of Ps. The reduced density operator
for a spin system in thermal equilibrium, 0-~, is

where (8...@,,) and r p are, respectively, the polar angles
and the magnitude of the vector rij from the jth nucleus
to the ith nucleus. The Jrpk(8, @) are normalized spherical
harmonics of second order. '

The spin system can be described by a reduced density
operator o- in the sense that the average over an ensemble
of such systems of the expectation value of a spin opera-
tor such as I'= Q, —I is given by (P)=Tr/oI'$. It is
convenient to introduce an operator p' defined by

where the V,;~ are spin operators defined by

V. ,P — (8/3)1/2I I .OI,O r (I,(I,—1+I .—1I,1)g

V;,+'= &(I,+'I'—+I 'I +')

and
+2— I +1I +1

in terms of the spin operators

I,+ =Ij.&zIj„, Ij =Ij,.

The U,j~ are given by

U. k (6~/5)1/pd( 1)kJr —k(0 y )

in terms of
d =—(y'/tt/re'),

(2.2a)

(2.2b)

(2.2c)

(2.3)

(2.4)

(2 3)

or=e /'~/Tr/e e~j=f1 PEj/Tr—[1 PE), —(2.8)

where p—= It/kT, k is the Boltzmann constant, and T is
the absolute temperature of the lattice. The diGerence
between the ensemble average of the expectation value
of I' and the value of that quantity for an ensemble in
thermal equilibrium is given in terms of x' by

(2.9)

where P'=exp(iEt)P exp( —iEt).
It can be shown by the use of the semiclassical form

of the density operator theory of relaxation, ' that the
matrix elements of y', in a representation in which E is
diagonal, are solutions of the equation

where

(2.11)

and

2
I;; '"'((o)=—(P J(r)(' z')"'(o) s)(1+e *) 's —'ds, — — (2.12)

Z(«'~"~"') =P P E {P(,,')(, , (~..")+I(,", I(,,) (~..-)3(~l V,", zl~"&&~"'I V,,'l~'&
et i&j il&jl

tk(1 V

' M. E. Rose, Elementary Theory of Angzttar Momentttm (John Wiley (k Sons, Inc. , New York, 1957).
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The functions J&,'j )(,I)'2((d) are defined by polar angles (&)',It') in 5' bys

C(;; ) (,;)"(r)e'"'dr (2.14)
l

I'"(f),~) = 2 D-'*( P~) I "'(0'~') (3.3)

in terms of the correlation functions

C(i'j') (ij) (r)
=(L~' "—(U' ").l .LU'j —K"'),7), (215)

The averages in Eq. (2.14) are ensemble averages over
the molecular coordinates, the motions of which are
assumed to be a stationary random process. Hence the
correlation functions are independent of t. Replacement
of t by t—r leads to the result

C( i 'j) (ij) (r) C(ij) (&'j') ( r) ~

The correlation functions approach zero as 7. approaches
inanity. The correlation time r, is de6ned rather loosely

by the condition that

[C&' j)&*)'"(r)I« IC(")('I)"(0) I
i«»r' (2 17)

The conditions of validity of Eq. (2.10) are that

t ~( II III)
( ~

g( I II III)
~

((1
and

P~()(&1 (2.19)

III. AVERAGES AND CORRELATION FUNCTIONS

It follows from Eqs. (2.4) and (2.15) that

(~").= (6 /5)'"o( —1)"(I' '(&l'jA*)). , (31)
and

C(,'j " '"(r) = (62r/5)d2( —1)'+'

X t(LI'.-'(fi;, ,~, ;)3,P.-"(0.;,~;;)3 ),
—(I' '(O' 'A' )).(I' '(()",4'j)).) (3 2)

Suppose that the only motion of each of the three
spin systems in the ensemble consists of hindered rota-
tion about an axis perpendicular to the plane of the three
nuclei. The axes of rotation of the systems are parallel
and make an angle p with the s axis of the laboratory co-
ordinate system S. Consider a coordinate system S'
whose axes are rotated with respect to 5 through Euler
angles ((rpy), so that the s' axis is parallel to the axes
of hindered rotation. ~ Spherical harmonics with polar
angles (&),&tI) in 5 are related to spherical harmonics with

'The Euler angles (nPy) used here are those defined in Ref. 6.

Terms on the right-hand side of Eq. (2.10) for which
the frequencies of oscillation o) " " or (o) —o) " ")
are large compared to the magnitudes of the nonzero
$(&2"o("') and R((rn'(2"(2'") are said to be nonsecular.
Nonsecular terms can be omitted in the solution of Eq.
(2.10) because their effect on the solutions for the

(n
~

x'
~

&2') are negligible compared to the effect of secular
terms.

where the D22'((2Py) are elements of a rotation ma-
trix. Since 8,,'= 2r/2, and F2'(2r/2, p;j ) = F22'(2r/2, 0)
Xexp(ik'p;, '), it follows from Eq. (3.3) that

D 22 2*I'2'(2r/2, 0)(exp(ik'P~j')), (3.4)
)fo'=2

Where D 22'*—=D 22'*((rPy), and

~' —=&(' +f1('i',V). (3.6)

The averages in Eqs. (3.4) and (3.5) depend only on the
values of @;j. We consider two models of hindered
rotation.

(1) Each group can assume only three angular orien-
tations about its axis of rotation, which are equally
spaced, and it jumps from one orientation to another
with probability v per unit time. The orientation of the
axes S' can be chosen so that the three equilibrium posi-
tions correspond to p,j'=0, &22r/3. Since at any time
the three values of g,,' are equally probable &2 priori, it
follows that (exp(ik'P, j ))=f)2.(). Thus, since F22(2r/2, 0)
= —(5/162r)'" it follows from Eqs. (3.1) and (3.4) that

(~ ')= —(3/8)'"d( —1)'D-»'* (3 7)

The probability that P;j = r22r/3 at r=0 and P; =s22r/3
at a later time 7., where r, s=0, ~1, is denoted by
W„(r). It is easy to show by solution of the differential
equations describing the rates of change of the proba-
bilities of each orientation that

W„(r)= (1/9) $3()„exp (—r/r, )
+1—exp (—r/r, )j, (3.8)

where the correlation time is defined by r,= (2/3) ). The
average on the right hand side of Eq. (3.5) can be cal-
culated by use of Eq. (3.8). Use of Eqs. (3.5) and (3.7)
in Eq. (3.2) then leads to the following result, valid
for 7.&0:

C&;I )( j) (r)
(9/16) d2 ( 1 ) (+)I

I D 24D 2eei2()(i'j'ij),
+D 28D „2se—i20(i'j', ij)$g rlI'a (39)—

2 Equation (3.3) follows from Eqs. (4.28a) and p. 73 of Ref. 6.

D ii 2*D 22 2*I'2'(2r/2, 0) Y2"'(2r/2, 0)
t', a'=2

Xe""""'")(exp[if'P; (r)j expLik'g, j (0)j), (3.5)

where Q(i'j', ij) is the fixed angle between r;; and r;;,
given by
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= (2') ' Q exp[i'(y —yp) —(n'/4r, )t], (3.10)

where 7..is a constant related to the diffusion coefficient.
Expression (3.10) is the solution of the diffusion equa-
tion which is a function only of the azimuthal angle, is

periodic with period 2m, and satisfies the initial condition

E(ib,0; Pp) =b(it —@p).P The results obtained for (II;;s)
and C(;; )(o)'s(r) in this case are the same as exPres-
sions (3.7) and (3.9), respectively.

It is apparent. from (3.9) that

C(,'s') (;;)'"(r)=C( s) (;,')"'(r),

if it is remembered that Q(i'j ',ij)= —Q(ij,i'j'). Hence

it follows from Eq. (2.16) that

C('/ ) ( /)'"( —r) =C(' ~') ( s)"(r) (3 11)

Use of Eqs. (3.9) and (3.11) in Eq. (2.14) gives

I " " '"(o))= (9/16)d'( 1)"—r+,[1+((cr,)']-'
)([D i seD „s eisa(i'j', ij)

+D saD „2@e—iso(i'i', ii)] (3.12)

IV. LONGITUDINAL RELAXATION

Substitution of Eq. (3.7) into Eq. (2.7) gives

8= a)pI' (3/8)'—/'(f P—(—1)"D
/, pP" P V; ". (4.1)

Since d«o)p, the eigenkets I(r) and eigenvalues E(cc) of
E can be calculated to good approximation by treating
the second term in Eq. (4.1) as a perturbation. A com-

plete set of eigenkets of —copr' which are suitable for use

in the perturbation calculation are the eigenkets of
I&' Is' Is', I&s —= (I&+Is)' ls= (I&s+Ip)', and I .They are
denoted by II»IM), where M is the eigenvalue of Ip,

and the eigenvalues of Irs, Ips, and Isa are omitted since

they are ~."The eigenvalues of E, correct to second

order in d, can be expressed as

E(cr) — Mo)p+Br(3/s) ( 1)l 1+1 sdDpp +
3f 8 cop

(2) Each system undergoes stochastic rotational dif-

fusion about its axis of hindered rotation. If the angle

P;,
' is considered to vary between 0 and 2s., the a priori

probability density for g,; is simply (1/2s-). The con-
ditional probability density that it, has the value @ at
time r if it has the value if p at time zero is

&(~, ; ~.)

Matrix elements in the In) representation can be cal-
culated to good approximation by use of the unper-
turbed eigenkets II)pIM). However, it is important to
retain the perturbed values of E(ci). Although d«o)p, d
is large compared to IR((rn'cr"n"')I and IX(cr"ir"')I.
Hence the terms in E(n) due to the perturbation can
affect which of the terms in Eq. (2.10) are secular.

Consider Eq. (2.10) with (r=I)pIM and u'=Irs'I'M.
In the sums on the right-hand side of the equation, the
only secular terms are those corresponding to values of
n" and n"' for which M"=M'", since all other terms
oscillate with a frequency of the order of magnitude of
~p. Thus matrix elements of y' that are diagonal in M
are connected by Eq. (2.10) only to other matrix ele-
ments of x' which are also diagonal in 3E.

The calculation of the elements R((rn'(r"(r'") and
Ã((r"n"') from Eqs. (2.11) and (2.13) is facilitated
somewhat by use of the signer-Eckart theorem" to
evaluate the matrix elements of the V,;" in the

I Ir pIM)
representation. Nevertheless, the calculation is lengthy
and tedious. It is assumed that dr.(&1, in which case
I(, ;)(,;)'~(cp+d)=I(, ;)(;;)'"(cp). In the evaluation of
$(n"(r"') it is assumed that P«r„o)p '. These condi-
tions are satisfied in most physical situations of interest.
As a result of the latter conditions, the factor (1+e&') '
in the integrand of expression (2.12) can be replaced by
—,
' with little error when co has the values indicated in
Eq. (2.11).

If one introduces the following combinations of
matrix elements,

I12lM
M&I)sIM

I
x'

I
I12IM), (4.3d)

it is found from Eq. (2.10) that the time derivatives of
the quantities y; depend only upon the same combina-
tions of matrix elements. The equations can thus be
written in matrix form as

(8/9)T py =Ay, (4.4)

where Tp '= d'r. , and the elem-en—ts of the matrix A are
found to be

yr=—1/»m[&0 rssr lx'I1~s —,')+&0-', ——,'Ix'I1 —', ——,')
—&1 s s Ix'I0 s p) —&1 s

—
s Ix'I0-,' ——,')], (4.3a)

Xs—= ps[&1 8 s Ix'I1s ss) —(1 $ —
s lx'l1 —,

' —s)], (4.3b)

ye=—l[&1 l l lx'll-; -', )—&I 8 ——'.I
x'll-; ——;)], (4.3c)

and

y [D s*D '*+—'(—1) ~
sr~ —&D,p'*D,ps*] (4.2)

If the angle @; is considered to vary from —00 to ~, the
appropriate probability density is the familiar gaussian expres-
sion in (4 —pp), which is characteristic of one dimensional diffusion.
This density gives the same result for the correlation function as
does Eq. (3.10).

M The
I
I»IM) have been calculated by using the vector coupling

coeKcients given in A. R. Edmonds, A ngular Momentum in Quan-
tiim 3fechoriecs (Princeton University Press, Princeton, New

Jersey, 1960), 2nd ed.

A rr ———(1,3/2) [-',up+ a)+as],
A rp = —(0,1/2) [br+ bs],

Arp= (0,3/2)[br —bs],

A 4 4
——(0,3/4) [b4+2bp],

A sr
——(0,9/8) [br+4bp],

"Reference 10, Eq. (5.4.1).

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e)
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A „=—(3/8) [(6,5)a,—(0,4)~,),
A»= —(9/8)[(—2, 1)~i—(0,4)o j,
A „=(3/4) (1,3/2) [a,—4a2j,

A pi ——(0,9/8) bi,

A 22
——[——', (1,3/2) up+ (1/12) (13,27/2) ai

(1/3) (1 0) 3 (4 5j)

A 22 ———[(3/2) (1,3/2) ap+ 4 (7,9/2) ai+ (1,0)4227, (4.5k)

A 24= 2 (1,3/2) [~p—(3/2)~i7 (4.51)

A 41 (0 3)[f1+2' 2j (4.5m)

A 42
——(0,1)[ai+2apj, (4.5n)

A 4,———(0,3)[ai—2a2$, (4.5o)

A 44
———(1,3/2) [ui+4a2j. (4 5p)

which, in terms of the Euler angles 42lgy upon which the
D's depend, are

ap ——4 sin4tl, (4.7a)

sin2P (1+cosP ' (1—cosP) '
(4.7b)

The erst number in the ordered pair in each A;; is the
result obtained if the cross correlations are neglected;
the second number is the result obtained when the cross
correlations are included. The A;; are expressed in terms
of the quantities

(—1)'
[D 24D 4 2+——Dl 2D—12 j—y (46)

1+(lcppr, )'

Hence, use of Eq. (4.9) in Eqs. (4.3) gives

y(0) = (P)r (cos8—1){0,3/4, 1/12, 1) . (4.10)

If cross correlations are neglected, it follows from
Eqs. (4.4) and (4.5) that

2't4 ———(9/8) Tp
—'[ui+4apjy4. (4.11)

Since y4
——(P)—(P), the solution of Eq. (4.11) that

satisfies the initial condition (4.10) gives the result

(I')—(I') = (cose—1)(I') exp( —t/T ), (4.12)

where

Ti = (9/16)d r,{(1—cos P)[1+(4ppr ) $
+ (1+6cos2P+cos4P) [1+(2pppr, )2$ ') . (4.13)

The relaxation when cross correlations are included is
obtained by solving Eqs. (4.4) subject to the initial
conditions (4.10), using for A;; the second number in
the ordered pairs in Eqs. (4.5). The result is in general
the sum of four decaying exponentials:

(I')—(I')'= (cosg —1)(I')r

The initial condition of the spin system will be con-
sidered to be the result of the application of a rotating
field Hi ——(4pi/7)(i cosippt j—sin4ppt) to the system in
thermal equilibrium with density operator Or [Eq.
(2.8)] for a time tp

—=e/cpi —sufficiently short that the
effects of the dipole-dipole interactions can be neglected
during the pulse (dtp«1). If one uses 8= 4ppI' —in

Eq. (2.8), it can be shown that, to first order in P4pp,

(I»Im l
x'(0)

~

I»'I'm)
= (1/8)P(vp(cos0 —1)3'„z„bzz . (4.9)

422 1
—(1+cosp) ' (1—cosp '

b2 1+(24ppr, )2 4 2 ) k 2

Since ai and bi depend only on the Euler angle P, it is

clear that in the case of hindered rotation by jumps be-

tween three equilibrium positions, the relaxation does

not depend on the orientation of the equilibrium posi-
tions in the plane perpendicular to the axis of hindered

rotation.
In the derivation of the quantities 3;; from Eq.

(2.10), it is found that the results depend only on the
E(4242'n"n"') and not on the X(n"n"') Also, it .is found

that the secularity of the terms in the equations for the

y; is not affected by the part of the E(n) which involves

d. This results from the fact that terms oscillating with a
frequency of order of magnitude d either have zero mag-
nitude or cancel in the linear combinations in Eq. (4.4).

If terms of order d/4pp due to the perturbation cor-
rections to the unperturbed eigenkets ~I22IM) are
omitted, it follows from Eqs. (2.9) and (4.3d) that

XZ C, -p[(9/8)T; p, tj, (4.14)

T'= 4pp/d=24p(pr pp/y2t) 22 (4.16)

which does not depend on the correlation time. Since
T'= pppr, Tp, it follows from Eq. (4.14) that

(I')—(I') = (cos8—1)(I')r

Xp C, exp[ q, t/T'j, (4.17)—

where the p; are the eigenvalues of the matrix A, i.e.,
solutions of the equation D(p) =—det(A —pI) =0. If the
eigenvalues are distinct, the C, are given by

C;= —[D'(p;)) '{(3/4)B42+(1/12)B42+B44}) (4.15)

where D'(p)= dD/dp, an—d B;; is the ij element of the
adjoint matrix of (A —P,I).

In order to compare the results of our calculations
with experimental data, it is convenient to measure
time in units of the quantity

(I')—(I')'= y (4 8)



oj

S»T A39&THR SprNRFLAXMAGNE

lao

UCLEAR

where

(9/8) OO pr OPS

0

K4J

-2

l2 l4 l6 IB
I

lO4
t/To

~

pf the averagef the iogarit
oi (/To

Fro. 2. »n
i Le reiaxation P o

io)r (lo)j/2(1 )

e endence o
lotted as a unc o

() & an
pver

t values
orientation o "

f (roor, )o. R() =-d1ffel'en
t T,=~oioor. /ro.

~ . . Such a mecha-tp therma q '
le interactio

e ujlibrium .
ns.

sP ns .
termolecular P .

l t d versus t/&o

~

tp return
dj pie- ipnism mig

f the relaxatip" p
The mpst

i ht e» er
'

is lotte vThelog
qy and»x va

h t the vertical

arithm p
'

lues pf cpsin Fig fpr mo«&&

f his set of curv
1 from t=p

es is th.ateo t is
the interva

strik»g
reversed in

h the curves
rder is comp

shpwn on th. Althpugh not
trai ht lines.

to t=2T'
ro»mately st g

three spin

for f/po) .
d d rotation

are appro
'pn of th.e r

dinal re-
s pf hin .

11 th lpngitusystems a« o
ble, denoted y

4.14) or (4 1/) 'the average ove

—.2

-,6

j-(Io)—(I') j (4.2p)

tL -j,0

L-(Io) (I')'j -=2,

-l,2

(4 2p) has beenf t the averag
f Simpson s

e in Eq.Fpr many
h Univac cpmPu

—XI'2 Th

values o
ter by use olculated pn the

iven
ig.

Tables
ca

d the values gformula an

j,6

l.8

2P&.2 l 4
II

,8,6 - ~

t/To

nof the relaxatlot the logaritlm .
aines of cosP.

dependence o
)o«] and»x ~P

IO)T—(I )j
d as s, flin

(io)r snd $/To=g(r) —D

pt relax te dPes no
'

we
0 the ensem

'
he mechanism

Hence,
' '

rium distribu
ect occurs pn y] if

thermal equ
. N te that this

h calculatio
have c

'
are inclu .

echanisms

dered
-

ed in t ecprrelation
re] axation m

the cross c
h are other r

h the meeha-
n a real cry

lly less e+ci
cans for the

stal t ere
ent t anwhich~ .

here, wpu
althpugh usua y

ld rovide a me

I
l6 lelO '28

3
2 4

pverpf the average othe logarithm o
pf t p fpr dif-

(~4p/ro cOO) '

jsm connsidered

yhe tablese authors'~

lable frpIn
7799 ~ithsite . Photoation P ~ 25' D. C. A c P

AD~ Auxjhary
Washington

d by remitti g
nt is

Library of
the dpcumen

cro6lm Adv:
Chief

ined by citing
1 75 fp S m

d rs payable to-
o rints pr ~

r money«
phptop

Make checks o
pf Congress

required.
rvice, Library od phcatj, pn Se

dtouter has bee &
p

11pg djgjtal comP
d . for cosp

A Unn'ac

p,quanti
arj pus va u pf Mo~c'

calculate
&1 p va

'
the root~ pi

~p.1, +
d as used to

'
the p; and C~

p.2, ' '~

determineNewton s
f Tables 2 I—XI

]1 the values of

's metho w
cpntainso

-
ular value o . .

ere c»culat

f D(p) E""' f,osp and 'o' 'for a Particu a
uantities were

1 of the re
r which these q

the reciprpca
or o

'
values o

h crpss co
o contain

'
ed when c

tables»s
h t js ob«»e

13) by use of
zation t™

1 ] ted from Eq'
eT, t a

mitted, c

zq. (44)mediately f'o

(I )—(I ) (
~ —

L1+(2
co 0 1)(I'),

,t)) (4.19)X-'(1+'"P( (



A398 R. L. HILT AND P. S. HUBBARD

suits obtained for the quantity in(L(I') —(I')7. /
2(I')r} are plotted in Fig. 2 as a function of (t/Ts) and
in Figs. 3 and 4 as a function of (t/T'), for representative
values of cdsr, . The plots using t/T' as the abscissa are
the more useful for comparing with experimental data
because the scaling factor T' does not depend on the cor-
relation time r.. The advantages of using (t/Ts) as the
abscissa are that, for a very small orpT, one can plot
more of the relaxation in a given space Lcompare the
curves for (a&sr,)'=0.001 in the two plots), and that the
relaxation for any copT ((1can be obtained by replotting
the curve with that label as a function of t/T', using the
assumed value of ~pT, to change the scale from Tp to T'.

The effect of including cross correlations in the cal-
culation of the relaxation when the axes of rotation are
isotropically distributed is shown strikingly in Fig. 5.
For three values of copT„ the dashed curves give the
logarithm of the relaxation when cross correlations are
neglected, and the solid curves give the logarithm of
the relaxation when cross correlations are included.
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I'xG. 5. Time dependence of the logarithm of the average over
orientation of the relaxation plotted as a function of t/To for three
values of (cuor, )' R(t) and. R, (t) are given by L(I') —(I')j/2(I')
for the cases in which the effects of cross correlations are included
and neglected, respectively. The solid curves are In(LR(t)g„) and
the dashed curves are ln(LRcc(t) g„). 1/Tp= pcs'r, /ro'—
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FIG. 4. Time dependence of the logarithm of the average over
orientation of the relaxation plotted as a function of t/T' for dif-
ferent values of ((dor )')1. R(t) =—DP)r —(P)g/2(P)r, and
1/T' = (y'it'/ro'duo). —

V. CONCLUSIONS

The calculations given above predict that the longi-
tudinal nuclear magnetic relaxation of three spin sys-
tems undergoing hindered rotations differs significantly
from a simple exponential decay, as a consequence of
the cross correlations of the dipole-dipole interactions.
Detailed results have been calculated for situations in
which the axes of rotation make an angle P with the
external field, and for situations in which the axes of
rotation are isotropically oriented. The results have been
presented in a form which can be compared with experi-
mental data, and used to determine the correlation time
of the hindered rotations.


