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The purpose of the present work is twofold. In the erst place, we have deduced from theoretical considera-
tions which of the two integral equations (the Percus-Yevick (PY) and convolution hypernetted chain
(CHNC) equations' will yield a better distribution function (g) under different conditions of temperature
and density, and for different interaction potentials. In the second place, we have computed the g s of Quid
argon at several values of temperature (all below the critical temperature) and density. The computed g's
from the PY and CHNC integral equations using the two different interaction potentials (the Lennard-
Jones and Guggenheim-McGlashan potentials) between the argon atoms are compared among themselves
as well as with the experimental curves of Eisenstein and Gingrich. The computed g's for liquid argon at
T=126.7'K and n=1.66X10 ' particles/A' have also been compared with the Monte-Carlo g of Wood,
Parker, and Jacobson. From the computed g's we have calculated energies, pressures, and compressibilities.
We have shown that the PY and the CHNC equations can be considered as two diferent approximations
to an exact integral equation. On the basis of this way of looking at the PY and CHNC equations and from
the comparison of the computed results we have drawn some conclusions.

I. INTRODUCTION

'HE radial distribution function g(r) is defined as
the probability of finding two particles at the

given relative distance r, averaged over all the possible
configurations of the remaining particles in the system.
The importance of the radial distribution function in
statistical mechanics is due to the fact that all the ther-
modynamic quantities such as the pressure, internal
energy, the free energies, etc. can be calculated from it.'
The exact expression for the radial distribution function
involves integrals of the order of Avogadros number,
and therefore the exact values of g cannot be evaluated
even with the high-speed computers available. In order
to compute g, certain simplifying assumptions are made
about the interaction potential between the atoms of
the Quid. Besides these assumptions certain mathe-
matical approximations are also necessary so as to
reduce the expression for g to a number of integrations
which can be performed by a computer.

There are several approaches for the derivation of an
integral equation for g. These approaches are very dif-
ferent from one another. All the methods use the same
assumptions so far as interatomic potentials are con-
cerned, but the nature of the mathematical approxi-
mation is different in each case. Ke shall discuss only
the cluster expansion method.

The cluster expansion method consists of writing the
radial distribution function' ' as a power series in the
density. The coefFicients of different powers of the den-

sity involve integrals of the order of that power. These
coefIicients are then expressed as a sum of a product of
integrals. These integrals are associated with diagrams
obtained by joining two fixed reference points to a
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number of field points. These diagrams are classified
in accordance with some criteria. (These diagrams have
no physical significance. ) Finally, a self-consistent in-

tegral equation is obtained' ' for the radial distribu-
tion function. However, this integral equation contains
another function which is unknown. In order to obtain
an equation which contains only the radial distribution
function, the unknown function is expressed in terms of
the radial distribution function by neglecting the con-
tribution of a certain class of diagrams. In this way the
convolution hypernetted chain (CHNC)' ' equation is
obtained.

In a similar way, the approximation of the unknown
function by the contribution already included in the
CHNC approximation and the contribution due to all
the other diagrams which will be obtained by joining
those diagrams in parallel in all possible ways, results
in the Percus-Yevick (PY) integral equation. The
Percus- Yervick integral equation was originally derived

by them in a very different way. ~ The derivation of the
CHNC and PY integral equations on the basis of the
cluster expansion of g will be discussed in detail in
Sec. II.

The most important assumption involved in the case
of potentials is that of additivity of potentials.

The types of approximations and assumptions de-
scribed above are those which are concerned with the
derivation of the integral equations for the radial dis-
tribution function. The necessity of these approxima-
tions arise because we are dealing with a many-body
problem. However, this is not the only many-body
problem which occurs when the radial distribution

4 J. M. J.Van Leeuwen, J. Groeneveld, and J. De Boer, Physica
65, 792 (1959).

s E. Meeron, J. Math. Phys. 1, 192 (1960).
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23, 1003 (1960); M. S. Green, technical report, Hughes Aircraft
Corp. {unpublished).
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functions are to be derived. One encounters another
many-body problem which is that of determining the
interatomic potentials between atoms. No satisfactory
theoretical treatment of the interatomic potentials exist
even in the simplest case of the helium atom. Semi-
empirical methods are used to construct interatomic
potentials. Unless these potentials are known su%.ciently
accurately, even an exact integral equation would not
yield a radial distribution function which is reliable
enough to be used for the determination of the thermo-
dynamic properties. It is known that the interatomic
potentials consist of a sharp repulsive barrier and an
attractive part which goes to zero as r '. It is expected
that at lower temperature the slight diRerences in the
repulsive barrier will not aQect the radial distribution
function appreciably, while the attractive part of the
potential will aBect it considerably. At higher tempera-
tures, on the other hand, the repulsive part will become
more and more important in the determination of the
radial distribution function.

The purpose of the present work is twofold. In the
6rst place, we have tried to deduce from theoretical
considerations which of the two integral equations
would yield better distribution functions under diferent
temperature and density conditions and for different
interaction potentials, We have supported our conclu-
sions with the help of results of numerical cornputa-
tions whenever they were available. In the second place,
we have computed the radial distribution functions of
fiuid argon at several different values of temperature
(all of them are below the critical temperature) and
densities. Those values of temperature and density
were selected for which x-ray diffraction data were
available, and in one case neutron diQraction data were
also available. The computed results from the two
integral equations are compared with each other, and
with the experimental radial distribution functions.
The computations have been done using the I.ennard-
Jones' (LJ) 6—12 potential as well as the Guggenheim
McGlashan' (GM) potential. The GM potential was
used because it seems to be more realistic than the LJ
potential, and a realistic potential is a necessary re-
quirement of the experimental results are to be re-
produced from the theoretical computations. From these
computations and the theoretical considerations a num-
ber of conclusions have been drawn.

In Sec. II we have derived the PY and CHNC in-

tegral equations on the basis of the cluster expansion
of the radial distribution function and have deduced
some conclusions from the theoretical considerations. In
Sec. III we have presented the results of computations,
comparisons, and conclusions. The two potential func-
tions are described in Appendix A.

J, E. Lennard-Jones, Proc. Phys. Soc. (London) 43, 461
(1931).

'E. A. Guggenheim and M. L. McGlashan, Proc. Roy. Soc.
(London) 225, 456 {1960).
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FIG. 1.Reducible dia-
gram, (a); irreducible
diagrams, (b, c, d, e, f);
reference points, articu-
lation points, and 6eld
points. Simple diagrams,
(c, d, e, f); composite
diagram, (b).

(5) Parallel connection of diagrams. When two or
more diagrams are connected only at the two reference

points, those diagrams are said to be connected in
parallel. See Fig. 1(b).

(6) Composite diagram. An irreducible diagram hav-

ing at least two parallel connections between 1 and 2.
See Fig. 1(b).

(7) Simple diagram. An irreducible diagram having
no parallel connection. See Fig. 1(c, d, e, f).

(8) Node. A field point such that every path which
connects particles 1 and 2 passes through it.

(9) Nodal diagram. A diagram containing one or
more nodes. Ã is the contribution due to all the nodal
diagrams to G.

(10) Elementary diagram. A simple but non-nodal

diagram. The direct bond between the reference points
is excluded. E is the contribution due to all the elemen-

tary diagrams to G.
(11) C set of diagrams contains all the simple and

composite diagrams. C is the contribution due to all

the simple and composite diagrams to G.

' These de6nitions are the same as used by Leeuwen et al.
(Ref. 4) ~ Other authors have used some of the terms with slightly
different meanings.

II. THE EXACT AND THE APPROXIMATE
INTEGRAL EQUATIONS

A. The Exact Integral Equation

In the derivation of the integral equation using the
cluster expansion, certain terms are used. The terms are
defined below. "

(1) Articulation point. This is a point at which cut-
ting the diagram will cause it to be separated into two
unconnected parts, and one of the two parts will con-
tain both reference points. A reference point (reference
points are those two points which are not integrated
out) can also be an articulation point. See Fig. 1(a).

(2) Irreducible diagram. This is a diagram which
does not contain articulation points.

(3) Generic irreducible 1—2 diagram. A diagram con-
taining two numbered points, 1 and 2, and k field points
which are undistinguishable.

(4) Specific irreducible 1—2 diagram. A diagram
containing two numbered reference points, 1 and 2,
and k numbered (i.e., distinguishable) points.
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(12) 5 set contains only simple diagrams. 5 is the
contribution due to all the simple diagrams to G.

(13) G set or the extended set contains all the dia-
grams in the C set together with all the diagrams ob-
tained from the C set by connecting the points 1 and 2

directly and also the diagram containing only the direct
bond between 1 and 2.

The quantity f(r,;) is defined as

f(r,,) = expL —Pg(r;;)]—1,
where

P= 1/kT,

and &f&, the interatomic potential

(2 1)

X(ri3) =n LG(ri3) —X(&i3)]G(r33)dr3, (2.4)

where"

G(ri3) = expL —PP(ri3)+5(ri3)] —1. (2.5)

From Eq. (2.3) we see that N(r) is related to 5(r)
and E(r), and 5(r) is related to G(r) and the pair po-
tential p(r) through Eq. (2.5). Thus cV(r) can be ex-
pressed in terms of G(r) and E(r) and we can solve
for G(r) from the integral equation (2.4) provided we
can find a relation between E(r) and G(r). Since no re-
lation is known between E(r) and G(r), approximations
are introduced at this stage.

B. The Fixst Appxoxima, tion

The erst approximation consists of ignoring the con-
tribution due to E(r) (elementary diagrams) in Eq.
(2.3) and writing

X(r) =5(r) . (2 6)

This approximation is called the convolution approxi-
mation by Meeron' and the hypernetted chain approxi-
mation by others' ' (CHNC). The reasoning behind
this approximation may be seen in the following way.
If we take any two nodal diagrams and connect them

"See Ref. 4, Eq. (28).
"See Ref. 4, Eq. (9).

The pair distribution functions g(r) are related to the
pair correlation function G by the equation

G(ri3) =g(ri3) —1. (2.2)

From the definition of the simple diagrams, nodal
diagrams, and the elementary diagrams, we get the
relation

5 (f12) —Ar (f12)+E(r13) ~ (2 3)

Assuming the validity of classical statistical mechan-
ics and the additivity of potentials, an exact integral
equation is derived" which is

in parallel at the reference points 1 and 2 and then join
the two parallel nodal diagrams by at least one bond
f(r,,), where the ith field point is in the first nodal
diagram and the jth field point in the other, we shall

get an elementary diagram. If we tak.e three nodal
diagrams connected in parallel at the fixed points 1 and
2, then we require at least two bonds f(r,,) and f(ri, i)
in order to get an elementary diagram, where the ith
field point is in the first nodal diagram, the jth in the
second, the kth either in the first or the second, and the
/th in the third nodal diagram. In this way any number
of nodal diagrams can be linked to one another to give
an elementary diagram. If the potential function is such
that it falls o6 very rapidly with distance then the
quantity f(r) which is given by Kq. (2.1) will be close
to zero for distances greater than r, where r, is such that
the potential function p(r) for r) r, is practically zero.
Thus if such a diagram is to contribute, the ith and jth
field points must be at distances smaller- than r, . Hence
the integral which contains f(r,,) as a factor of its inte-
grand and which is being integrated over r; and r; will
not contribute much in comparison to the diagrams
(which will of course be composite) which do not con-
tain such cross links. The greater the number of such
cross links the smaller will become the contribution due
to that diagram.

For a repulsive barrier, we can write

fb') = expL —P4 (r')]—1&o (2.7)

For @(r;;)inlnite, f(r,;) will equal —1.For an attractive
potential, i e , p(r;;)&.0., f(r;,))0.

From Eq. (2.7) we see that an elementary diagram
obtained fron two or more nodal diagrams connected
in parallel and linked together by means of bonds
f(r;;) as described above will not only decrease in
magnitude but also change in sign alternately as links
are increased in number one by one. This implies that
for short-range repulsive potentials the approximation
of neglecting the contribution due to the elementary
diagrams will be better than for short-range attractive
potentials. Also the approximation E(r) =0 will be better
for a potential which increases from zero at r =r, to
higher values as r approaches zero (for example, a
potential varying as r " for r&r, and zero for r=r„
where n may be any positive number) than for the po-
tential of solid sphere of diameter r= r,.

For repulsive potentials
~
f(r;;) ~

&1;but for attractive
potentials

~
f(r,;) ~

can be greater than. 1 by an amount
depending on temperature and the depth of the attrac-
tive potential. Hence for attractive potentials this ap-
proximation may not be as good for repulsive
potentials.

Now let us consider a potential of the (LJ) type. It
contains a sharp repulsive barrier and an attractive
part which is deep over a short region and then ap-
proaches zero asymptotically from negative values as
r-6

Because of the presence of an attractive part, it is
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& ~(.)
FIG. 2.One and two field points dia-

grams included in s(r) or Ls(r) ]'.

Letting

we have
p(„„)=es(»)

(e)
P(r(s) = 1+re $G(rrs) —P(rrs)+1]G(r»)dr, . (2.9)

We set

C. The Second Ayyroximation

cV (r) =C(r), (2 g)

where C(r) has been shown" to be equal to es(")—1.
Substituting for 1V(r) in Eq. (2.4), we get

es ("»)—1= )s ~G(rrs) —(es(r») —1)]G(rss)drs.

clear that the approximation may not be as good as it
would be without it.

If kT is very large in comparison to the depth of the
attractive part, the quantity expL —Pp(r)7 —1 will be
a positive number less than 1 for negative values of
p(r), and a negative number whose magnitude is less
than 1 for positive values of p (r). However, the positive
values will be much less in magnitude than the nega-
tive values. Thus at very high temperatures the effect
of the attractive part on g may be washed out. At
moderate temperatures the effect of the attractive
part will show up because the range of volume over
which the attractive part will be effective is usually
greater than the volume over which the repulsive part is
effective. As the temperature decreases, the contribu-
tion of the attractive part on g will go on increasing, and
for temperatures equal to or less than the depth of the
potential well, the quantity

f(r') =exp( —&e(r'))7 —1

will be much greater than 1 for values of p(r;;) in the
neighborhood of the bottom of the potential.

Consider a diagram consisting of e nodal diagrams
connected in parallel. Connect these nodal diagrams with
each other with ns links so that the diagram becomes
an elementary diagram. This elementary diagram con-
tains r)s factors f(r;;) corresponding to the nz bonds. The
product of these ns factors will sometimes be positive
and sometimes be negative depending upon the m
different r,, s. For those links where p(r, ;) is positive,
f(r;,) will be negative; and for the links for which
Q(r,,) is negative, f(r,;) will be positive. This means
there will be a cancellation when integration is per-
formed over the coordinates of field points which are on
the links connecting the parallel nodal diagrams. Hence
there is a possibility that the approximation E(r) =0
may turn out to be good.

This equation was discovered by Percus and Yevick. ' '4

Now

ol

or

(r) =S(r)—E(r) =e ("'—1

Ls()7 Ls()7~()=S()+ + +
21 3I

(LS( )]' LS( )]'
~()=—

I
+ +"

2! 3!

(2.10)

(2.11)

(2.12)

The term Ls(r)7'/2! corresponds to the contribution
due to all the composite diagrams obtained by joining
any two simple diagrams in parallel. The term LS(r)]'/3!
corresponds to the contribution due to all the composite
diagrams that will be obtained by joining any three
simple diagrams in parallel. Similarly the higher terms
give contribution due to composite diagrams obtained
by joining several simple diagrams in parallel.

The reason this approximation should be good is not
as easy to see as in the previous case. We know that in
order to convert a composite diagram into an elementary
diagram, the branches of the composite diagrams must
be connected by cross links. We also know that the
contribution due to each diagram will decrease with the
increase in the number of bonds constituting the dia-
gram in the case of repulsive potentials. (We shall dis-
cuss the case of attractive potentials later on. ) Consider
a short-range repulsive potential, as in the previous case,
given by r ~, where P)0 for r &r, and zero for r& r,.
The smaller the value of P the smaller will be the con-
tribution due to the diagrams with a greater and greater
number of bonds in it for a given r,. This feature is
independent of the type of approximations considered.

From Eqs. (2.11) and (2.6) it follows that, if we
neglect the higher powers of S(r), then the CHNC and
PY approximations become the same. In order to study
the PY approximation, we may assume that the third
and higher power terms in S(r) in approximation equa-
tion (2.12) are negligible in comparison to the $S(r)7'
term. This, however, is not a satisfactory way of looking
at the approximation equation (2.12). A better way is
to consider the number of field points, the power of
density, and the number of crossed links in a diagram.
We have already seen that the increase in the number of
crossed links reduces the contribution of the diagram.
It may be shown" that a diagram with k field points is
multiplied by a factor e~, where n is the number density

"See Ref. 4, Eq. (Sa).
'4 J. K. Percus, Phys. Rev. Letters 8, 462 (1962).
"See Ref. 4, Eq. (Sb).
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of particles, in order to form a term of S(r) I.n the ap-
proximation equation (2.11) the terms S(r) and
LS(r)js/2! are the only terms which contain diagrams
with one Geld point and with two Geld points. The higher
power terms in S(r) contain diagrams with at least three
Geld points. Hence if the density is such that terms in-
volving e' or higher powers of e are small compared to
n', then we can leave the higher powers of S(r) than the
second in Eq. (2.11). The terms S(r) and LS(r)$'/2!
also contain terms with more than two Geld points, but
we shall take only those terms which have one or two
field points. Figure 2 shows the diagrams which contain
one and two field points and are included in S(r) or
[$(r)j . In the PY approximation Lconsidering approxi-
mation equation (2.12)j if we consider only the diagram
with two Geld points we get for the contribution due to
the elementary diagram

f»f»«3 I,

while the exact contribution for two field points ele-
mentary diagram would be

-e2 f13f23f14f24f34'tfr4(&3 ~

In effect, for two field points elementary diagrams, we
put —1 for f34, the link joining the 6eld points. We
can therefore write

In this case the PY approximation will be good because
when points 3 and 4 go farther apart, one or more of
the terms f13, f14, f33, f34 become zero and thus the error
which could have been introduced due to assuming
f(r34) equal to —1 for all values of r3& is small. As is
shown in Fig. 3," the approximation of putting f(r34)
equal to —1 is very good in the case of solid spheres.
However, the above considerations are true only up to

Fxo. 3. The con-
tributions due to the
elementary and com-
posite diagrams with
two Geld points.
(From Klein's thesis. )

l.5 ~

~3&
0

"l 5-
I.OO Lg0

3 3 3

l.80 2.20 2.60 5.00
R

'3 M. Klein, thesis, University of Maryland, 1962 (unpublished).

which means p(r34) has been equated to infinity for all
values of r34.

Now consider the case of solid spheres. The potential
in this case is given by

p(r) = ~, r&r„
and

FIG. 4. The three
Geld points element-
ary (b, c, e, f) and
composite (a, d) dia-
grams.

(b) (c)

"A. A. Sroyles, S. U. Chung, and H. L. Sahlin, J. Chem. Phys.
B7, 2462 (1962).

a certain density. If the density is increased we cannot
neglect the contribution due to diagrams with more than
two Geld points, and the PY approximation for solid
spheres will start to fail. This conclusion is confirmed by
the computations of Broyles." This can be seen by
examining the three field point diagram included in the
)S(r)$3/3! term shown in Fig. 4(a). There are two
elementary diagrams, Fig. 4(b) and Fig. 4(c) from
which diagram 4(a) can be obtained. In order to obtain
diagram 4(a) from 4(b) we have to remove bonds f34
and f43, and in order to obtain 4(a) from 4(c), three
bonds, namely, f34, f43, and f33, have to be removed.
Now if we let these cross bonds equal —1, then the
contribution due to diagram 4(c) will be approximated
by the contribution of diagram 4(a) multiplied by —1,
which is in accordance with the approximation equa-
tion (2.12); but the contribution due to diagram 4(b)
should be approximated to the contribution of diagram
4(a) multiplied by +1, while the approximation equa-
tion (2.12) corresponds to multiplying the contribution
of diagram 4(a) by —1, in order to obtain approximately
the contribution of the diagram 4(b). This clearly is
not correct. Now consider the three field point diagrams
included. in the (S)' term. The Fig. 4(d) shows this
diagram. The elementary diagram 4(e) and 4(f) can
be reduced to 4(d) in the manner described above. The
contribution due to 4 (e) may be obtained approximately
by multiplying by —1, the contribution due to the
diagram 4(d). And the contribution due to the diagram
4(b) may be approximated to the contribution of dia-
gram 4(d) multiplied by 1. The latter approximation is
not in accord with the approximation equation (2.12).
These considerations show that for higher densities the
PY approximation may not be good.

The PY approximation, however, will be better for
solid spheres than the CHNC approximation which
ignores the contribution of elementary diagrams. This
conclusion follows from our discussion above, as long as
only two field points diagrams are important.

Consider another repulsive potential which varies
as r ', the Coulomb potential. In this case the value of
bond f(r) decreases in magnitude continuously with
the increase in r but is always negative. In this case also,
PY approximation for two field points elementary dia-
gram makes the link between the two field points equal
to —1 irrespective of the distance between the Geld

points. However, this approximation might work if we
consider that some or all the other bonds, namely, f»,
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TABLE I. Energies,

T ('K) n X10' Pt.

LJ
LJ

84.4 2.113 GM
GM

compressibihties, pressures, positions, and heights of first and second maxima and minima in

Computed Expt.
L"/NkT tlkTE P/nkT P/gkT r ( )g 1'y Pn ''g 1'g) f3 g(13)

—8.3386 0.4335 0.45 3.7—8.2462 0.1924 1.12 0.004 3.7
5.0 0.670 7.1 1.253

—7.9155 0.6392 0.86
5.2 0.688 7.1 1.271

—7.7884 —10.8472 —0,83
3.6
3.7 5.1

4e9 Oo644 6 9 1@235

Neutron diff. expt. at T=84'%~ ~ 3.8 5.0 0.608
0.644 7.0 1.167

x-ray diff. expt. 3.8

Eq.

PY
CHNC

PY
CHNC

3.066
2.902
2.718
2.337
2.45
3.32

f4

8.3
8.5
8.2
8.5

g(~4)

0.879
0.889
0.880
0.870

LJ PY —7.3879
91.8 2.059 LJ CHNC —7.4626

GM PY —7.1911
GM CHNC —6.5569

Monte Carlo

LJ PY —4.2359
126.7 1.659 LJ CHNC —4.2057

GM PY —4.1899
GM CHNC —4.0148
LJ —3.7794

0.3174 1.155
0.5093 0.272
1.3286 0.128
7.6187 —1.934

x-ray diff. expt.

0.3838 0.734
0.5175 0.815
1.1109 0.299—10.4586 —0.162
0.3047 1.1568

x-ray diff. expt.

3.7 3.033
0.007 3.7 2.749

3.7 2.541
3.7 2.003
3.7 2.65

3.7 2.472
3.7 2.373

0.064 3.7 2.213
3.7 2.000
3.7 2.220
3.66 2.0

5.0
5.3
5.1
5.2
5.3

5.3
5.4
5.4
5.3
5.4
5.3

0.661
0.722
0.686
0.656
0.68

0.764
0.792
0.760
0.750
0.790
0.75

7.1 1.249
7.1 1.240
6.9 1.207
7.2 1.083

7.1 1.153
7.2 1.145
7.0 1.140
7.1 1.069
7.4 1.10
7.0 1.11

8.3 0.877
8.6 0.908
8.3 0.905
8.6 0.904

8.6 0.941
8.8 0.951
8.5 0.948
8.7 0.916

LJ PY' —0.4557
LJ CHNC —0.4567

126.7 0.134 GM PY —0.5140
GM CHNC —0.5192

1.8343 0.7608
1.8531 0.7609
2.0221 0.7419
2.0966 0.7413

3.8 2.6679
0.69 3.8 2.6749

3.8 3.139 6.5
3.8 3.174 6.4

1.1399 6.8 1.1406
1.1521 6.9 1.1544

LJ PY —2.8451
LJ CHNC —2.8433

144.1 1.312 GM PY —2.9126
GM CHNC —2.9465

0.7441
0.7930
1.4081
1.7119

x-ray diff.

0.571
0.569
0.322
0.247

expt.

3.7 2.170 5.5
0.146 3.7 2.131 5.6

3.7 2.089 5.3
3.7 2.075 5.4
3.69 2.035 5.82

0.860 7.3
0.859 7.3
0.829 7.1
0,843 7.1
7.18 1.1

1.096 8.8 0.974
1.092 9.0 0.980
1.110 8.7 0.970
1.118 8.8 0.975
1.1

144.1 0.333 LJ
LJ

PY
CHNC

—0.9136—0.9261
3.2294
3.5446

0.5727
0.5729

0.533 3.8 2.377
3.8 2.416

LJ
149.3 1.112 LJ

GM
Case I GM
Case II GM

LJ
149.3 0.498 LJ

GM

PY
CHNC

PY
CHNC
CHNC

PY
CHNC
CHNC

—2.3506—2.3581—2.4470—2.4822—2.1906

10253 1—1.2770—0.8908

1.0540 0.462
1.1728 0.450
1.9156 0.309
2.2698 0.267—6.6449 0,072

x-ray diff. expt.

4.0002 0.465
4.6514 0.468—7.6808 0.532

x-ray diff. expt.

3.7 2.081 5.6
3.7 2.060 5.7

0.207 3.7 2.088 5.4
3.7 2.094 5.4
3.8 1,765 5.4
4.01 1.489 5.64

3.8 2.265 6.1
0.433 3.8 2.316 6.1

3.8 1.583 5.9
3.8 1.94

0.883
0.895
0.872
0.886
0.795
0.78

1.064
1.081
0.726

7.3 1.079
7.4 1.079
7.1 1.106
7.2 1.118
7.3 0.960
7.25 1.11

7.4 1.132
7.4 1.157
8.1 0.774

9.0 0.988
9.2 0.991
8.8 0.987
8.9 0.991
8.9 0.904

a T is the temperature in degrees Kelvin, e is the numbe f
maximum in g, ra is the o i ioitio ofth fi t i i i i th o't' f

', e is e number of particles per cubic angstrom Pt = o

i .= i raction.
o i i
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FIG. 5. The Lennard- Jones and Guggenheim-McGlashan

Kelvin.
potentials. The distance is in angstroms and th

'
dn e energy 1n degrees

fi4, f~„and f~4 decrease in magnitude as the distance
between the points which they join increases. The PY
approximation will give lower values of g than the act 1

val
eac ua

va ue because the bonds fi3, fi4, f23, and f24 do not de-
crease sufFiciently rapidly the CHNC approxim t'

~

l]
0 ~

approxima ion
wi give higher values because f34 in this approximation
is being equated to zero for all values of r34. The actual
value of g for the Coulomb case will be bracketed b the

NC g and the PY g. These considerations are valid
e y e

as long as the contributions to g due to three or more
6eld points diagrams are negligible.

Now we shall discuss the case where the potential
between the particles has an attractive part also, i.e.,
a potential of the Lennard-Jones type.

When the temperature (in energy units) is high in

comparison to the depth of the potential at the mini-
mum then we can treat the LJ potential for the present
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FIG. 6. The computed
g's from the CHNC equa-
tion with the GM and LJ
potentials at 84.4'K. The
x-ray diBraction points are
due to Eisenstein and Ging-
rich. The neutron diGrac-
tion points are due to
Henshaw.
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consideration close to the case of solid spheres. As the
temperature decreases the attractive part of the poten-
tial becomes more and more eGective. If the density of
the particles is so low that we need not consider the
elementary diagrams with two field points, the PY and
the CHXC approximations should give the same results.
At low temperatures with low densities the small
changes in the potential must make the di6erence in
the computed distribution functions and would be a
good way to separate the inaccuracies in the integral
equations from the inaccuracies in the interatomic
potentials, particularly in the attractive part of the
potential.

But, when the density is so high that the two 6eld
points elementary diagrams must be taken into con-
sideration; the PY approximation and the CHNC ap-
proximation must give diferent results. The PY ap-
proximation assumes f(rs4) to be —1 for all values of
r34, but in this case, as we have seen in the discussion of
CHNC approximation, f(r34) can take positive values,
and also much greater than 1, depending on the tem-
perature and the value of the minimum in the potential.
Recalling the discussion in the case of CHNC approxi-
mation, we conclude that the PY approximation cannot
be expected to be good for this case.

III. RESULTS OF COMPUTATIONS, COMPARISONS,
AND CONCLUSIONS

A. Results of Computations

Radial distribution functions g for argon Quid have
been computed from the Percus-Yevick and the con-
volution hypernetted chain equations, at various tem-
peratures and densities. The method of computation

is described in Refs. 17 and 18. All the temperatures at
which the computations have been done are below the
critical temperature (T,= 150.66'K). We have used two
different interaction potentials, (i) the Lennard-Jones
6—12 potential and (ii) the Guggenheim-McGlashan
potential. (See Appendix A.) The computed g's are
plotted in Figs. 6—18, and are given in tabular form in
Ref. 18.

From the g's we have computed the quantity J,
which is the coherent scattering per particle" I.„/X.
(I,„is the total scattering in electron units and cV is the
total number of scattering particles. )

1=t'1+i(s)jf', (3.1)

where i(s) is given by equation"

si(s) =4nI-rLg(r) —1$ sin(sr)dr, (3.2)

E'/1VkT = (2m'/kT) @gr'dr. (3.3)

' A. A. Khan, Ph.D. thesis, University of Florida, 1963
(unpublished).

"N. S. Gingrich, Rev. Mod. Phys. 15, 90 (1943).

f is the atomic structure factor and e is the macroscopic
density of particles. The computed J's are plotted in
Figs. 19 to 31, and are given in tabular form in Ref. 18.

From the g's we have computed the quantities
E'/EkT, nkTK, and P/rlkT, where E' is the internal
energy, E is the isothermal compressibility, and I' is
the pressure. The quantity E' is given by the equation'
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The quantity E is given by the equation"

rtltTK= 1—4s ts (1—g) r'dr (3 4)

B. Comparison of the g's

For a given density and temperature the following
comparisons of g's have been made:

and the quantity I' is given by'

P/re T = 1—(27rN/3kT) p'gr'dr,
0

(3 5)

3.0-

2.0-

g(r)

T = 91.8
n a 2.06 x IO

GM CHNC

LJ CHNC

X-Roy Expcritncntal

I,O
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I

I I.O
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FIG. 8. The computed g's from the CHNC equation vrith the
GM and LJ potentials at 91.8'K. The x-ray dift'raction points are
due to Eisenstein and Gingrich.

's L. D. Landau and E.M. Lifshitz, Statistical 2'hysics (Addison-
Wesley Publishing Company, Inc., 1958).

where E is the total number of particles in the system,
rt is the number of particles per unit volume, and p is
the interatomic potential. Results of computations of
energy, pressure, and compressibility are given in
Table I.

(i) g's computed from the same integral equation
but with the two different potentials (LJ and GM
potentials).

(ii) g's computed from the same potential but with
the different integral equations (PY and CHNC
integral equations).

(iii) All the computed g's with the experimental g's.
We have used x-ray experimental" radial distribution
functions of Eisenstein and Gingrich. 22 The computed
distribution functions for the case of T=84.4'K have
also been compared with the g obtained experimentally
from neutron diffraction experiments by Henshaw"
in liquid argon at 84'K.

In order to compare the distribution functions ob-
tained with the same integral equation and with different
potentials, we have plotted the g's computed by using
the LJ and GM potentials on the same graph. Experi-
mental curves have also been plotted on these graphs
(see Figs. 6—18). Figure 5 shows how the two potentials
look compared to each other. Since the GM potential
has a vertical barrier, the g's computed from this po-
tential are zero for values less than 3.2 A. Also, the
effect of the vertical barrier is to give higher values of g
for values of r close to 3.2 A. This effect can be seen in
all the cases. This effect of higher values of g's seems to
extend farther and farther away from 3.2A as the

~' Experimental values of g were read from the photographically
enlarged curves of the published curves.

"A. Eisenstein and ¹ S. Gingrich, Phys. Rev. 62, 261 (1942)."D. G. Henshaw, Phys. Rev. 105, 976 (1957l.
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FIG. 9. The computed g's from the PV equation with the GM
and LJ potentials at 91.8'K. The x-ray difFraction points are
due to Eisenstein and Gingrich.

temperature is increased and the density is decreased.
Keeping the temperature (126.7'K) the same and
changing the density so that we pass from the liquid
to the vapor state, the GM potential gives higher values
for g than the LJ potential almost everywhere. The 6rst
peak for GM potential is considerably higher than for
the LJ potential. However, these high values of g for
GM potential at the 6rst peak and beyond the first
peak do not depend on the fact that the GM potential
has a vertical barrier (see Figs. 11—13.)

The height of the first peak in the g is higher for the
LJ potential than for the GM potential for tempera-
tures 84.4, 91.8, 126.7, and 144.1'K in the liquid state.
(See Table I and Figs. 6—9, 11, 14, and 15.) The height
of the 6rst peak is lower for LJ potential than for the
GM potential for the cases of T=149.3'K, m=1.112
X10 ' particles/A' (we are not considering GM,
CHNC, case II) which is the lowest density in the
liquid state that we have studied, and for the
T=126.7'K, x=0.134X10 ' particles/A', which is a
vapor state. We have not been able to obtain solutions
for the integral equations with the GM potential in the
vapor state of argon at 144.1'K, and for argon vapor at
149.3'K for the GM potential and the PY equation. We
obtained a solution for argon vapor at 149.3'K for the
GM potential and CHNC equation, but probably this
solution corresponds to the case II GM, CHNC, g for
liquid argon at 149.3 K which we consider to be an
invalid solution. We can conclude that the first peak
for the GM potential is lower than that for the LJ
potential for densities equal to or higher than 1.312&&10 '
particles/A' for the range of temperatures we have
studied. This e8ect is rather unexpected in view of the
fact that the GM potential is deeper and has a greater
bowl vtidth.

The first peak for liquid densities for both the po-
tentials occur at 3.7 A with one exception (T=84.4,
GM, PY peak is at 3.6 A). For densities in the vapor
region, the 6rst peak appears at 3.8 A for both the

3.0

2.0

T = l26.74K
n ~l.66x lO /A~

—LJ Monte Carlo
~ LJ PY

i LJ CHNC

l.O

0
l.O l.5 2,0

r
a

2.5

FIG. 10. The computed g's from the PY and CHNC equations
with the LJ potential at 126.7'K. The Monte-Carlo g is due to
Wood, Parker, and Jacobson.

potentials. In Table I are given the positions and heights
of the first and second maxima and minima for the
purpose of comparison.

Comparison of internal energies show that the energies
computed from the LJ potential are less than those
computed from GM potential for both the integral
equations, for liquid argon for densities higher than
1.6X 10 ' particles/A', in the temperature range studied.
For lower liquid densities and for vapors the energies
are lower for the case of the GM potential.

Comparison of compressibilities show that the PY
equation with the LJ potential gives lower values than
those computed from the GM potential and PY equa-
tion in all the cases studied. For the CHNC equation
with the GM potential we obtained negative values for
compressibilities for T=84.4'K case and T=126.7'K,
m= 1.66X10 ' particles/A' case. In all other cases the
compressibilities calculated from the CHNC equation
with the LJ potential are less than those given by the
CHNC equation with GM potential.

In all the cases studied the pressures computed from
the LJ potential are higher than those calculated from
the GM potential for both the integral equations
except for the case T=84.4'K in which the LJ potential
with the PY integral equation gives a lower value than
the GM potential with the PY equation.

The values of compressibilities and pressure computed
using the LJ potential are very much different from
those computed using the GM potential at liquid argon
densities. The difference in the internal energies is
small. (See Table I.) From this we see that at tempera-
tures below the critical temperature and at liquid
densities the thermodynamic quantities like pressure
and isothermal compressibility are extremely sensitive
to the interaction potential.

To compare the integral equations, it would be best
to know the exact g for a given type of interaction.
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Fortunately, we have the Monte Carlo g computed by
Wood, Parker, and Jacobson'4 for the LJ potential, at
T=126.7'K.. Computations at this temperature and
density (m=1.66&(10 ' particles/A') were done by
Verlet and Levesque" with the PY and CHNC integral
equations using the LJ potential. Our computations
agree with theirs. In Fig. 10 we have plotted the g's
computed from the PY and CHNC integral equations
for this case. The continuous curve is the Monte Carlo
curve. The abscissa is in units of a (a=3.405 A). It
can be seen that the Monte Carlo curve and PY points
everywhere bracket the CHNC points. The agreement
between the Monte Carlo curve and the CHNC points

is good except at the 6rst peak. The improved agree-
ment of the CHNC relative to the PY solution when
compared to Monte Carlo is to be expected at this
lower temperature from the considerations in Sec. II.
We computed from the Monte Carlo g (Monte Carlo

g is given up to 8.4 A) the energy E', the compressi-
bility" E, and the pressure P. The computed E' and P
from the PY and CHNC equation are close but the E's
in the two cases are very different. The agreement with
the Monte Carlo values is not good. (See Table I.)
This shows how sensitive the thermodynamic quantities
are to small differences in the g's, since Fig. 10 shows
rather good agreement among the three distribution
functions.
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FIG. 12. The computed g's from the CHNC equation with the
GM and LJ potentials for argon vapor at 126.7'K.

'4%. W. Vfood, F. R. Parker, and J. D. Jacobson, Nuovo
Cimento Suppl. 9, 133 (1958).

"L.Verlet and D. Levesqne, Physica 28, 1124 (1962).
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FIG. 13. The computed g's from the PY equation with the
GM and LJ potentials for argon vapor at 126.7'K.

~6 The Monte Carlo E is not likely to be good because of the
strong dependence of E on g at large r.
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Fn. 14. The computed g's
from the CHNC equation with
the GM and LJ potentials at
144.1'K. The x-ray diffraction
curve is due to Eisenstein and
Gingrich.
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Since the experimental distribution function is also
available for this case, we compared g's from the two
integral equations using the LJ and GM potentials
with the experimental g. Since the Monte Carlo calcu-
lations have been done with the LJ potential, the dif-
ference between the experimental g and the Monte
Carlo'4 g is due to the fact that the LJ potential is not
a realistic potential (see Fig. 11).

In order to see how good the GM potential is in com-
parison to the LJ potential, erst we studied a case of
low density (vapor state) at low temperature. We saw
in Sec. II that as long as the density is so low that the
diagrams with more than one field point do not con-
tribute appreciably, the CHNC and PY equations
must give almost the same g for a given potential of
interaction. We have computed g's from the PV and the
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FIG. 15. The computed g's
from the PY equation with the
GM and PY equation at
144.1'K. The x-ray diffraction
curve is due to Eisenstein and
Gingrich.
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FIG. 16. The computed g's
from the CHNC equation with
the GM and LJ potentials at
149.3'K. Case 1 and case 2
correspond to two different
solutions obtained with the GM
potential. The x-ray diffraction
curve is due to Kisenstein and
Gingrich.
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CHNC integral equations using the LJ and GM poten-
tials, at T=126.7'K and e=1.34X10 ' particles/A'
(vapor state). From the Figs. 12 and 13, it will be seen
that there is little difference in the g's computed from
the different integral equations, but there is a sharp
difference when the potential function is changed. From
these g's we have computed the pressures, and com-

pared them with the experimental value. (See Table I.)
The LJ potential with the CHNC or the PY equation
gives the pressure (P/ekT)0. 76 and the GM with the
CHXC or with the PY gives the pressure 0.74, while
the experimental value is 0.69. This comparison shows
that the GM potential is more realistic. (This conclu-
sion is valid as long as the temperatures are low
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Pro. 17. The computed g's
from the PY equation with the
GM and LJ potentials at
149.3 K. The x-ray diffraction
curve is due to Eisenstein and
Gingrich.
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FlG. 18. The computed g's from the CHNC equation with the
GM and LJ potential for argon vapor at 149.3'K. The x-ray
diffraction points are due to Eisenstein and Gingrich.

enough that the attractive part of the potential is
more important. )

In Fig. 11 we have plotted the x-ray experimental g,
"
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Fre. 20. The compound J's from the PY equation with the
GM and LJ potentials at 84.4'K. The I-ray diffraction points
are due to Eisenstein and Gingrich.

Fn. 19. The com-
puted J's from the
CHNC equation with
the GM and LJ po-
tentials at 84.4'K.
The x-ray diffraction
points are due to
Kisenstein and Ging-
rich.
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and the computed g's from the two integral equations
using the LJ and GM potentials at T=126.7 and
v=1.66&&10 ' particlesiA'. The agreement with the
experimental curve is best for the case of the GM
potential with the CHNC equation. It is interesting to
note that it is the CHNC equation which gives better
agreement with the Monte Carlo g

4 and it is the pres-
sure computed from the g obtained from any of the two
integral equations using the GM potential that gives
better agreement with the experimental pressure in the
case of argon vapor at 126.7'K discussed above. Hence,
it follows that, for the liquid argon case at 126.7'K, the
CHNC equation is doing a better job than the PY
equaticm. However, if the GM potential and the x-ray

g had been accurate enough we should have gotten the
peak of the g, in the case of liquid argon at 126.7'K
computed from GM potential and CHNC equation, a
little higher than the peak of the experimental g. This
is because the peak in the CHNC g is a little higher than
the peak of the Monte Carlo g (see Fig. 10). Hence, if
the peak in the x-ray experimental g is taken as correct,
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FIG. 21. The computed J's from the CHNC equation with the
GM and LJ potentials at 91.8'K. The x-ray diffraction points
are due to Eisenstein and Gingrich.
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the GM potential must not be good enough (although
better than Ll potential) for the computation of radial
distribution functions which will give reliable thermo-
dynamic quantities. Even in the case we have discussed
above, the computed pressure does not agree with the
experimental pressure at all. The computed pressure
is a negative quantity (—0.162). If we consider the
magnitude, then it is closer than any other computed
pressure to the experimental pressure (see Table I).

In all the liquid argon cases studied, the PY equation
gives a higher first peak in the computed g's using either
of the potentials, except in the case of 7=149.3'K. In
this case, using the GM potential and the PY equation,
the first peak in the g is 2.088 while with the CHNC
equation case I, the first peak is 2.094. In argon vapor,
the g's computed from the CHNC equation have higher
6rst peaks than those computed from the PY equation
(see Table I).

At temperatures lower than 126'K the difference in
the first peak of g computed from the PY and CHNC
equations is greater for the GM potential. This is due
to the greater depth bowl and bowl width of the GM
potential which becomes more effective at lower tem-
peratures (see Table I).

The PY and CHNC equations give energies which are
very close for a given potential. The change in potential
causes considerable change in the internal energies
(see Table I).

The compressibilities computed from the CHNC and
the PY equations for the same potential are very dif-

FIG. 22. The computed J's from the PY equation with the
GM and LJ potentials at 92.8'K. The x-ray diGraction points
are due to Kisenstein and Gingrich.
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FIG. 23. The computed J's from the CHNC equation with the
GM and LJ potentials at I26.7'K. The x-ray diffraction points
are due to Eisenstein and Gingrich.

ferent at temperatures 84.4, 91.8 and 126.7'K for liquid
argon. For lower densities and for higher temperatures
they are close (see Table I).
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The computed pressures from the two integral equa-
tions are also not in agreement for lower temperatures
(84.4, 91.8'K) for liquid argon. For 126.7'K (liquid
argon) the agreement is better for the LJ potential
but there is considerable difference for the GM potential.
The GM potential with the CHNC equation gives a
negative value of pressure. In all other cases the values

'500-
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T = I44. I

n = l.5I2 x lQ-2

GM CHNC—I J CHNC

300 -'

100—
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Ioo- FIG. 26. The computed J's from the PY equation with the GM
and LJ potentials at 144.1'K. The x-ray diffraction points are
due to Eisenstein and Gingrich.
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FIG. 24. The computed J's from the CHNC equation with the
GM and LJ potentials for argon vapor at 126.7'K. The x-ray
diGraction points are due to Kisenstein and Gingrich.

to the curve computed with the CHNC equation for
the GM potential (see Fig. 11).In the case of 144.1'K,
m=1.312X10 ' particles/A', all the computed curves
seem to be equally good compared to the experimental

of pressure computed from the CHNC and PV equation
agree quite well for the LJ potential but the differences
is considerable for GM potential.

The experimentaP' "distribution functions have been
plotted on Figs. 6—9, 11,and 14—18. In the case of liquid
argon at 126.7'K, the expermental, curve is closest to
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FIG. 27. The computed J's from the PY and CHIC equation
with the LJ potential for argon vapor at 144.1'K. The x-ray
diGraction points are due to Eisenstein and Gingrich.
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FIG. 25. The computed J's from the CHNC equation with the
GM and LJ potentials at 144.1'K. The x-ray diffraction points
are due to Kisenstein and Gingrich.

curve. However, if we take into consideration the height
of the first peak, the best is again the CHNC equation
with the GM potential. The experimental curve is very
much different from the computed curves in the cases of
T= 149.3'K, e= 1.116X 10 ' particles/A' and for
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300-

200-
T = (493
n=l. ll x l0~

intensity curves with the computed intensity curves for
the LJ potential and CHNC equation and qualitatively
the agreement was good, but there was considerable
difference at the 6rst peak. With the GM potential the
fit at the 6rst peak (in the radial distribution function
curve) is much better (see I'ig. 6).

A comparison of the computed pressure with the
experimental pressure shows that the agreement is, in

general, very bad (see Table I).However, in general at

)00- 300
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200—

Fro. 28. The computed J's from the CHNC equation with the
GM and LJ potentials at 169.3'K. The Case I and case II refer
to the two solutions obtained with the GM potential. The x-ray
diffraction points are due to Eisenstein and Gingrich.

l00—

T=149.3'K and ts=4.98X10 ' particles/A'. In the
case of T=84.4'K, the agreement between the com-
puted g with the GM potential and CHNC equation
and the neutron di8raction curve is quite good. On the
other hand, none of the computed curves are in agree-
ment with the x-ray experimental distribution function.
Verlet and Levesque" compared the neutron diffraction
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Fro. 30. The computed J's from the CHXC equation with the
GM and LJ potentials for argon vapor at 149.3'K. The x-ray
diffraction points are due to Eisenstein and Gingrich.
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higher temperatures and lower densities studied, the
CHNC equation with the GM potential gives pressures
which are nearer to the experimental pressure than the
other computed pressures.

In the case of T= 149.3'K and e= 1.112&(10 '
particles/A' with the GM potential and CHNC equa-

200- LJ PY

GM PY

~ X- Ray Experirnentot
300-

T = t49.3
n = 4.98 x 10

too-

0' l

0.2 0.4 0.6

200
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F&G. 31. The com-
puted J's from the
PY equation with
the LJ potential
for argon vapor at
149.3'K. The x-ray
diffraction points are
due to Eisenstein and
Gin grich.

FIG. 29. The computed J's from the PY equation with the GM
and LJ potentials at 149.3'K. The x-ray diffraction points are due
to Eisenstein and Gingrich. The f' (f is atomic structure factor)
curve is also plotted.
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FlG. 32. The dashed curve is the g computed from the CHNC
equation with the GM potential. The g& is shown by the dots.
(Maximum value of Z used for the computation of gt is 0.7). The
x-ray diffraction curve is due to Eisenstein and Gingrich.
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FIG. 33. The dashed curve is the g computed from the CHNC
equation with the GM potential. The gI, is shown by the dots.
(Maximum value of E used for the computation of gq is 0.7.)
The x-ray diffraction curve is due to Eisenstein and Gingrich.

tion we have obtained two solutions which we have
called case I and case II.The case I g is very close to the
other computed g's, but the case II It, is very diferent
from the others (see Fig. 11). It approaches the value
g=1 from below. The pressures computed from the

g of case I is close to the experimental pressure while the
value computed from the g of case II is negative. We
consider this solution to be invalid. We expect that a
solution corresponding to case II also exists for the LJ
potential although we have not been able to find it.

In the case of T= 149.3'K and e=4.98X10 '
particles/A', we were unable to obtain any solution for
the PY equation with the GM potential. The solution
we obtained for the CHIC equation with the GM poten-
tial shows the same behavior as the g of case II we
discussed above, and we think that this solution is also
not good. It also gives negative compressibility.

In Figs. 19 to 31 we have plotted the computed in-
tensities in electron units per atom against E, (sing)/) .
The x-ray experimental curves of Eisenstein and

Gingrich" have also been plotted for comparison pur-
poses. It will be seen that the greatest difference be-
tween the computed and experimental values occurs at
the crests and the troughs of the curves. In some cases
the agreement is very good.

It will be seen that the experimental radial distribu-
tion curves are not smooth. There are wriggles and
bumps on it (see Figs. 11and 14).In order to see whether
these bumps and wriggles can be introduced we have
truncated the intensity curves at E=0.7, and then
computed g again from the intensity curves. In Figs.
32 and 33 we have plotted the experimental curves,
the computed g from the integral equation, and the g
which has been computed from the truncated intensity
curves. We call this g the g~ for identi6cation. We cut
the intensity curves at K=0.7 since the experimental
intensity curves which were converted to distribution
function form also extended up to K=0.7. It is seen
from Figs. 32 and 33 that no wriggles or bumps are
introduced in g~.

Conclusions

In Chap. II we have been able to see the PY and the
CHNC equations as two different approximations to
an exact integral equation. On the basis of the theory
discussed in Chap. II and the comparisons of the results
of computations we have been able to draw the following
conclusions:

(1) The PY equation is better than the CHNC
equation for repulsive potentials, in particular, for the
solid spheres.

(2) Both the PY and the CHNC equations are not
expected to give good results at high densities.

(3) At low temperature and moderate density, for
attractive potentials of the LJ or GM type, the CHNC
equation will give better results than the PY equation.

(&) The Guggenheim-McGlashan potentiaPr for argon
at low temperatures is more realistic than the LJ
potential for argon.

(5) In order to obtain better distribution functions
at low temperatures for the liquid state of argon, in
addition to a better integral equation, a better potential
function is also needed.

(6) The CHNC equation with a potential of the LJ
or GM type can have more than one solution.

APPENDIX A

The Lennard-Jones and the Guggenheim-Mc Glashan'

potentials for argon are given below.

"The GM potential can be improved by using Abrahamson's
(T.F.D.) LA. A. Abrahamson, Phys. Rev. 130, 693 (1963)j
computations for the interatomic potentials for small separations
of argon atoms, since Abrahamson's computed values agree closely
with the experimently determined values of Amdur and his
coworkers LI. Amdur, D. F. Davenport, and M. C. Kells, J.
Chem. Phys. 18, 525 (1950); I. Amdur and E. A. Mason, fbi.
22, 670 (1954)g.
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(i) The LJ potential is given by

(A1)

TABLE II. The potential function u and its derivatives
between 3.1 A and 5.4 A.

where the constants used are
r (A) zz ('K) r (A) zz ('K)

(ii) The GM potential is given by

u(r)= ~, r&d

(r—ro)2 (r—ro)' (2ro —r)
u(r) = —e+lz —n

fp2

(A2)

(A3)

rg&r &f2

fp fp

e = 119.76k'K,

a=3.405 A.

The value of r where the potential energy is minimum
is rp.

ra=2'~6Xg=3. 822 A.

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
40
4.1
4.2
4.3

4.5
4.6
4.7

0—34.00—63.50—91.50—120.15—133.21—137.05—135.44—129.00—119.78—110.50—100.50—90.50—80.50—69.50—60.00

0—300.00—300,00—300.00—300.00—200.00—83.00—7.57—46.39
81.13

100.00
100.00
100.00
100.00
100.00
100.00
100.00

4.8
4.9
5.0
5.1
5.2
5.3
5.4

—50.50—42.50—35.50—29.50—25.00
=21.50—18.56

90.80
76.40
64.30
51.40
40.00
30.60
25.00

t
re'

u(.)= —)I —I, r&r, .
kr)

The constants are

~/k = 137.6 'K '
zz/k =44.9X10' 'K

n/k=19. 6X10' 'K; ro ——3.812 A

X/k = 150'K,
d=3.2 A; r,=3.6 A

r, =4.15 A; r, =5 4A.
The derivatives of the GM potential used in these

computations are given below.

du/dr=0, r&3.1 A.

du/dr is given in the tabular form (Table II) for r
lying between 3.2 and 5.4 A,

du 900X (3.812)'
r&5.4 A.

df f7

Table II gives the potential function I and its
derivatives between 3.1 and 5.4 A.

APPENDIX B

In order to compute the pressure, we have used the
the Eq. (3.5). For the GM potential equation (3.5)
cannot be used in this form since this potential contains
a vertical barrier at r equal to d, and at this point p'
is discontinuous. The modified equation used for the
computation of pressure for the case of GM potential
is given by' "

2' S 27rS
ztz'gradr+ d'g (d+),

3kT 3

where g(d+) is the value of the distribution function on
the right side of the barrier.
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