
R. W. M I RES AN D C. C. L I N

structure due to this effect. Nevertheless, our calcula-
tioa.s do give considerable improvement over those of
the Hartree-Fock functions and show that the energy
corrections calculated from a simple correlation factor
are of the right magnitude to account for the difference
between the experimental multiplet spacings with that
predicted by the Hartree-Fock theory.
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The order of magnitude of the (orbital) diamagnetic susceptibility of a free-electron gas is investigated for
the case of "small" systems. A small system is, by definition, one whose characteristic linear dimensions are
very much less than the radii of the average classical electronic orbits in an applied dc magnetic field. For
the case of plane-slab geometry, exactly the Landau susceptibility (i.e., no size effect) is obtained for
Maxwell-Boltzmann statistics. Furthermore, on the basis of the latter calculation, it is explicitly demon-
strated that the use of the WEB approximation leads to a spurious size eg((.ct, suggesting that this (or
equivalent) approximations may be responsible for size corrections found by other authors For th. e de-
generate case, the Landau result is also obtained, to within a numerical factor. Finally, no size correction is
obtained in the small size limit for an electron gas confined by a harmonic potential well; this further sug-
gests that the Landau result is independent of the choice of boundary potential.

I. INTRODUCTION

'HE purpose of this paper is to present the results
of some investigations concerning the steady

diamagnetic susceptibility of "small" systems of elec-
trons. A "small" system is defined as one whose charac-
teristic linear dimensions (1.) are very much less than
the average radii (R,) of the classical electronic orbits'
in an applied dc magnetic field. In treating this problem,
it is customary to idealize' the real physical situation to
that of a free-electron gas confined to a box. The surface
of the box is then represented by a simple, and ana-
lytically tractable, potential barrier. The use of such a
model seems justifiable in view of the fact that the very
existence and order of magnitude of size corrections for
small systems have not been definitely established.
These are, indeed, the subjects of the present paper.

*This work was supported in part by the U. S. Air Force OfBce
of Scientific Research, Grant No. AF 196-63.
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The author would like to thank RCA Laboratories for the oppor-
tunity of completing this work.' Specifically, if E, is taken as the classical orbit radius corre-
sponding to the mean-electron energy, (E)=g or h T, according to
whether the electron gas is taken to be degenerate or nondegener-
ate, respectively, then L«R, =(ntc/eH)(2(F)/nt)'~'. As will be
seen later, this is simultaneously the domain of validity for treating
the magnetic-field proportional terms in the electronic Hamil-
tonian as a small perturbation.

In so doing, one neglects the periodic potential, collision of the
electrons with phonons and impurities, and the true scattering
properties of the surface. Also, electron spin is neglected
throughout.

The treatments to which the present work has refer-
ence, are those of Dingle, ' Part IV, and Ham. 4 Dingle
considers a cylindrical sample, for which he predicts an
enhancement of the Landau diamagnetic susceptibility
depending on the ratio of the radius of the cylinder to
the electron wavelength at the Fermi energy. Ham does
not specifically treat a "small" system. Rather, using a
modification of the WEB approximation, he calculates
surface corrections to "large" (1))E,) systems, the sign
and magnitude of which he finds extremely sensitive to
the form of the surface potential.

The present paper began with an investigation of such
effects by means of a detailed examination of a very
simple geometrical model: namely, a plane-parallel
slab, small (in the previously defined sense) in one
dimension (at the boundaries of which the wave func-
tion is assumed to vanish), and satisfying periodic
boundary conditions along the other two transverse
dimensions. Such a geometry had been considered earlier
by Papapetrou' who obtained just the Landau result'
for a degenerate electron gas. In addition to confirming
his calculation by an alternate procedure and obtaining

' R. B. Dingle, Proc. Roy. Soc. (London) A212, 47 (1952).
e F. S. Ham, Phys. Rev. 92, 1113 (1953).
5 A. Papapetrou, Z. Physik 107, 387 (1937).It should be pointed

out that the present paper overlaps this reference to some extent.
The addition contributions of the present work, however, are: (a)
the calculation of the Landau susceptibility for Boltzmann statis-
tics (not considered by Papapetrou); (b) the explicit demonstra-
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a numerical correction to his result, we also obtain the
Landau result for Boltzmann statistics. Moreover, by a
careful examination of the latter calculation, it was
found that the use of WEB energies in lieu of the correct
energies found from perturbation theory, leads to a
splrioes, larger than normal, result. Thus, the WKB
approximation is rot valid for this case in spite of the
fact thatit applies to the "vast majority" of states. This
result only emphasizes the well-known fact that, since
diamagnetism is entirely a quantum eGect and arises
from a delicate cancellation of large terms, approxima-
tions valid for large quantum numbers may often yield
spurious results.

To examine the sensitivity of the susceptibility to the
choice of boundary potential, a calculation was made for
a harmonic potential well, V (y) = -,'mQ'y', which serves as
a convenient prototype of a potential barrier which rises
slowly, in contrast to the infinite potential well con-
sidered previously. While recognizing that this potential
is perhaps somewhat special (as will be noted in the text,
the form of the magnetic-Geld perturbation agrees with
that of the well), we nevertheless consider this case in-
structive. Here, also, the Landau result was found in the
limit of a small system (as defined in this case by Ace,
= eAH/me&&SO). Hence, for the cases investigated, aside
from the above-mentioned numerical correction to the
Landau result for degenerate statistics, there is no
indication of size and surface corrections of the types
discussed in Refs. 3 and 4, which depend explicitly on
the sample dimensions and/or the magnetic-field
strength.

The program of the present paper is as follows. In
Sec. II, the problem is formulated, and the magnetic-
Geld-dependent corrections to the electronic energies are
found by standard time-independent perturbation
theory. In Appendix A, the series required for the
evaluation of the second-order energy correction is
summed by a contour integral technique. Using these

tion of the inadequacy of the WEB approximation based on cal-
culation (a); (c) an alternate and independent calculation of the
magnetic-field-dependent energies (specifically, the second-order
energy corrections).

'It should be pointed out that the use of periodic boundary
conditions along the two long dimensions of the slab, has been cited
by Dingle as being responsible for the Landau result obtained by
Papapetrou. Such a criticism does not seem justified in view of the
fact Papapetrou himself examined this question in a later paper
t Z. Physik 112, 587 (1939)j.Using standing waves along all three
directions, he found that for the vast majority of possible systems
(i.e., of L„L» L,), the standard result was reobtained. The only
exceptions to this occurred for those cases where the ratio of the
dimensions of the box in the plane normal to the applied magnetic
field was a rational number. This geometrical feature implies a
twofold degeneracy in the unperturbed standing wave states
which, in turn, leads to a larger than normal susceptibility. How-
ever, in the opinion of the present author, such cases cannot be
properly interpreted as implying a dependence of the diamagnetic
susceptibility on the sample dimensions, since the smallest,
ordinarily negligible, perturbations (impurities, the periodic
potential, etc.) would be bound to lift such degeneracies, in view
of the infinitesimal level spacing (~1/L). Hence, the use of
periodic boundary conditions along other than the thin dimension
seems a justifiable model for small systems, and is used in the
present paper.

results, the susceptibility calculations are given in
Sec. III for both Maxwell-Boltzmann and Fermi-Dirac
statistics. This is contrasted with the spurious size-
dependent result found on the basis of the WEB
energies. Finally, the case of the harmonic well potential
is treated in Sec. IV, again with the Landau result.

The wave equation obeyed by the total wave function
@(x,y, z) is

X@(x,y, z) = EO (x,y,z) .

Following the standard procedure of setting @(x,y, z)
= e'is~'+s**'7t(y), one obtains the wave equation
obeyed by x(y), namely,

d'x (y) 2m e'H'y' eH
+ E„—kk,—y x(y) =0. (1.2)

dy2 k2 2nSC2 mC

Following Papapetrou' and Dingle, ' the magnetic-Geld
terms in (1.2) are treated as small perturbations. ' The
zeroth-order (H=O) eigenstates and energies are just
standing wave solutions:

x(y) =A sinf2s ey/L„]; s 1 2) 3

=8 cost 2s.(N'+is)y/L„J; m'=0, 1, 2, ~ ~

5' /2' ' 5' /2s.
(„'+~)

2~ V.„2mkL„

(1.3)

The first-order energy correction is simply the expec-
tation value of the H'-proportional term in (1.2). For
the odd solutions, for example, one gets

e'82
z„()=

2mc2

Lyt2

Lv/2

dyy' sin'

e'EPL ' 3

24m c' 27rsts'1

~ As pointed out by Dingle, the condition given in footnote 1 is
equivalent to ( ' 'eH'/Lm ) c(E«), i.e., that the magnetic energy
correction is small compared to the mean-electron energy. For
perturbation theory to be applicable, however, it must further be
assumed that e'HeL„'/rac' be small compared to some mean-level
spacing of the system (in the statistical sense). Since the magnetic
field is taken as arbitrarily weak, this condition is assumed to be
satisfied.

II. ENERGY CALCULATIONS

We consider an infinite potential well defined by

V(y) =0,
v(y) = ~, lyl &L./2,

with no dependence on x and s. Then', choosing a gauge
A= ( Hy, 0,—0), where H=H, is the applied dc mag-
netic field, the electronic Hamiltonian is

1 eHy ' pv' pp
p*+ + + +v(y)

2m c 2ns 2m
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eH . 2
VI„„,A„= kk-

ssc Ly J y/2

dyy sin(k„y) cos(k„'y) .

Integrating, we get

eII 2
Vp„, l,„= Sk-

mc Ly

sinL(k„+k„')L„/2) sin/(k„—k„')L„/2j

Doing the same for the even solutions, the erst-order
energy correction for both cases can be written in terms
of a common quantum number, n„:

e'II2L ' 6
E„~(')= 1

I i nu= ii 2, 3, (1.4)
24mc'

The calculation of the steady susceptibility requires
all energy corrections to O(II'). Accordingly, the
second-order energy correction due to the B-proportional
term of (1.2) must be found. By symmetry, the only
nonvanishing matrix elements of this term are those
between the even and odd states:

S(n') =— 1—
12 (n'+-', )' 4n' (n'+-')'

(1.8)

The energy correction term E„&2& is evaluated in an
identical fashion. Writing this result and (1.8) in terms
of the same index, n„, which was introduced in (1.4), the
total electronic energy to order B2 is

These series are evaluated in Appendix A by a sum-
mation of series method given by Morse and Feshbach. '
The essence of the method is to consider the contour
intergral of the summand, regarded as a function of a
complex variable s, multiplied by a function (m cotms)
which has simple poles at the real integers with residues
equal to one. The residues of the integrand at these
latter points then give the required series, while the
residues at the poles of the original summand can be
evaluated by standard techniques. The sum of these
contributions is equal to the integral over a large circle
at infinity which can be shown to vanish, and hence,
the required series can be evaluated. According to
Appendix A, the result is

15 1

With
(k„+k„')'

k„= (2m/L„)n,

k„'= (2~/L„) (n'+$),
(k„+k„')(L„/2) =or(nan')+n/2,

k' 2')' ( m
' (2')'z...„.,=—

2m L,) (L„(L,)
e2H2L ' 6

24nsc2 m'n„'

one finds, after some trigonometry, that

sinL(ky+k, ')L„/2j= a (—1)"+"',
eII L„V„= hk,
saic 2x' (1.5)

(k'/2m) (2x/L )'n '-
1—

(k,'/2m) (~/L„)'ny' ~'n„'

III. SUSCEPTIBILITY CALCULATIONS

A. Boltzmann Statistics

~ (1 9)

( 1)n+m'
( 1)n e'—

x
Ln+ (n'+-', )$' Ln —(n'+~~)$'

With the definitions

The second-order energy correction to the level
given by the standard formula'

g, (2) —Q„,~ (o) g, (o)

Substituting (1.3) and (1.5) into (1.6), one gets

e2+2 L 4

k.'S(n'),
8mc x'

where

e2+2L 2 1
k'=p, p=

24nsc2 kT
(1.6)

the classical partition

Z= Q exp{—pE„. „,)
takes the form

k't2~ ' k' ~ ' k'(27r '
n' is ~ 'P~ —), .~='ii (

—), „u='ii
~

—), .=

(2.1)

40 1 1
S(n)= 2 +

n-1

2
1.7

n n 122 n —nf 21
2 nl 21

2 n2

Due to the circumstance that the matrix elements connect
only even and odd solutions, one need not be concerned about
excluding the term e=n' from the summation.

Z —Z (0) Q exp{ a 2n 2 $2(1 6/~2n 2))
ny 1

b2 1 15
X P exp —a'n' 1— (2.2)

e oo g2 n2 ir2n4

P. M. Morse and H. Feschbach, Methods of Theoretic@/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. 1,
p. 413.
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where

Z, "'= Q exp f —a,223,2) . (2.3)

The sum over 23y aPPearing in (2.4) then becomes, in
expanded form,

The summation over e is carried out by replacing the
sum by an integral. Expanding this result (which is a
function of 23y2) and the exponential appearing in the
n„sum to order 62, which is of su%.cient accuracy for
calculating the steady susceptibility, we get

Z=Z(o) Z (o)Z (o)f)2 Q c—ayyny'

ny 1

a„2 ——— a„'

1 1 5l 6 5)+., ~

——1*+-+- i+a, ' —— I, (2.7)
4 4) ~3)2 ~3&2)

the first nonvanishing contribution a„.The asterisks
(*) indicate that the respective contributions arise from
the second and third sums in (2.6). These will be of
importance when we later examine the consequences of
using energies derived with use of the WEB approxima-
tion. Retaining the above contribution a» and using
the standard thermodynamic expression for the
susceptibility

where

g(o) —g (o)g„(o)g,(o)
1 8 1 i BZ

x=—(k T) lnZ ——(k T)
II BII II Z&0) BII

is the Geld-free partition function, and Z, &') and g„&"
are defined in analogy with (2.3).

The series given in (2.4) can be readily summed by
means of the Poisson sum formula" relating the sum of
a series to the sum of its Fourier transforms. Specifically,
the Poisson formula reads

00 1
g f(22rk)= —g drf(r)e

k x) 2m &—~
(2 5)

Applying (2.5) to the case f(22rk)=c 'y'3', one can
derive the relation

~
—nv&au& =

ny~1

~1/2 ] ~1/2

C
—(y2 nyy (ayy)

)

2ay 2 ay

ny 1

~1/2
'(bQ ng2 2= +' ' '

2ay 2

which applies for all Re(a„'))0. By successively multi-

plying the above result by a„' and integrating from 0 to
a„, one can generate the necessary series for

(C
nyyayy—

C
—ny ay)

and
23„4 )

By these means, the required series, to a su%.cient
number of terms for our purposes, are

one finds, from (2.4) and (2.1) that

p2

~Landau y

3kT
(2.8)

~2g2L 2

1/2

e2H252k 2L '

where tt=eIt/mc is the Bohr magneton. Thus, the
diamagnetic susceptibility of a nondegenerate electron
gas conGned to a slab which is "small" in one dimension,
is exactly the Landau value.

The Landau result is also obtained for the degenerate
case. This result has been obtained previously, ' but will
be summarized brieRy for the sake of completeness.
Before so doing, however it is of some interest, as
mentioned earlier, to calculate the susceptibility using
%KB energies. In particular, it will be shown that these
energies, which are asymtotically correct only for large
quantum numbers, lead to a spurious result, larger than
XL, d,„, and depending on the sample dimension.

The WEB energies are readily obtained from (1.2)
using the phase integral condition

Ly/2 ~2II2y2 ~II' 1/2

(22)3)'(2 dy F. — — Itk,y =23 )rt2r. (2.9)
—LQ/2 2mc' mc

Since, by deGnition, the second and third terms under
the square-root sign are very much less than the first,
the square root may be expanded to order II2. Carrying
out the integrations, one obtains

00 7r2 1.

P (c—"'""/rt ') =—(2r) '"a +—a '+
ny 1 6 "2"

~4 m' 2
(C

—ayyny2/23 4) — a 2+ (2r)1/2a 3+. . .
ny 1 90 6 3

(2.6)
48323c'8„'t' 962rt'c'E„'t' (22rt) 't' L„

Solving for E„ to order H2 by iteration, one gets

k2 ir2

"G. A. Korn, Mathematycat Handbook (McGraw-Hill Book
Company, Inc. , New York, 1961).

~2Q2L 2

+
24nsc'

(|32/2233) k,2

(2.10)
(I32/2423) (2r'/I. ') 33 '
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This result does not include the two "quantum"
correction terms (—6/2rsn„2) and (—15/21'n„4) contained
in the square brackets of (1.9) which, it will be recalled,
is the exact perturbation theory result to order H'.
Going back to (2.7) one sees that the terms marked (*),
which arise from the above-mentioned correction terms
Lthese, in turn, arise from the second and third sums of
(2.6)], would not appear if WEB energies were used.
Hence, the 6rst nonvanishing term would be a„', rather
than a„', with the result that

( I 2 )1/2
XWKB XLsndsnX

(

EI42/2tnkTi

Thus, the WEB approximation for this case gives a
spurious size effect, depending on the ratio of the small
dimension of the slab to the thermal deHroglie wave-
length. It is of some interest that Dingle's result (for
cylindrical geometry) is larger than Xr„d,„by such a
factor /except for the appearance of a different exponent
(-', instead of -', ), probably due to his different geometry,
and the fact that kT ~ i, since he is dealing with a
Fermi gas].

B. Degenerate Statistics

In this section, it is to be established that the solutions
(1.9) lead to the Landau diamagnetism (to within a
numerical factor) for the case of degenerate, Fermi-
Dirac statistics. The procedure is the standard one of
calculating the susceptibility from the free energy of a
Fermi gas:

P=&t kT g ln(1+—expL(i —E,)/kT]), (2.11)

sion of 1nL1+e'r—E'""r] about E;&", one gets

1nL1+e &r—E'&/sr]

= lnL1+, u.-E'«»/»] E,&2/

kT 1+e&E'"' r&/"r

1 B 1
XLE, it)]2

2kT BE 1+e&E' r& "r/ E E.«&

including correction terms of order H'. Then,

P=P(s)+Q E,(2)f(E,.(s))

Bf(E;)
+2 Q XLE;&'&]2 (2.13)

BEs g;

c2H21.„'
/ 6 ) a,'n '/ 15 )

24tnC2 *, * 4 w'n„'& a„'n„'4 w'n„'&

1
X (2.14)

1+exp t'a, sn,2+a 'n '+a.'n, ' Pi ]—
We consider the evaluation of (2.14) in the limit

T~ 0, where the Fermi function assumes a step func-
tion character. Then, since the quantity in curly
brackets is independent of n„ the sum over e, gives just
the range of n, :

(Pt g 2n 2 g 2n 2)1/2P(" )~2~
I (215)

ng a,2

where f(E4) = (1+e&E' r'/sr) ' is the Fermi distribution
function.

Getting back to the case of slab geometry, from
(2.13), (2.1), and (1.9), one must calculate the sum

by means of the relation"

X= —(1/VH) (BP/BH)r. (2.12)

Next, the sum over e is evaluated by replacing the
summation by an integration. This gives the following
two integrals whose evaluation is elementary:

E(N' -&ft'+f/')/+~'I"

Before getting into the calculation, it is useful to
develop a kind of general thermodynamic perturbation
expansion for E for the case of degenerate statistics. This
development is analogous to the thermodynamic pertur-
bation theory given by Landau and Lifshitz" for the
case of the classical distribution function. %e write E,
to terms up to second order in H:

E,.=E,.(o)+E,.(&)+E,.(2)

—t:(pt —~2~")/~ "j'/'

t (Pt —~2~ ')/~*'3'/'

-
t (e -H,",2)/"~j1/2

dn, L(/P| —a„'n„')—a.'n. ']"'

I (Pi-—a„'n„')

cg, 2

tin g 2n 2L(pi. g 2n 2) g 2n 2]1/2

~ (P|—a„'n„')'

e 8the possibility of an E;(')QO being included for the sake
of generality. Then, performing a Taylor series expan- The evaluation of I" then only requires carrying out the

summation over m„:
"It should be pointed out that, for axed 1V, g is a function of H

and will contain a correction term ~II~ in the presence of the
magnetic tiel1l. However, this does not a/feet M (or x) due to the
fact that (BF/8&) =0, which is the condition determining i'. Hence,
dF/dH= (BF/BH)t+(SF/Si') (Si/SH) = (8F/BH)t."L.D. Landau and E M. Lifshitz, S.tatssttcal Fhyszcs (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts,
1958), p. 93.

EHly 22r a / 6 )/P| —a nv)

24tnC2 u.a, ,=1 E wsn„2/ E 2

1 1 15 ) (Pi —a„'n„')'
+

wsn„4/ 8
(2.16)
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where

~ pgq 1/2

cr=
I I

))1.
Eu„'&

from small to large systems. This is a direct consequence
of a consistent application of the Euler-MacLaurin
expansion as described in Appendix 3, and has no
simple physical interpretation, as far as can be seen by
the present author.

Z f(i)= deaf(x)

To evaluate these sums, we apply the Euler-
MacLaurin expansion. 's This theorem states that if f(x)
and its derivatives exist and are continuous for m& x&e,
then

IV. HARMONIC VfELL CASE

In this section, we investigate the effect of the shape
of the surface potential in the "small size" limit for a
particularly simple case: namely, a harmonic well" along
the thin (y) dimension:

+ltf( )+f( )3+—'.I:f( )—f'( )3 V(y) =-',~sys. (2.19)

1
t f'"(n) —f"'(m)g+ " . (2.17)

720

Applying (2.17) to (2.16), and using the identities

a ]. ~ &e

n„=S~„6 n„=a+& ~„2 2

a $ ~4

n„=i ~„4 90 n„=a+i g,„4

one again 6nds that the summation over e„develops as a
series of terms of decreasing magnitude: a„20,2, u„20,',
a„'n', ~ . Just as in the nondegenerate case, the final
result depends crucially on a detailed cancellation of
terms to a given order. The calculations are therefore
given in Appendix B.Taking care to include all contri-
butions to a given order in a„2n", one obtains:

(12(. ) =I lg s~s

E2 6 8 4 24/

1 1 1 15 1)
+I + + +

16i

f'1 1) P i 1
+I ———I~.' =

I

———l~.'~
E~' 1Z)

"

Using (2.12), we find that

e'1"' f'1 1)
12Ãhc'(2m) '~' E7r' 12)

if=xL..s.uX-I 1——I, (2.18)
2k 12)

'

which establishes our result. Although this expression
exhibits no explicit size effects in as much as it is
independent of R and II, it does diGer from Papapetrou's
result by the numerical factor indicated. It would
therefore imply a magnetic-field dependence in going

Instead of (1.2), the wave equations for x(y) becomes

5' d'x(y)

28$

~2/2@2

+ —,'mQ'y'+ + Ak~y x=Ex. (2.20)
2nzc2 mc

The "small size" approximation, which we shall use
later, is just

(e'H'/mc')((mQ'. (2.21)

The zeroth-order (H =0) eigenstates and eigenvalues
are simple harmonic oscillator solutions

x~fei=C~(ny),

Eiv t'i =AQ(E+-,'), (2.22)

where C (rry) is a normalized harmonic oscillator state,
with excitation quantum number X, and

rr = (mQ/h)'"

is a normalization constant.
The H-dependent energy corrections can be found by

applying time-independent perturbation theory as be-
fore. '4 It is simpler, however, to make use of the circum-
stance that the spatial dependence of the perturbation
agrees with that of the well in order to obtain a fre-
quency change and energy shift (to order Hs). The two
procedures agree, as they must, with the result:

t,'H' 5'k ' e'H' AQ

EN =Ear"' + —(X+-',) . (2.23)
m'c' mg' 2mc' m

"The harmonic well case perhaps earliest treated by C. G.
Darwin, Proc. Cambridge Phij Soc. 27, 86 (1930).However, while
Darwin obtains the Landau result in the limit 0 ~ 0 (in the nota-
tion of the present paper), we obtain the same result in the
opposite limit Aor,«AQ appropriate to a "small" system.

'4 The calculation of the second-order energy correction is much
simpler (than that for the case of the infinite barrier) due to the
circumstance that, since (ff' )y ff)~5N, ~~i, there are only a few
number of terms to be summed.
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The classical partition function is

g —P e P—sag'n,

The n sum is carried out first. We have

e'H' 1
g exp —PAQ 1+ (&+2)

N=O 2mc' mQ'

which, aside from the H term, is just the geometric
series required in the calculation of the ordinary Landau
diamagnetism. The result is

-PM ( e'IP 1
—', csch

i
1+

2 k 2tnc' tnQ'

Expanding the csch and making explicit use of the
small size condition (2.21), one obtains:

PM PAQ e'H' 1
—' csch2 1——

2 2 2mc' mQ'

pfiQ
coth

The partition function Z then becomes

e'H' 1
Z(&) —Z(o) Z (o)Z (o)

2mc' mQ'

1 PM 1
&&

— coth (2.24)
2 2 (PM/2)

the quantity in the square brackets being the Langevin
function, L(PM/2). Using the fact that the level spacing
M is much less than kT, one has that 1.(PM/2)
='3(PM/2). From the expression (2.17) for the sus-

ceptibility, one Anally gets

2x ' e'H' 1
Z,&~)= Q exp —P —n, ' 1—

ng=o~) 2m I-.
e'H' 1~g (0)~ 1+
2n4c' nzn'

'

to order H'
The sum over E can be written in the form

system whose characteristic dimensions are small com-
pared to the classical, mean, orbital radius of an electron
in an applied magnetic field. The finite size of the system
is taken into account only in that the wave function is
required to vanish in some fashion beyond the bound-
aries of the system; no consideration has been given to
the more difficult problem of the quantum mechanical
scattering properties of the surface. Also, the effects of
the periodic potential have been neglected.

The case of slab geometry has been emphasized due
to the relative ease with which it can be treated. For this
case, it has been shown that the Landau result obtains
exactly in the small size limit for nondegenerate statis-
tics, and to within a numerical factor in the degenerate
case. In the case of Boltzmann statistics, it has demon-
strated that the use of the WEB approximation dis-
agrees with the result of perturbation theory (which is
a bonafide approximation in the small size limit), and
leads to an apparent enhancement of the diamagnetic
susceptibility. As to the sensitivity of the susceptibility
to the choice of boundary potential, no change in
susceptibility was found for the case of a harmonic
well using energies derived from perturbation theory.
Although a general proof of the Landau result has not
been provided for arbitrary geometries and surface
potentials, it is thought that the results of the present
paper do raise some question as to the reality of size
effects in the steady diamagnetic susceptibility of small
systems.

Added Pote. Recent calculations by W. V. Houston
and E. Lane LBull. Am. Phys. Soc. 8, 7, 528 (1963)7 on
the eGect of a boundary on the diamagnetic suscepti-
bility of free electrons, lead to the conclusion that the
Landau treatment is quite accurate for this case.
This is in agreement with the results of the present
paper.
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XBH 0 XLandau ~

3 4mc'
(2.25) APPENDIX A

This case can be thought of as a prototype of poten-
tials which are slowly varying, in contrast to those
whose variation with position is abrupt, the extreme
case of which is the infinite square well considered in
the first section. For both cases, one obtains the
standard Landau result in the small size limit.

In this Appendix, we present the calculation of the
sum (1.7) which arises from the second-order energy
correction term (1.6). The basic idea of the method' was
discussed in the text following (1.7).

Consider the sum

V. SUMMARY

In the present paper, the diamagnetic susceptibility
has been calculated for a free-electron gas confined to a

-=~ fn+(n'+ ', )74 n' -(n'+ ,'—)'-
Let n~ s, (n'+-', ) ~ &o, where the s's are complex
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variables, Next, consider the contour integral n= (—oo, —1), 0, (1, oo), we write

00

27ri
ds zr cot(zrz),

(s+so)' s' —zo'-
=i [n+ (n.'+—')]' n' —(n'+-')'

where the contour is over a complete, large circle at
in6nity. Let

(z) =
1 1

(z+zo)' z' —zo'- (z+zo)' z —zo

Then, since, according to Morse and I'eshbach

lim)sf(s)
~

=0,

0=
n=~ e e' — 4 ~2 —m'

+P [residues of f(s)zr cotzrs at the poles of f(s)j,
or, breaking up the summation into the ranges

the integral at injinity vanishes. Since x cote s has simple
poles at real integer values, one has that

4+2 ~ 2

+g [residues of f(s)zr cotzrs
(n'+-,')'

at the poles of f(z)),

+

the residue b & being just

1 d' (zr cotzrz)

24 rfz' k s—.o & s= so

Performing the indicated differentiation, one finds

the left-hand side being the required summation of the
first two terms of (1.7).

The residue at the simple pole s= so is zr cotzrso/(2so)'
=0, since cotzrso=cotzr(n'+ —', )=0.

The residue at the fifth-order pole s= —sp may be
evaluated by expanding zr cotzrs/(s —so) in a Taylor
series about s= —sp. Thus,

scot's b 5 b 4 b l

(s+so)'(z —zo) (z+zo)' (z+zo)' z+zo

SpSpSp

24 cotzr( —so) 24 csc'zr( —so) 24zro cotzr( —so) csc'zr( —so)
b g= ——— +zr'

24 32 16 8

+2zr4
csc'zr( —so)+2 csc'zr( —so) cot'zr( —so) 1——[6zr' csc4zr( —zo) cotzr( —zo)+4zr' csc'zr( —zo) cot'zr( —so)]

Sp Sp

Using the fact that so——n'+-,' is a half-integer, b i
reduces to

bi= +
16(n'+-', )4 12(n'+-', )'

and the required sum is

16(n'+-', )4 12(n'+-', )' (n'+-')'

The sum of the third term of (1.7) can be treated in an
analogous fashion. The result is

3 ~2 1
+

which is the result quoted in (1.8).
The series associated with the second-order energy

correction to an even level, i.e., E„(2), can be calculated
in an identical fashion. The net result is given by (1.9).

APPENDIX B

In this Appendix, we present the Euler-MacLaurin
expansion of the series (2.16) required for the calculation
of the susceptibility for the case of degenerate statistics.

The series (2.16) is rewritten in the form

5 7r2 m4

S(n') = —— +
16 (n'+-,')4 12(n'+-')'

m4 15

12 (n'+-,')' 4zr' (n'+-,')'

Combining the two results, we Anally obtain

where

X[(Pi)'—2(Pl)u 'n '+a 4n '$ =Q S; (81)

n= (pi/a„')'i'»1.
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One calculates

- ~PiSi= Z I

—+—s„' i=~i —t—g„')n
-,=~&2 ~' ") (2 ny=cr+1 Q 2

—n—1 ln—2+in—3+. . .
2 6

Now, by (2.17), one again has

1

Gy 3
n'+ a„—'n (.32)

2 ~2"
ln—3+. . .
3

n„=++1 g„4

Next,

Pf'6 1 1
S2—————

2 ~2 && 1+ 2 n=a+1 + 2
(83)

Substituting these into (86) gives

g 2~3 g 2~2 g 2~

S4——— + — + a„'n+ . (87)
8 16 48 8m'

Using the fact that

n„=1 ~„2

and evaluating the second sum of (33) by means of
(2.17), (83) becomes

In identical fashions, the remaining sums are found
to be

Pf ~ t' 15

4 &@=&k x Ny

e„2n' 15 15
+ a„'n'— a—„'n+ .

, (88)
4 24 4x'

S,=- +—.„.— a„.oy .„-+". (84)

For 53, we get

Cg & aye CyQ Gyo!
g n'= —— — — + . . (B5)

2 ~a=& 6 4 12

For 54, one has

Q 2@3 8 2' 82m 15
+ + —,'- (89)

24 16 48 Sx'

We now sum (87) through (89). The following nu-

merical factors are found to multiply the terms of order
2 3 2 2 2 1 ~

Gg/A y Qg ct
y Gg A ~

1 1 1 1 1

(pf)' - t'1
S4=

8ay "u=&(B„m I
(p&)'

(86)
8a ' ~a=~+~ e ' n'e '~

a 20,'

2 6 8 4 24

1 1 15 1
+ + +

2 4 16 24 16

3 3 1 1 5
+ +

=0 )

where the vanishing of the diGerence of the sums from
1 to ~ is a consequence of the equalities

12 48 Sz2
'

15 1 15 p1 1)
4~' 48 8~' k~' 12~

~-1 n2 6 n„=1 ~„4 9P leading to the result given by (2.18).


