
I HVS ICAL REVIEW VOLUME 134, NUMB ER 2A 20 AE' R IL 1964

Effect of the Electron Correlation on the Multiplet Structure of the
(3d)' Configuration of Ti III and Cr V*
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The effect of the electron correlation of the two valence electrons has been investigated for atoms with
(ls)' (2s)' (2p)' (3s)' (3p)' (3d)' ground conffguration. The atom is taken as a two-electron system with
each electron moving in a Hartree-Fock type effective potential. A correlation factor (1+cru) is inserted in
the wave function of each of the multiplet members obtained from the Hartree-Fock type one-electron
orbitals, and the values of c are determined by the variation method. The use of the correlated wave function
has improved, though overcorrected, the multiplet spacings of both Ti III and Cr V.

I. INTRODUCTION

' 'N the theory of multiplet structure of a two-electron
& ~ configuration such as (3d)', the wave functions of
various terms are usually taken as the Clebsch-Gordan

type combination of products of one-electron orbitals. ' '
The multiplet spacings are found to depend on, in the
case of (d)', two Slater-Condon integrals. The usual
procedure is to treat these integrals as adjustable
parameters chosen to fit the experimental values of the
levels. In this manner, reasonable agreement with

experiment generally can be obtained, and the "empir-
ical" values of the Slater-Condon integrals for the
transition elements in various stage of ionization have
been given in the literature. '

The Slater-Condon parameters can be calculated, in

principle, from the wave function of the 3d electrons.
It is well known that if the usual Slater orbitals are
used as the 3d atomic wave function, the calculated
Slater-Condon parameters are substantially smaller

than the empirical values. 4 Satisfactory agreement with

experimental values is obtained for the Slater-Condon
parameters calculated from hydrogen-like wave func-

tions only when a certain set of empirical rules of the
effective nuclear charge is used. ' A more accurate way
to calculate these parameters is to use the Hartree-I'ock
3d functions and indeed this has been done for many
transition elements. It was found that the calculated
multiplet spacings are considerably larger than the
experimental values. ' The discrepancy here can be
ascribed to the con6guration interaction. Each term in

(3d)' interacts with the terms of the same symmetry in

the upper con6gurations, and due to the different degree
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of interaction, the upper members of the (3d)' multiplet
will be pushed down more than the lower ones, resulting
in smaller multiplet spacings. However, a detailed
calculation of the configuration interaction is very
dificult, because of the large number of excited con-
figurations which must be taken into consideration.

In this paper, we shall seek to improve the calculation
of the multiplet structure from the approach of electron
correlation. A correlation factor of the form (1+crrs)
will be inserted in the wave functions which were
obtained from linear combinations of products of one-
electron orbitals, and the parameter c is determined
from the variation method. The accuracy of this method
depends on the choice of the variational function, and
the use of a simple form (1+crts) is, of course, not
expected to lead to results as accurate as those derived
from a detailed conhguration interaction analysis.
However, with the proper approximation our variational
approach can be formulated in a rather simple manner
and does not involve a great deal of numerical computa-
tion. The results of this calculation show an improve-
ment over the case of the uncorrelated Hartree-Pock
functions.

II. GENERAL FORMULATION

In order to simplify the numerical computation, we
shall introduce the approximation of replacing the atom
by a two-electron system with each electron moving in
an effective potential V(r) which includes the effect of
the inner core. The use of this core model amounts to
neglecting part of the interplay between the valence
and the core electrons. The detailed approximate
nature of the core model will be discussed in the next
section in connection with the Hartree-Pock procedure.
The Hamiltonian is now written as (in atomic units)

H = —s Vt'+ V(rr) —
s Vs'+ V (rs)+ (1/rts) . (1)

The zeroth-order approximation consists of taking the
wave function as a product of the one-electron wave
functions g„t which are the eigenfunctions of the
operator H~ and H2, i.e.,
IJ,~.-(,)=L-l~'+&( ')3~- -( ')

=~--'~--('), (2)
e- -('0'~') =~- (r') Vt-(0'~')
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H =Hl+H2+H', (6)

where H', according to Eqs. (1) and (2), is

H'= (1/r»)+ V(r, )—U(r, )+V(.,)—U(r,). (7)

For two equivalent electrons we have

(r12Hr12) = 2(r12Hlr12)+(r»H'r12). (8)

From the property of the Laplacian operator it can be
shown that

r12H1r12 ——r12'H1 —4 —r12V1r12 V1.

Upon expanding the last term as

r12Vlr12' Vl 2Vlr12 ' V1
=-2'Vl(rl'+r2' —2rlr2 costI12) ~1, (10)

it is apparent that the cos812 term vanishes as one
integrates over the angular coordinates of the electron 2.

Here U(r) differs from V(r) in that the former has
included the screening e6ect of one electron on the
other. For the case of two equivalent electrons, the
composite two-electron wave functions are obtained by
forming linear combinations of the products of qh accord-
ing to the Clebsch-Gordan coeKcients

II rM(1, 2) =Q , C ,,2r ~p"$„1„,(1)$„1,21 ,(2)
=R„,(1)R.,(2) P„,C„,,~ „,~11

X Yl, (elq 1)Y1,M , (0—2q2). (3)

To take the electron correlation into consideration,
we shall modify the wave function in Eq. (3) into the
form

X—'I'(pl. lr (1,2) (1+ cr„), (4)

where X is the normalization constant and c is to be
determined by the variation method and is, of course,
dependent on L. It can be readily shown that the
appended wave functions in (4) are still eigenfunctions
of L' and L, with the same eigenvalues as the original
functions Ill.2r(1,2). One can then multiply the orbital
functions in (4) by the appropriate spin functions for
two-electron systems (singlet and triplet) to form the
composite antisymmetric wave functions which are
eigenfunctions of L', L„S2, and 5,. Since no spin
interaction terms were included in Eq. (1), the cal-
culated energies do not depend explicitly on the spin
functions and thus the spin part of the wave functions
will be omitted in the following calculations. The energy
IS

w= (p(1+cr12) ~H~ I(l1+ rc)12)/N
=(Pl (1+«»)H(1+«») III)/& (5)

The numerator can be considered as the diagonal
matrix element of the operator

H H+ c(r12H+ Hr12) +c r12Hr12

with the original uncorrelated wave functions in Eq. (3)
as the basis. The last term can be simplified in the
following way. Let us write the total Hamiltonian as

It follows that
8

(r12Vlr12 Vl) (2 Pirl Vl) rl
Bf1

00 8
R„,(1)r, R„,(1)r, 'dr,

o

(r12R„12) 3r12R—„12 dr, = —
2 .

Bra
(11)

In a similar way we can show that

(r12'Hl)=((rl'+r2' —2rlr2 cos812)H1)=2(rl'Hl). (12)

Substitution of Eqs. (9), (11), and (12) into (8),
results in

(r12Hr 12)=4(rl'Hl)+1+ (r»H'r12) . (13)

Also, since the eigenfunctions of H1 are used as the
basis, we have

(r12H1) lr(H12) + 1 (r12) (14)

By means of Eqs. (13) and (14), (H) can be rewritten as

(H) = (H+ 2c (2r12H1+ r12H')
+c'(«1 Hl+r12H r12+1)). (15)

The normalization constant is

11'= (|l(1+cr»)
~
Il (1+cr»))= 1+2c(r»)+2c'(rl'). (16)

The energies of each member of the multiplet associated
with the ground configuration can be obtained by
minimizing

W=(H)/X

with respect to c using the proper zeroth-order function
according to Eq. (3) for a given L as the basis.

III. CORRELATED HARTREE-FOCK FUNCTIONS

So far we have not specified the choice of the potential
functions V(r) and U(r) as introduced in Eqs. (1) and
(2). The best way to obtain V(r) is from the Hartree-
Focir self-consistent field (SCF) functions of the inner
electrons. Watson' has given extensive tabulation of
the SCF wave function for the 6rst-row transition
elements. Our discussion here will be confined to the
case of (3d)' although extension to other configurations
with two equivalent electrons can be easily made.

Let us denote by inner core electrons those in the
closed shell (1s)'. (3p)2. The equation for the radial
part of the SCF function of the 3d electrons is'

1d(dZ3 1 22

I
r12 + + Q 1V(221) Y2(rd, 3d; rl)

2 drlk dr, r, rl' rl ~&=»

1 22 E(ml)
+ p pl, c'(20; l0) Yq(22l, 3d; r,)

2+5+1 »(2l+1)='~2

R„,(r,) - 1
X +—P, a&"& Y1(3d,3d; r,) R„(r,)

R2~(rl)— = —e2gR2g(rl), (18)
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where E(zzl) is the number of electrons in the (Nl) now identify Eq. (18) with Eq. (2) and therefore
closed shell, Z is the nuclear charge of the atom, obtain U(r) as
c"(lzzz; l'm') are integrals involving the normalized
associated Legendre functions O~z (|)), i.e., U(r) = V(r)+r ' Ps a, &"& Vs(3d, 3d; r), (24)

Ps(zzl, zz'l': ri) =ri s & ((4 z)&. ( (z'2) z'2'+'«s

+ri +' R~&(rz)R„( (z's)rz +'drz. (20)

The terms inside the square bracket in Eq. (18) represent
the potential of the electric field generated by the inner
core electrons. Thus, we may identify the effective
potential V(r) due to interaction of the inner core
electrons as

z 1 3n

V(r) = ——+— Q cV(zzl) Vo(zzl, 3d; ri)

q
/

c'(lm:Pm')=
I

O„„.(0)O,„(0)
2k+1) ()

Xe,,.(8)»nedg, (19)

with V(r) given by Eq. (21).The one-electron functions

p are taken as Watson's analytic SCF orbitals.
Ke are now ready to introduce the correlation factor

(1+cr») as described in Eq. (4). At this point, the
approximation which is inherent with the "core"
picture, must be made. The potential functions V(r)
and U(r) are determined from the SCF orbitals of
inner core electrons which in turn depend on the wave
function of the 3d electrons. Thus, when the correlation
factor is appended to the wave function of the two
valence electrons, the SCF orbitals of the inner electron,
and therefore U(r) and V(r), will change accordingly.
In this work we shall ignore such a change in the
functional forms of U(r) and V(r). This is the approxi-
mation involved in the core model which was referred
to at the beginning of Sec. II.

Combination of Eqs. (6), (7), and (24) gives

H Hi+Hs+H H (1/f12) —'U (ri) —'U (rz), (25)

V(r;)=r, 'Psa&s)Vs(3d 3d r;).
nl =le In order to reduce Eq. (15) to a more specific form, it

is noted from Eqs. (25) that

(H) = —2e+(1/ris) —2('U (ri)),
= —2e+Ps a&s)F&s)(3d, 3d) —2('U(ri)), (26)

1 zz E(zzl)
+ P, cs(20; lO)

2g5 „, „(2l+1)i/s
E„((r,)

X Vi (zzl, 3d; z,) . (21)
E where

riz ——Ps Qs(r&, r&) E/ (cosgiz),

w(z i)

The last term in the left-hand side of Eq. (18) is the F (343d)
result of the screening of one 3d electron on the other.
The values of u&~) vary depending on whether we choose
to minimize in the SCF procedure a particular multiplet
level (unrestricted Hartree-Fock functions) or the
weighted average of all the muit)piets of the (3d)s Next r» will be expanded by the Legendre polynominals

configuration (restricted function). ' In the former case,
we have (28)

()b) ~, / Lllf, , L/l~L ~m1m1' + m13f—m1 + m1', M—m1'

Xc"(lzzzi, lzzzi')c" (l,M—zzzs', l,M —mi) (22)

and, for the latter,

a (o) = 1, a (') =a (4) =—2/63 (23)

In this paper we shall use only the restricted SCF
functions, ' because in order to demonstrate the eGect
of the electron correlation on the multiplet spacing, one
should use the same zeroth-order radial function for all
five terms of (3d)'.

Solutions of Eq. (18) have been given by Watson for
several atomic ions with (3d)' configuration. ' We shall

&+2

Q & z' )= —,(29)
(2k+3)r&'+' (2k-1)r&"-'

where r~ and r& are the lesser and greater of r~ and r2.
From Eq. (15) we can write

(H) = —2e+Pk a/&")F &"& (3d,3d) —2('U (ri))
—2cL2e Qs az(")M &"& (3d,3d)

+2 gg. ac&")E&"&(3d,3d) —1]
c'$4e(ris) —Ps ai, &')M—& "& (3d 3d)

+2(ri'U(ri))+2(ri')('U(ri)) —1], (30)

where

R. E. 'watson, Solid State and Molecular Theory Group, MIT,
sz(I)r s

Cambridge, Massachuset ts, Technical Report No. 12, 1959
(unpubhshed).

Q. (~&@&) I
~.)(")~.((") I

Xri rs'dridrs, (31)
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Level

Calculated energy (a.u.)

No corr. With corr.
Energy diff.

(cm ')

3P
1D
3P
iG
'S

0.0704
0.1779
0.1982
0.2450
0.5873

—0.677022—0.626789—0.616256—0.598432—0.482976

—0.681043—0.647514—0.639331—0.631686—0.627349

882
4548
5064
7298

31686

Spacing
iD—'p
3P 3P
iG SP
lS sP

Obs. (cm ')

8473
10570
14398
14053 (7)

Calculated (cm ')
No corr. with corr.

11025 7359
13337 9155
17249 10833
42588 11784

Deviation (%)
No corr. with corr.

+30.1 —13.1
+26.2 —13.4
+19.8 —24.8

Ri"& (ll, el) = Qs(r&, r&)'U(rr)
~
R„&(rr)R„&(rs)

~

'

)&r,'rs'dr, drs. (32)

The expression for the energy which is to be minimized
1S

W= —2e+ {psur, &"&F&'& (3d,3d) —2('U(rr))

—2cL2 Qs ar, &"&R&"&(3d,3d) —1]
—c'[—P. ur. &"&M&'& (3d 3d)+2(rise (rr))

+2(rr')(U(rr)) —13
&&L1+2cPs ar, &s&M&"&(3d,3d)+2c'(r ')) ' (33)

Tables I and II show the results of the correlation
coefFicients and the multiplet spacings of the correlated
wave functions as compared with experimental data' for
Ti xn and Cr v.

The simple correlation factor has improved consider-

TmLE II. Comparison of the multiplet energies calculated with
and without correlation for Cr v.

Calculated energy (a.u.)

Level No corr. With corr.
Energy diff.

(cm ')

SP
iD
'P
iG
lS

0.0725
0.1797
0.1951
0.2416
0.5544

—0.934298—0.861935—0.847776—0.821558—0.655069

—0.938856—0.885135—0.873253—0.858753—0.783719

1000
5092
5592
8163

28235

Spacing
iD 3P
SP 3P
iG 3P
iS SP

Calculated (cm ')
Obs. (cm ') No corr. with corr.

13200 15882 11790
15500 18989 14398

L22060j' 24744 17581
~ 61284 34049

Deviation (%)
No corr. with corr.

+20.3 —10.7
+22.5 —7.1
+12.2 —20.3

a Obtained by extrapolation (see Ref. 7).

TABLE I. Comparison of the multiplet energies calculated with
and without correlation for Ti rn.

ably, though overcorrected, the calculated spacings of
'D —'Il and 'I' —'F in both Ti err and Cr v. The devia-
tion of the 'G—'Il, however, is larger with the correlated
functions than with the uncorrelated ones. The experi-
mental term value of the (3d)s 'G state for Cr v was
obtained by extrapolation' and the uncertainty involved
in this procedure could be responsible for this anomaly.
In the case of Ti ux, no immediate explanation can be
given for the large deviation of the 'G state.

The correlation coeScients and thus the energy
suppression due to the correlation eGect for the 6ve
members of (3d)' increase in the same order as the
energy. Also, the correlation coefIicients for Ti nr and
Cr v are nearly equal to each other. It is interesting to
note that in the calculation of the correlation energy
using (1+eris) for the (1s)' configuration of the
isoelectronic sequence He, Li+, Be'+, . -, 0'+, the values
of c obtained by the variational method are of nearly
the same magnitude for the entire series. ' Also, it was
found that in the He sequence the simple (1+eris)
correlation factor accounts for about half (or less) of the
difference between the energies calculated from the
product-type functions and the experimental energies. '
Of course, for the helium-like atoms, one is dealing
with the total energies rather than the energy spacings
within a multiplet. However, these results do give some
rough indications as to the degree of improvement on
the multiplet spacings that can be reasonably expected
from the (1+eris) appendage.

The two main approximations employed in this
calculation are the choice of a simple correlation factor
(1+cr») and the core model, and are presumably
responsible for the major part of the discrepancy from
the experimental term values. To improve the calcula-
tion, a two-parameter correlation form such as [1+eris
+c'(rr —rs)sj may be used. Also, one can abandon the
core approximation and repeat the SCF calculation
using the correlated wave function for the two valence
electrons to determine the improved wave functions of
the inner core. This would result in a change of the
effective potential V(r) Examina. tion of Eq. (30) shows
that the multiplet spacings depend mainly on the radial
part of the SCF function of the (3d) electron, but do not
contain V (r) explicitly. Although Rss(r) is affected by
V(r), one may expect that the change in multiplet
spacings produced by such a variation of V(r) will
not be a serious one. Finally, there is the question of the
importance of the correlation terms between the valence
electrons and the core electrons which have not been
considered in this work. The inner-outer correlation
is expected to have more infIuence on the absolute
shifts of the energy of the entire (3d)' group than on
the spacings between the components. In the absence
of detailed calculations of the inner-outer correlation,
no estimate can be given for the change of the multiplet

r C. E. Moore, Nat. Ilur. Std. (U.S.), Circ. No. 467.
' G. R. Ellison, Masters thesis, University of Oklahoma, 1963

(unpublished).
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structure due to this effect. Nevertheless, our calcula-
tioa.s do give considerable improvement over those of
the Hartree-Fock functions and show that the energy
corrections calculated from a simple correlation factor
are of the right magnitude to account for the difference
between the experimental multiplet spacings with that
predicted by the Hartree-Fock theory.
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The order of magnitude of the (orbital) diamagnetic susceptibility of a free-electron gas is investigated for
the case of "small" systems. A small system is, by definition, one whose characteristic linear dimensions are
very much less than the radii of the average classical electronic orbits in an applied dc magnetic field. For
the case of plane-slab geometry, exactly the Landau susceptibility (i.e., no size effect) is obtained for
Maxwell-Boltzmann statistics. Furthermore, on the basis of the latter calculation, it is explicitly demon-
strated that the use of the WEB approximation leads to a spurious size eg((.ct, suggesting that this (or
equivalent) approximations may be responsible for size corrections found by other authors For th. e de-
generate case, the Landau result is also obtained, to within a numerical factor. Finally, no size correction is
obtained in the small size limit for an electron gas confined by a harmonic potential well; this further sug-
gests that the Landau result is independent of the choice of boundary potential.

I. INTRODUCTION

'HE purpose of this paper is to present the results
of some investigations concerning the steady

diamagnetic susceptibility of "small" systems of elec-
trons. A "small" system is defined as one whose charac-
teristic linear dimensions (1.) are very much less than
the average radii (R,) of the classical electronic orbits'
in an applied dc magnetic field. In treating this problem,
it is customary to idealize' the real physical situation to
that of a free-electron gas confined to a box. The surface
of the box is then represented by a simple, and ana-
lytically tractable, potential barrier. The use of such a
model seems justifiable in view of the fact that the very
existence and order of magnitude of size corrections for
small systems have not been definitely established.
These are, indeed, the subjects of the present paper.

*This work was supported in part by the U. S. Air Force OfBce
of Scientific Research, Grant No. AF 196-63.

)Present address: RCA Laboratories, Princeton, New Jersey.
The author would like to thank RCA Laboratories for the oppor-
tunity of completing this work.' Specifically, if E, is taken as the classical orbit radius corre-
sponding to the mean-electron energy, (E)=g or h T, according to
whether the electron gas is taken to be degenerate or nondegener-
ate, respectively, then L«R, =(ntc/eH)(2(F)/nt)'~'. As will be
seen later, this is simultaneously the domain of validity for treating
the magnetic-field proportional terms in the electronic Hamil-
tonian as a small perturbation.

In so doing, one neglects the periodic potential, collision of the
electrons with phonons and impurities, and the true scattering
properties of the surface. Also, electron spin is neglected
throughout.

The treatments to which the present work has refer-
ence, are those of Dingle, ' Part IV, and Ham. 4 Dingle
considers a cylindrical sample, for which he predicts an
enhancement of the Landau diamagnetic susceptibility
depending on the ratio of the radius of the cylinder to
the electron wavelength at the Fermi energy. Ham does
not specifically treat a "small" system. Rather, using a
modification of the WEB approximation, he calculates
surface corrections to "large" (1))E,) systems, the sign
and magnitude of which he finds extremely sensitive to
the form of the surface potential.

The present paper began with an investigation of such
effects by means of a detailed examination of a very
simple geometrical model: namely, a plane-parallel
slab, small (in the previously defined sense) in one
dimension (at the boundaries of which the wave func-
tion is assumed to vanish), and satisfying periodic
boundary conditions along the other two transverse
dimensions. Such a geometry had been considered earlier
by Papapetrou' who obtained just the Landau result'
for a degenerate electron gas. In addition to confirming
his calculation by an alternate procedure and obtaining

' R. B. Dingle, Proc. Roy. Soc. (London) A212, 47 (1952).
e F. S. Ham, Phys. Rev. 92, 1113 (1953).
5 A. Papapetrou, Z. Physik 107, 387 (1937).It should be pointed

out that the present paper overlaps this reference to some extent.
The addition contributions of the present work, however, are: (a)
the calculation of the Landau susceptibility for Boltzmann statis-
tics (not considered by Papapetrou); (b) the explicit demonstra-


