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Symmetry Relation in Relaxation Dispersions
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A theorem on the relation between the symmetry of the dispersion function of the frequency variable and
the distribution function of the relaxation time variable is proved. Some applications of this theorem are
discussed.

I. INTRODUCTION

'N this paper, we discuss a theory on which we can
- - base an evaluation of the characteristic relaxation
time for a dispersive system with a distribution of
relaxation times. The relaxation under consideration is
manifested in many physical processes, which could

vary widely from the point of view of the physical
quantities and mechanism concerned, but a united
discussion which is quite independent of specific physi-
cal models is possible through a general mathematical
approach.

To present the problem, we start in a formal way
from the following equation':

The values of T1, 72, and Tp are, in general, not equal.
If the specific forms of A'(&o), A" (co), and G(r) are
known, one can calculate them immediately. However,
for a class of dispersion functions, even without know-
ing the specific forms, one can prove that

TP= T1—T2.

This proof is the purpose of the present note.

II. SYMMETRY RELATION

We call a function F(x) symmetrical about x= xp in
the domain (—po, po) of the real variable x, if one of
the following two conditions is fulfilled:

G(r)
A*(co) =A„+(As—A„) d lnr.

„1+icor
(1) F(x—xp)=F(xp —x),

this is the case of ordinary line symmetry about x=xp,

(2) F(x—xp)+F(xp —x) =2F(0), (8)Here A*(po) is a complex quantity and depends on co,

the frequency. This quantity usually can be measured
experimentally; it may denote dielectric permittivity,
magnetic susceptibility, semiconductor conductivity,
mechanical compliance, scattering amplitude of ele-

mentary particles, etc. The subscripts of A are to be
identified with the value of po. G(r) is a dimensionless

probability function of T, with r as the relaxation time
variable. The special value of T, which gives the maxi-
mum of G(r), will be called-the relaxation time and is
denoted by To. In the case of a single relaxation time
dispersion such as Debye dispersion, ' G(r) is repre-
sented by

this is a case of a point symmetry about the point @=0.
The connection between the function F(x) and the
dispersion function A (co) is that

A ((o) =F(x)

with x=lnu. Thus, F(x xp) =A/In—(co/top)). In order to
avoid the use of an extraneous symbol, we shall write
ALln(a&/cop) j simply as A (co/top). A similar remark
applies to G(r/rp). Since physically both po and r are
real and positive, the domain of these independent
variables is (0,~). In this respect, A (&o) or G(r) cannot
have symmetry in co or T space, respectively. It is only
permissible to have a symmetry in logos or logT space. 4

A misunderstanding of this concept has appeared, for
example, in the discussion of the Frohlich distribution
function' by Higasi. '

Now, we will establish the following theorems:
Theorem 1.A'(&o) and A" (to) are symmetric functions of

logpo if, and only if, G(r) is a symmetric fgnction of togr.

Theorem Z. The relation of Fc1. (6') is satisfced if, and

only if, the dispersion f Unction is symmetric.

(2)G(r) = re (r rp), —

where 8 is the Dirac 8 function.
We separate A*(co) into its real and imaginary part,

A*(po) =A'(&o) —iA" (co) . (3)

Two other relaxation times have been used, '

(1) ri= (coi) ', where pot is determined from

(4)A'( )=l.LA'(o)+A'(")j.

(2) r& (cop) ', where cot h——as the property

A" (pop) =MaxA" (to).

' J. Ross Macdonald and Malcolm K. Brachman, Rev. Mod.
Phys. 28, 393 (1956).

'P. Debye, Polar 3fotecgtes (Dover Publications Inc., New
York, 1929), p. 102.

SL. C. Van der Marel, J. Van den Broek, and C. J. Gorter,
Physica 24, 93 (1958).

4To make this statement complete, we should add that 8
(S) function, as an improper function, forms the unique exception,

that is, e (T rp) appears as symmetrical with respect to rp in
r space as r spans from 0 to oo.

H. Frohlich, Theory of Dpetectrpcs (Oxford University Press,
New York, 1949), p. 91; see also, T. Satoh, J. Phys. Soc. Japan
17, 279 (1962).

K. Higasi, Dielectric Relaxation und Molecular Stricture,
Monograph Ser. Res. Inst. Appl. Elec. Hokkaido Univ. , 9 (1961).

A296



SYiVIMETRY RELATION IN RELAXATION DISPERSIONS A&97

The proof of these theorems, which is elementary,
but involves some lengthy formulas and transforma-
tions, will be given in the Appendix.

We will call a dispersion which satisfies any condi-
tions of the theorems a symmetrical dispersion. One
important implication of these theorems is that if a
dispersion is symmetric, 70 can be determined from
G(r), A'(~), or A" (oo), irrespective of the exact forms
of these functions.

The converse of the theorems is that if the dis-
persion is not symmetric, Eq. (6) is no longer true,
and one has to know the speci6c form of dispersion
functions in order to determine the relaxation time. In
particular, it is necessary to know the function G(r)
because the idea of continuous relaxation is based on
the concept of a statistical distribution of the relaxation
times.

A nonsymmetrical dispersion shows itself in a most
obvious way in the work of Davidson and Cole, 7 but
this type of dispersion has been discussed much earlier;
for example, in the work of Karapetoff. ' Recently, this
kind of dispersion has been observed in various relaxa-
tion phenomena, such as the magnetic susceptibilities
of some paramagnetic salts, "the dielectric permittivity
of alkali-halide crystals ' and some polar liquids, "
the microwave conductivity of plasmas" and semicon-
ductors, "etc. The fact that, for this class of dispersion,
the equality of Eq. (6) is not true, seems not to have
been recognized or discussed explicitly. '4

We compiled in Table I a list of dispersion functions
under symmetric and nonsymmetric classifications.

III. AN EXTENSION TO THE
TEMPERATURE DOMAIN

In the relaxation system where the relaxation time
satisfies Arrhenius relation

r= r, exp(E/kT)

with activation energy E, and reciprocal attempted
frequency" 7., we can introduce a temperature To such
that

Et 1 1q—=exp—
I

——
I
. (11)

)~t T To&

In this case, we can immediately extend the preceding
theorems about symmetry in 1n(T/ro) space into 1/T
space. This result has been found useful in the analysis
of some dislocation relaxation data of the Bordoni
peak."'7

IV. CONCLUSION

The results of this note establish some general
criteria which are useful in the analysis of relaxation
dispersion data. Furthermore, in most dispersions,
A*(co) is established in closed form, but sometimes
G(r) is more simple and in fact, only for some special
parameters, its corresponding A~(~) can be represented
in the closed form in terms of some special function. ""
Therefore, these theorems may be found helpful in the
theoretical investigation of dispersion functions.

APPENDIX

Proof of Theorem 1.From Eq. (1), with the following
notations for abbreviations:

Symmetrical Ref. Nonsymmetrical Ref.

TABLE I. Some dispersion functions. A'((o, t.o)
—A (~)

a'((o, ro) =
A(0) —A(~)

(A1)

Debye
Cole and Cole
Weichert, Wagner
Frohlich
Fuoss and Kirkwood
Fuoss and Kirkwood

Karapetoff
Davidson and Cole
Fang
Glarum
Mar genau
Stolz

it follows that
G(r, ro)

a'( &,or )o= d lnr,
1+oPr'

(A2)

a See Ref. 2.
b K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).' E. Wiechert, Wied, Ann. Phys. Lpz. 50, 546 (1893),
d K. W. Wagner, Ann. Physik 40, 817 g1913).
e See Ref. 5.
f R. M. Fuoss and J. G. Kirkwood, J. Chem. Phys. 23, 1743 (1955),I R. M. Fuoss and J. G. Kirkwood, J. Am. Chem. Soc. 03, 385 (1941).
h See Ref. 8.
I See Ref. 7.
& See Ref. 9.
& See Ref. 11.
'See Ref. 12.
m See Ref. 13.

' D. W. Davidson and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
o V. KarapetoB, Trans. AIEE 45, 236 (1926).
o P. H. Fang, Physica 24, 970 (1958);27, 681 (1961).
'o J. R. Macdonald, J. Chem. Phys. 23, 275 (1955)."S. H. Glarum, J. Chem. Phys. 33, 1371 (1960).
"H. Margenau, Phys. Rev. 109, 6 (1958).
"H. Stolz, Ann. Physik 19, 394 (1957);334 (1958)."P. H. Fang, Phys. Rev. 113, 13 (1959);Ann. Physik 7, 115

(1960);Appl. Sci. Res. Sect. 8 9, 51 (1961).

1. G(r, ro) =G(r/ro),
2. G(r/ro) =G(ro/r).

(A3)

The following relation which is the equivalent definition

"D. H. Niblett and J. Wilks, Advan. Phys. 9, 1 (1960).
'o P. H. Fang, Nuovo Cimento (to be published)."P.G. Bordoni, Nuovo Cimento Suppl. 17, 43 (1960).
~o J. Ross Macdonald, J. Chem. Phys. 20, 1107 (1952)."P.H. Fang, Appl. Sci. Res. (to be published).

In the erst part, we will prove that the symmetry of
G(r, ro) is a necessary and sugcient condition for the
symmetry of a'(&o, ro) The meth. od to prove the relation
between G(r, ro) and a" (a&, ro) is very similar. There-
fore, we will not present it.

(1) SufBcient condition: From the symmetry of
G(r, ro), we have
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of the symmetry of a'(to, ro),

P. H. I-ANG

Returning to the original notations, one obtains,

a'(~, ro)+a'(1/~, ro) =1, (A4)

in particular, therefore, a'(1) = srwhen toro ——1 is to be
proved. Writing r= rpx, from (A2),

Tpl ( re
G(r) =——a' i —~+a'~ i—, ) (A10)

8 GO) tg
G(x) dx

p 1+toTpx x

However, from symmetry of a'(toro), we have another

(As) relation,

G(r, rp)d lnr=1, (A6)

Since co and 70 occur only in the product form corp,

therefOre, a'(M Tp) =a (corp). By a further SubStitutiOn
of y= x ', remembering the normalization condition

( 1 ) to'r' dr
G(r) 1—

4rp&

G(r)
rdr, (A11)

1/top+ r'

one finds With the notations of (AS),
G(1/y)y' dy

o po're'E(y/~To)'+1) y

dy
G(y) 1—

1+ (y/~rp)'- y
= 1—a'(1/ror p),

- ( e )'"- 1 "G(r)
dQ.

(up) 2 p v+u

8 EOto

(A12)

From the Stieltjes transform, we obtain

(A7) «)=- —' - I+ 'I ——
I

~

sl Tp) ( Tpl
(A13)

which was to be proved.
(2) Necessary condition: a'(toro) can also be ex-

pressed as follows:
1 " G(r)/r'

a'(toro) =- tdt.
co' o 1/too+ r' G(T/«) =G(»/T) (A14)

Comparing expressions (AS) and (A10) of G, we have
proved

(AS)

Set t'= I, to'= No and oP = e ',

1 G(u)/u
v-'a'L(up/e) '"j= — du.

2 'v+u

The right side is Stieltjes' integral, "therefore,

G(r) i —(up)'"
=—2u—'e—'a'

~

—
~

e'"
r' 2~ ku)

u ) 1/p

—2u—'e'sa'
ul

"E. C. Titchmarsh, Folreer Isetegrals (Oxford University Press,
New York, 1949), 2nd ed. , p. 317.

Proof of Theorem Z. To prove Theorem 2, we have
only to repeat the proofs of Theorem 1. We proved
both necessary and sufFicient conditions, and 70 is
implicitly identified as tj in the proof for the part of
a'(to, rt), and as rs in a" (pp, rs).
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