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Electron Spin Resonance Experiments on Shallow Donors in Germanium
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At liquid helium temperatures, spin resonance of localized donor electrons has been observed in phor-
phorus-, arsenic-, and bismuth-doped germanium. The presence of hyperlne splitting confirms the singlet
as the ground state for all three. The separation of the excited triplet states has been measured by uniaxially
stressing the samples. The triplet states are all found to lie close to the effective-mass value of 0.009 eV. The
anisotropy of the g tensor has also been measured by uniaxial stress measurements giving a value for the g
anisotropy g» —gz= —1.05 for arsenic-doped germanium. The large g anisotropy gives rise to an anisotropic
linewidth which is caused by built-in strains in the crystal. Measurements show a strong correlation of
this line broadening with the number of dislocations. The broadening is larger than predicted as a result of
condensation of the impurities in the neighborhood of dislocations. The linewidth for magnetic fields in
the [100$ direction, where strain broadening oi the line vanishes, has been shown to arise from unresolved
hypernne interactions with Ge" nuclei. The linewidths are in good agreement with values calculated
using an isotropic approximation to the effective-mass wave function. The spin-lattice relaxation times
have been measured and compared with the theory of Roth and Hasegawa for the one-phonon process. The
temperature dependence, the dependence on amplitude and orientation of the magnetic field, and effects
of strain predicted by their theory were observed.

I. INTRODUCTION

'HE substitution of a column five impurity, such as
phosphorus or arsenic for a host atom in germa-

nium or silicon gives rise to energy levels slightly below
the conduction band within the forbidden gap. These are
called the shallow donor levels. ' Since the conduction-
band minima in both silicon and germanium are not at
the center of the Brillouin zone, there are several equiva-
lent conduction band minima. The conduction band is
said to be multivalleyed, and as a consequence, the shal-
low donorlevels which split off from the conduction band
are degenerate, with a degeneracy equal to the number
of valleys. In silicon the degeneracy is sixfold and in
germanium, fourfold. The interaction of the localized
donor electron and the donor core (called the central
cell correction) splits the degenerate donor level into a
singlet, doublet, and triplet for silicon and a singlet and
triplet for germanium. An effective-mass model of
these donor states has been developed by Kohl
and Luttinger" and has been largely confirmed
experimentally.

At sufficiently low temperatures, the electrons become
localized about the donor sites. Electron spin resonance'
for such unpaired donor electrons in silicon was first
observed by Fletcher and his co-workers. ' The resonance
spectrum was found to consist of 2I+1 lines arising

*This work was performed in partial ful611ment of the require-
ments for a Ph.D. degree at Rutgers, The State University, New
Brunswick, New Jersey.

'For a review of donor states, see W. Kohn, in Solid-Stute
Physics, edited by F. Seitz and D. Turnbull (Academic Press Inc. ,
New York, 1957), Vol. 5.' W. Kobn and J. M. Luttinger, Phys. Rev. 97, 1721 (1955).

s W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
4 For a review of spin resonance in semiconductors, see G. W.

Iudwig and H. H. Woodbury, in Solid-Stute I'hysks, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1962),
Vol. 13.' R. C. Fletcher, W. A. Yager, G. L. Pearson, and F. R. Merritt,
Phys. Rev. 95, 844 (1954).

from the hyperfine interaction of the donor electron and
the donor nucleus, where I is the nuclear spin of the
donor atom. The study of this spectrum has yielded
much valuable information about the donor states and
the band structure of silicon. ' The obvious extension
of the technique to germanium was attempted soon
after the initial discoveries but the initial search for spin
resonance of germanium donors was unsuccessful for a
number of reasons. The most important of these results
from the fact that the binding energy of the donor
electrons is rather small in germanium. This means that
the effective orbit of these electrons is very large. If the
electrons in neighboring donors are not to interact, then
the maximum allowable concentration of donors is rather
small. This, in turn, reduces the available signal-to-noise
ratio for germanium donor electrons appreciably.

The resonance spectra in silicon was consistent with
the assignment of the singlet to the lowest state for all
the donors. The evidence that the singlet was the ground
state in germanium was indirect and in view of the
failure to observe donor spin resonance was subject to
some doubt. In order to resolve this question and to
obtain information about the donor states, we under-
took another search for the donor electron resonance in
germanium.

In this paper we will first review the nature of the
donor electron spin resonance in germanium (Sec. II)
and, since the early experiments showed pronounced
eGects due to mechanical stress, we also will discuss the
changes in the resonance spectrum under stress (Sec.
III). In subsequent sections we present details of the
experimental method (Sec. IV) and the experimental
results both in unstressed samples (Sec. V) and stressed
samples (Sec. VI). These experimental results are
summarized in the remainder of this section.

s G. Feher, Phys. Rev. 114, 1219 (1959).' G. Feher and E. Gere, Phys. Rev. 114, 1245 (1959).
s D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961).
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In rather lightly doped germanium, we were able, at
4.2'K, to observe the spin resonance of localized donor
electrons for arsenic, phosphorus, antimony, and bis-
muth donors in germanium. ' The g values all diRer

markedly from the free electron value; a consequence of
the strong spin-orbit interaction of conduction electrons
with the host germanium nuclei. The hyperIIine splittings
observed establish the singlet as the ground state for
arsenic-, phosphorus-, and bismuth-doped germanium.
Antimony-doped samples yielded a variety of results
which indicated that the triplet was very close to the

singlet if not below it. The magnitude of the hyperQne

splitting is determined by the probability amplitude of
the donor electron at the impurity nucleus. In germa-

nium, as in the case of silicon, this probability amplitude
deviates appreciably from the effective-mass calculation.
This is to be expected since the eRective-mass wave

function cannot be considered valid in the vicinity of
the donor nucleus. '

The hyperhne lines in all cases were broad, the

broadening being very anisotropic. The minimum line-

width always occurred when the magnetic 6eld was

along the L100) crystal axis. This minimum linewidth is

due to unresolved hyperfine interactions with Ge"
nuclei. This mechanism has been conhrmed by the
observation of a much narrower line in a sample with

reduced concentration of Ge7'. The magnitude of the

broadening can be calculated using the effective-mass

wave function in the region outside the donor nucleus.

Using an isotropic approximation to the effective-mass

wave function, we have obtained values for the spread

of the wave function which are in good agreement with

effective mass values for phosphorus-, arsenic-, and

bismuth-doped germanium.

The g shift with strain, which was also observed to a
much smaller degree in silicon, is due to the multi-

valleyed nature of the conduction band. Strain shifts

the relative energies of the different valleys and causes

certain of the valleys to be preferred. Since the single-

valley g values are highly anisotropic, the g shifts under

strain. From the application of uniform uniaxial stress

and the consequent changes in the resonance spectrum,

we have been able to determine the anisotropy in the

single-valley g values. The observed values are in rough

agreement with those calculated by Laura Roth" using

a two-band model, although some discrepancy has been

pointed out by Liu."
Since the states that are mixed into the singlet ground

state by strain are the triplet states which have no

hyper6ne interaction, it has also been possible to deter-

mine the position of the triplet from the changes in the

hyperfine splitting with strain. From such measure-

ments we have determined the singlet-triplet splitting

for phosphorus, arsenic, and bismuth donors in germa-
nium. The location of the triplet with respect to the
conduction band is in very good agreement with the
calculated value of 0.009 eV for all donors in germanium.
In the case of antimony donors, the very small value
of the splitting between singlet and triplet" causes the
resonance spectrum to be unusually sensitive to lattice
imperfections.

In Sec. VII of this paper we discuss the relationship
of these strain experiments to the spin-lattice relaxation
of donor electrons and the results of measurements of
relaxation times in germanium. Roth" and Hasegawa"
have shown that an important mechanism for relaxing
the electron spin arises if the g values are strain sensitive.
That is, the time-varying strain due to a phonon will, in
effect, produce a time-varying magnetic field because it
modulates the g value. The magnitude of this effect is
related to the anisotropy of the single-valley g value and
to the splitting of the singlet and triplet. Using the
values obtained in this work, a relaxation time for
germanium donors of the order of 10 ' sec at liquid
helium temperatures is expected for this mechanism. In
order to check this calculation, a study of the spin
relaxation time was iriade in arsenic-doped germanium.
The observed values were in good agreement with the
Roth-Hasegawa theory. Both the linear temperature de-

pendence and quartic fieM dependence characteristic of
a single phonon process were observed. In addition, both
the predicted angular dependence and the change in
relaxation rate for a sample under strain were noted.

In Sec. VIII we discuss the experimental results at
high-impurity concentrations, where the wave functions
of adjacent impurities begin to overlap and the donor
electron can hop from site to site. That is, the electrons
become "nonlocalized. "If the hopping frequency is high

enough, the local hyperfine interactions are averaged out
and a single narrow line is observed. The initial effects
of hopping are noted at a donor concentration of
5&&10"/cm' in arsenic-doped germanium and 10"/cm'
in phosphorus-doped germanium; the difference arising
from the difference in binding energy of the two. The
linewidth of the nonlocalized resonance lines and their
temperature dependence is in agreement with the
impurity conduction model proposed by Miller and
Abraham. "The g values for such nonlocalized electrons
are very close to those for the localized ones, which

implies that the hopping electrons spend most of the
time trapped in a donor orbit. Uniaxial strain which

strongly eRects the wave functions and hence, the

hopping time, not only shifts the line but markedly
affects its width. These eRects will also be discussed.

~ G. Feher, D. K. Wilson, and K. Gere, Phys. Rev. Letters 8, 25
(1959).

'o L. Roth, Phys. Rev. 118, 1534 (1960)."L. Liu, Phys. Rev. 126, 1317 (1962).

"H. Fritzsche, Phys. Rev. 120, 1120 (1960).
"H. Hasegawa, Phys. Rev. 118, 1523 (1960).
"A. Miller and E. Abraham, Phys. Rev. 120, 745 (19(i()).
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II. STRUCTURE OF THE DONOR STATES IN
THE ABSENCE OF EXTERNAL STRESS

A. Wave Function

We wish to review brieQy the nature of the donor
ground state, erst in the unstrained crystal and then in
a crystal subjected to uniaxial stress. '

The loosely bound donor electron is treated in the
effective-mass approximation as a hydrogen-like atom
where the Coulomb attraction of the donor core is
reduced by the dielectric constant of the semiconductor
host and the electron is assumed to move with the
effective mass of a conduction-band electron. Then, in
e6ective-mass theory, the wave function for the localized
donor electron wave function is a product of the con-
duction-band Bloch function and the solution of the
Schroedinger equation for the hydrogen-like atom
formed by the donor and its loosely bound electron.

As we have pointed out, the conduction-band minima
in germanium is not at the center of the zone, but is at
the zone edge in a L111)direction. There are, therefore,
four equivalent minima. Since the donor electron can
select a wave function equally well from any of the
minima, the complete donor wave function is of the
form:

iP (r) =P n F/(r) u'(r) e'" '
where u/(r) is the conduction-band wave function at the
jth minima, F& (r) is the hydro'genic envelope function,
and o,; describes the relative contribution from the jth
valley. A further complication arises in the envelope
function because the effective masses vary with the di-
rection of electron motion; the wave function is thus no
longer spherical but becomes compressed in the direction
of the heavier mass. For germanium, where m&1=1.60
and. m& ——0.08,' F'(r) becomes pancake shaped with the
axis pointed in the L1111direction. In forming the sum
over the four valleys, the total wave function is more or
less spherical.

For this anisotropic case, Kohn and Luttinger' "have
used a trial wave function of the form

F/(r) (e @2') 1/2 exp{ L (g,2+y 2)/@2+ s .2/]52)1/2} (2)

where z; is the displacement along the jth valley axis,
(xP+y/s)'/' is the perpendicular distance from it and
a and b are the effective Bohr radii in the transverse and
parallel directions, respectively.

A variational calculation for the transverse and
parallel effective radii gives the values a= 64.5 A,
b = 22.7 A for any donor in germanium and an ionization
energy, E,z „,=0.0092 eV. Since the lattice constant
of germanium is 5.66 A, we see that the donor wave
function spreads effectively over hundreds of lattice
sites. In order to ensure that no overlap of adjacent
donor wave functions occurs, it is necessary to restrict

» M. Lsmpert, Phys. Rev. 97, 552 (1955).

the impurity concentration so that the average impurity
spacing is greater than 10(a'b)"'." This limits us to
maximum impurity concentrations of the order of
10"/cm'. On the other hand, in silicon the wave func-
tions are more compressed and the maximum impurity
concentration is between one and two orders of magni-
tude larger. Therefore, we expect a considerably weaker
spin resonance signal in germanium than in silicon.

The ground-state wave functions for germanium can
be arranged in terms of the contribution from the jth
valley (n;) as follows: A singlet state which is non-
vanishing at the origin

n;= —,'(1,1,1,1),

and a triplet of levels which vanish at the origin

(a) n;=-,'(1, 1, —1, —1);

(b) n, = 1/v2 (1, —1, 0, 0) .

(c) n, = 1/V2(0, 0, 1, —1);
(4)

(the particular representation of the levels chosen here
will be of use in the later discussion of the 'eQects of a
stress applied in the L1101 crystallographic' direction).
It can be shown that no tetrahedrally symmetric
perturbation .,can lift the triplet'-'degeneracy. As noted,
the quantity lit &el l' will be large for the singlet, whereas
it vanishes for the triplet states. We expect the effective-
mass approximation in the neighborhood of the donor
core to break down. Since the electron probability
density does not vanish at the' donor nucleus for the
singlet, this deviation from effective-mass approxima-
tion should lift the singlet-triplet degeneracy. The
resultant splitting of the singlet and triplet we shall refer
to as the valley-orbit splitting, "since the treatment of
the effect is analogous to that for the spin-orbit splitting.
In the case of silicon, the ground state has been con-
firmed as the singlet from the observed hyperfine spec-
trum and the splitting of the excited states has been
measured from the effects of uniaxial stress on the
resonance spectrum. ' We will discuss the application of
this technique to germanium as well. First, however, let
us consider in more detail the nature of the hyperfine
spectrum.

~' E. Conwell, Phys. Rev. 103, 51 (1956).» G. Weinreich and H. G. White, Bull. Am. Phys. Soc. 5, 60
(1960).

Spin Hamiltpnian

Magnetic interactions of the magnetic moment of the
donor electron p„the nuclear moment of the donor
p~, the nuclear moment of the Ge" y, G., which also
interact with the donor electron, and the magnetic field
H give rise to the following Hamiltonian:
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ms, m&, m& are magnetic quantum numbers for the
electron, donor nucleus, and Ge" nucleus, respectively,

g is the electronic g value, and p is the Bohr magneton.
An electromagnetic 6eld of frequency s induces reso-

nance transitions with Ama=&1, Am~=0, Am~=0, so

that

16K' p,~
h.=gpH+ p—Iif (0) I'rND

3 Ig)
167/ PGp

+ p Zla( )I' (7)
IGe

Since there are 2I+1 values for nz~, there are 2I+1
values of the magnetic field at which resonance is ob-

served. For this hyper6ne spectrum, adjacent values of
the field are separated by'8

AHM, (16 r/kg) I P(0) I

——'. (8)

Each of the Ge"' hyperfine interactions gives rise to a
similar held shift whose total effect is given as the sum

16' PG6
M, = P Iii(r&) I'm&.

3g IGe

The 6rst moment of this sum vanishes but its second

moment gives rise to a broadening of the line. Vfe will

consider this term in more detail later.
Using the effective-mass wave function LEq. (1)j and

the valley populations I Eqs. (3), (4)) for germanium,

we 6nd that

singlet
I P(0) I

'= 4
I F&s& I

'r)o„
triplet

I P(0) I
'= 0,

(10)

(11)

where the quantity t)o,= IN(r&) I

' is proportional to the

probability amplitude for the conduction-band electrons
at the lattice sites. The presence of a hyperfine spectrum
of measurable splitting is, therefore, an absolute test of
the nature of the donor ground state.

The bunching of the Sloch functions at lattice sites

(r)o,) is not known, for germanium. We have made an

's Y. Yafet /Phys. Chem. Solids 21, 99 (1961)g has pointed out
that the observed g must appear in Eq. (g). Neglect of this fact
leads to erroneous values for Irk&0& (s given in our original paper
(Ref. 9).

where we assume that the wave function has cubic
symmetry and we neglect the interaction of the nuclear
moments with the magnetic 6eld.

If we assume the donor electron orbit is more or less

S-like, then the energy levels for this Hamiltonian are

16K' pgp

E=gPHrls+ P—IP(0) I'rNsmD
3 ID

16m' PGe
p ms 2 I y(r&) I'~&; (6)

Go L

experimental estimate based on observed nuclear spin-
lattice relaxation times which indicates qG, is an order of
magnitude larger than gg;. This is to be expected in view
of the larger nuclear charge for germanium. %e will see
that several of the differences in the spin resonance spec-
trum of germanium donors and silicon donors arise
from this pronounced bunching up of Bloch functions
at the germanium sites.

In the case of the triplet state the absence of hyperhne
splitting does not assure that the spectrum will reduce
to a single line. It has been pointed out by Keyes and
Price" that the triplet degeneracy could be lifted by
local strains in the crystal. In the extreme, this could
lead to a state where the donor electrons occupied one
valley in a given region of the material and another
valley in some other region of the crystal. This would
give rise to a spectrum of four lines following the valley
symmetry and exhibiting principal g values correspond-
ing to the single valley values. In the more usual case
where the strains are perfectly random, the spectrum
for the triplet would consist of a wide distribution of
resonances and would then be essentially wiped out.
This could be the case for antimony-doped germanium.
A similar e8ect occurs in the case of acceptors in silicon
and is overcome in that case by applying a large uni-
form strain to minimize the effects of the localized
ones."

C. Linewilth

The last term in the spin Hamiltonian arises from the
hyper6ne interactions of the donor electron with the
Ge" isotope. The isotopic abundance is 7.8/o and its
spin is —,'. In the average donor orbit, therefore there will
be interactions with hundreds of such randomly located
nuclei, each having 10 possible nuclear orientations. The
resulting average magnetic field that each donor elec-
tron sees will vary from site to site with just as many
sites having fields higher than the applied magnetic field
as sites having lower 6elds. Thus, this term does not
shift the resonance, it merely broadens it. This "inhomo-
geneous" broadening can be calculated using the
assumed ground-state wave function appropriately cor-
rected for the ionization energy of the donor involved.
Following Kohn's calculation for silicon, " the second
moment of the line (&Vs) is given by

/'16% Poe
Ms'=I Q PIo&u'(r&)e'~'"Il& (r~) IMPj (12')

(3g Ioe & i

where f is the fractional abundance of Ge"', and we
insert the effective-mass wave function for the singlet.
Expanding, we obtain for the linewidth AH (i.e., the

"R.W. Keyes and P. l'. Price, Phys. Rev. Letters S, 473 (1960).
20 0. Feher, J. HenseI, and K. Gere, Phys. Rev. Letters 5, 309

(1960).
"W. Kohn (unpublished).
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magnetic-6eld splitting of the absorption half-maxima).

327I PGe
EHo,»= 2Ms —— (mIs),»"'

3g IGe

'g

y f'I' p—nI
~

e'"'"F&(rI)
~
4, (13)

when e~ is the number of equivalent lattice points. The
evaluation of the lattice sum is given in the Appendix
using an isotropic approximation for F(r) given by
Kohn. ' In this approximation Kohn assumes some
average radius La*= (a'b)"'j of the actual effective-
mass radii and, in addition, modifies this radius
(aII*= (E,E „,/E, b,)"'a*) to account for the differences
between observed ionization energies (E,b, ) and the
effective-mass value. This approximation gives a
calculated linewidth;

36 pGe
(~ 2) ltsfll2rf

g St2g +3tl

where a~ is the lattice constant and ao* is therefore an
effective Bohr radius related to the spread of the donor
wave function. The magnitude of the linewidth is seen
to be related to the spread of the wave function and in
this sense the observed linewidths are a check on the
effective-mass wave functions in the region far away
from the donor nucleus whereas the hyperhne splitting
of the lines is determined by the magnitude of the wave
function at the nucleus.

We see that the linewidth in germanium should be
larger than that in silicon, principally because g is
appreciably larger in germanium than in silicon. This
larger linewidth will also result in a reduced resonance
signal amplitude for germanium as compared with
silicon.

III. EFFECT OF STRAIN ON THE
DONOR STATES

A. Wave Function

The application of external or internal strain '
destroys certain symmetries of the crystal and alters
the ground-state wave function. The strain will depress
some of the valleys in energy and raise others; the
magnitude of the shift is of the order of „swhere

„

is
the appropriate deformation potential and s is the lattice
strain. " Under such strain the relative probability of
ending the donor electron in the lowered valleys in-
creases at the expense of those in the raised valleys. We
have previously called this repopulating the valleys. To
look at this change in another fashion, the strain ad-
mixes some of the excited triplet state into the singlet

"For a review of strain effects in semiconductors see R. Keyes,
in SolQ'-State I'hysics, edited by F. Seitz and D. Turnbull
(Academic Press Inc. , New York, 1962), Vol. II."P.J. Price, Phys. Rev. 104, 1223 (1956).
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F&G. 1. Energy of the is-like donor levels in germanium as a
function of the valley strain "„s/E&3.Energies expressed in units
of n, = ~ I singlet-triplet splitting (Eqq) }.

ground state so that the electrons favor wave functions
from the lowest valleys, the extent of the admixture de-
pending on the quantity "„s/E»where E&s is the single-
triplet splitting. Any strain at all gives rise, therefore,
to a new ground state.

Consider the effect of a uniaxial compressive stress
applied along the L110) direction. There are two valleys
lying in a plane containing the stress axis whose
energies are equally lowered by the compression. The
remaining two lie in a plane at right angles and their
energies are raised by the compression. At suSciently
large strains, only the two lowered valley wave functions
would contribute to the donor ground state. The energy
shifts of the ground state and triplet state under such
uniaxial compression are calculated in the Appendix and
the results (Fig. 1) show that the triplet state having the
valley composition given by Eq. (4a) is mixed into the
singlet state by a L110] stress to form the new ground
state.

'4 H. Fritzsche, Phys. Rev. 125, 1560 (1962).

B. Hyyer6ne Sylitting with Strain

Since the triplet wave functions vanish at the donor
nucleus, any admixture of these hyperfineless states will
reduce the observed hyperfine splitting of the singlet
ground state. The change can be expressed as the ratio
of the hyperfine splitting with strain to that without.
This quantity can be calculated using the effective-mass
expression for the wave function and assuming that the
only effect of the strain is to change the relative valley
populations. This assumption is con6rmed by the work
of Fritzche. '4 The result for a uniaxial compression along
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C. Effects of Strain on g Shift

The Grst term in the expression for the energy of
resonance transitions [Eq. (7)g is gPH, where the g value
is a measure of the interaction of the electron spin
angular momentum and its orbital angular momentum.
Since the effective mass of the electron varies with the
direction of its motion, so, also, will the g value. This is
expressed for the case of the electron occupying a single

valley~in terms of g&t, the g value for magnetic Geld

parallel to the valley axis and gL, for the Geld perpen-
dicular. Then, for arbitrary angle of the magnetic Geld

to the valley axis (4), the single-valley g value is

given by
(16)g'=g~P cos'C+gP sin'C.

In the ground state all four valleys contribute equally
and the g, averaged over the four, gives the isotropic
result

g= go= g«/&+2gi/3 (17)

Roth" has calculated the values of g t f and g~ assuming
that the dominant contributions to the shift from g= 2
arise from the valence band which is largely p-like in
character and has the smallest energy separation from
the conduction band. Since similar arguments apply to
the calculation of the e6ective masses, she finds a
relationship between the two for this two-band calcula-
tion of the form

(g„—2)= —(3/E,„)(m/m, —1), (1g)

(gg —2)= —(5/E„)(m/m„—1),
where 8 is the spin-orbit splitting of the valence band
edge at the [111)zone boundary and E,

„
is the energy

of the direct transition from that point to the conduction
minimum. The large anisotropy in the g's follows from
the large-mass anisotropy. Values for both the quantities
5 and E„havebeen obtained by Tauc and Antoncik"
from ultraviolet reQectivity measurements and are

» D. K. Wilson and G. Feher, Bn11. Am. Phys. Soc. 5, 60 (1960}."J.Tauc and E. Antoncik, Phys. Rev. Letters 5, 2S3 (1960}.

a [110$ direction is (this calculation is given in

Appendix A):

hfs„„;/hfs„„„„„=—',[1+(1+x'/9) "'j,
where the "valley strain" x= „s/Ets. In the limit of
very large strains, we Gnd that the hyperGne splitting is
reduced to —,

' its original value. If the compressive stress
were applied in the [111)direction we would expect the
single valley in the direction of the stress axis to be
lowered and the other three to be raised. In the limit of
large strains for this case, the hyperGne splittings would

be reduced to ~» its original value. From the measured
changes in hfs under uniaxial stress, we will Gnd it
possible to obtain the singlet-triplet splitting in germa-
nium" as we found the singlet-doublet splitting in
silicon. '

8=0.18 eV and E,„=2.1 eV. Using the eGective-mass
values m~=0. 08 and mf&= j..60, the calculated g's are
g~= 2.07 and gt~=0.98.

In the extremes of strain noted above (x))1), the g
would be highly anisotropic. Thus, for a large compres-
sion in the [111)direction, only one valley is populated
and the g would vary from g~~ to g~. For the large [110j
compression, two valleys are occupied and the variation
is not quite so large, varying from go to g&. For small
stresses in the [110$ direction and small angles to the
[100j axis, the g can be expressed in terms of the angle
(0) between the magnetic field and the [100j axis
perpendicular to the stress axis (see Appendix 3).

g fo= s'n 0[4o' 1j(g g )/3f (19)

where n~' is the occupation probability of one of the
depressed valleys. It is the large value for the term
(g» —

g&) in germanium that leads to many of the
striking differences between the spin resonance of
donors in silicon and germanium.

In this result, note that the g shift for this strain
vanishes in the [100] direction. Simply put, this
happens because the Geld makes equal angles with all
the valley axes, hence, the relative population of the
valleys is irrelevant and the g is affected by strain only
in second order.

D. Effect of Strain on the Linewidth
in [100j Direction

Just as strain modifies the hyperfine interaction of the
donor electron with the donor nucleus through changes
in the ground-state wave function, so also will changes
occur in the interaction with the Ge" nuclei. The
principal effect is again that of valley repopulation.
Since the linewidth also depends on the number of
occupied valleys. [see Eq. (12) in Sec. III, Cj a large
compressive stress in the [110) direction would be
expected to reduce the linewidth by —,'. Fritzsche" has
pointed out that the envelope part (F(r)) of the ground-
state wave function also changes with strain because the
admixing of triplet states which have no central cell
correction will cause the effective donor orbit radius
(a'b)'~s to increase. The effect on the donor hyperfine
splitting is small but that on the unresolved Ge" inter-
actions will be comparable to that from the valley
repopulation. %e estimate for arsenic donors that this
effect should further reduce the linewidth for large
stresses by 15%.

The decrease in linewidth is experimentally observed;
however, it is smaller than that expected from the valley
repopulation. This is a result of inhomogeneous strain.
Any gradient in strain will give rise to a distribution in
donor nucleus hyperGne splittings so that the linewidth
is increased by such inhomogenieties. In the extreme of
a large [111jstrain where ultimately only one valley is
occupied, the broadening effects of strain gradients
should vanish and the linewidth should be reduced
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significantly from that observed in an unstrained
sample. This effect could possibly be used to improve
the signal-to-noise ratio.

(g~~
—g~) 2~„hs

Ag = — (sin'0+v2 sin20),
3gp 9 Ega

(20)

where 0 is angle to the L100) direction. We can write the
total linewidth AHp as

(21)

Substituting from above,

(EHr)2= (EHo )~

gi I gX+ H (sin'0+u2 —sin20)' (22)
3gp' 9 Ega

The linewidth will be a minimum in $100j and a
maximum in the L111$direction. (As the magnetic field
approaches L110) direction, the linewidth should de-
crease; however, in this direction the broadening due to
strain components in the $1101 direction will also be-
come important. The detailed behavior for large angles
will depend on the relative amplitudes of the resolved
strain components about the dislocations. ) We see that
the effect of this strain broadening on the linewidth

E. E6'ect of Strain on Linewidth Off
LIOOD Direction

In addition to this line broadening term, another
contribution occurs when the magnetic 6eld deviates
from the $100j crystal axis. As we have pointed out,
strains either external or internal for such field directions
will produce a shift in the center of the resonance spec-
trum. Internal strains in single crystals are found to
arise in the neighborhood of imperfections and are most
severe near dislocations. Since these strains are random
in orientation and in magnitude, they give rise to a
distribution of possible g values centered about the
isotropic value and, hence, to a broadening of the line
rather than a shift of its center. Such a contribution to
the linewidth is observed in germanium. Although one
also observes g shifts with uniaxial stress in silicon, no
comparaMe contribution to the linewidth in silicon is
observed, a consequence of the fact that (g~&

—
g&) is 3

orders of magnitude smaller in silicon.
The increase of the linewidth due to this effect can be

estimated as follows. Ke assume a Gaussian strain
distribution with an average component As in an
arbitrary $111) direction. We neglect the other com-
ponents as their effects are all smaller than the $111j
component for small angles 0 between H and L1007 axis.
In Appendix B, we have calculated the effect of a
uniaxial stress in the $1111direction on the g value. For
small strains this reduces to

may be appreciable in germanium because of the large

g anisotropy g~I
—g~.

IV. EXPERIMENTAL DETAILS

A. Equipment and Samples

The experiments were performed at 9000 Mc/sec
using a superheterodyne spectrometer which has been
described elsewhere. ' Because of the small binding
energy of the donor states, all of the work was done at
liquid helium temperatures. The magnetic 6eld was
modulated at 100 cps and the bridge tuned to the
absorption signal. The relaxation times were short
enough that all observations were made under almost
slow passage conditions.

The modulation amplitude was usually of the order of
5 Oe and the microwave power to the cavity was of the
order of 10 '% to prevent saturation of the signal. The
procedure was to sweep the entire spectrum slowly from
low to high field and then with reversed direction. The
position of the line was based on the average of these
two. Field markers were obtained from a proton nuclear
resonance probe.

The resonant spectrometer cavity (operating in the
Teioi mode) was a split pair of silvered glass halves with
inside dimension slightly smaller than the sample length
so that external stress could be applied to the sample.
The loading stress was developed by a calibrated spring
and transmitted by a wire and lever system described
previously. In most of the work described here, the
stress was applied in a direction perpendicular to the
direction of the magnetic field.

The magnitude of the stress was determined from
the measured spring tension and the known mechanical
advantage of the spring squeezing system. The errors in
this measurement were of the order of 3%.In estimating
the strain in the sample one must also take into account
any gradients in strain. These were determined in our
experiments by displacing the 6eld slightly from the
L1007 axis and measuring the increase in linewidth, of
the germanium samples. As we have pointed out, a
nonuniform strain will produce a distribution of g values
and increase the linewidth. The large g shifts in germa-
nium produce a large e6ect for relatively small devia-
tions from uniform strain. Most of our measurements
entailed strain gradients of the order of 5%.

The samples were cut from Czochralski-grown crys-
tals of suitable doping to a size of 1&9&(2.2 mm and
etched. "The etching reduces the possibility of fracture
precipitated by surface damage. The samples are
oriented within 20 sec by x-ray techniques. The usual
orientation of stress applied the external force along a
LII07 axis of the crystal while the magnetic field
was rotated in the (110) plane at right angles. The
elastic constant c44 for germanium was extrapolated

'V The samples vrere etched for 1 min in 5 parts HNO3 and
1 part HF.
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to 1.2'K from the low-temperature Ineasurements of
McSkimmin's giving c44= 7.00X 10' kg/cm'

The resistivity of the samples was measured by
passing a current through the long dimension of the
sample and measuring the voltage drop across two
probes spaced 0.050 in. apart placed at the middle of
the sample. The impurity concentrations were then
estimated from the measured resistivity and the electron
drift mobility values obtained by Prince. "

)& dx
0H

SX 10~4 PHOSj'CM3

5 X 10~~ As/CMS
~i dx"

dH

NTZ IAN

B. Measurements H

The determination of the hyperfine splittings and

g shifts in germanium requires some care in analyzing
because the large linewidths and small spacings cause
the lines to overlap. The analysis was based on the
assumption that the overlapping lines were always
Gaussian in shape. Under very large stresses this is
observably not the case; however, for relatively small
stresses and small angular shifts from the $1007 axis,
the results can be reasonably fitted. The problem is
most severe for the case of phosphorus-doped germa-
nium and limits the determination of hyperfine splitting
to about 5% error. The hyper6ne splitting for arsenic
can be measured within 3% and that for bismuth within
1%.The accuracy in determining the hyperfine split ting
under strain is slightly poorer because the line broaden-
ing effects we have mentioned increase the smearing out
of the hyperfine spectra. This leads to an over-all error
in determining Ers/ „of8% for phosphorus donors, and
6% for both arsenic and bismuth donors. The single
valley g values for arsenic and phosphorus donors were
determined with 6% error. In the case of arsenic and
bismuth donors, only the shifts of the m&=~~~ lines
were measured. Quadrupole interactions with electric-
field gradients introduced under stress will contribute
to shift of the other hyperfine lines. "We experimentally
observe a greater broadening of these lines in stressed
samples than of the mL=&-', lines, as a result of the
quadrupole interactions. No attempt has been made to
study these effects since they are dificult to separate
from those already mentioned.

V. EXPERIMENTAL RESULTS ON
UNSTRESSED SAMPLES

A. Donor Ground State

1. IIyperfine Spectrum

The spin resonance spectra for 5X10"/cms arsenic
(I=as) and 8X10'4/cm' phosphorus (I=-,') donors in
germanium at 1.2'K are shown in Fig. 2. These spectra
were taken with the magnetic field along the L1007
crystal axes and, therefore, correspond to the minimum
linewidth condition. A similar spectrum of 10 widely

Fro. 2. Electron spin resonance spectrum for arsenic and
phosphorus donors in germanium T=1.2'K, H =4000 Oe,
Magnetic iield along the L100j crystal axis.

spaced lines was obtained from a sample doped with
3X10"/cm' bismuth (I=-,') donors. These experimental
results show definitely that the ground state for these
three donors in germanium is the singlet. The result for
antimony donors in germanium is uncertain since no
such hyperfine spectrum was observed in antimony-
doped samples of germanium.

The amplitude of the signal, assuming that all donor
electrons were in the singlet state, was in good agree-
ment with that of a phosphorus-doped silicon sample
with known number of spins. The amplitude of the
signal was found to decrease as the temperature was
increased in further support of the observation that the
spectrum corresponds to the ground state. The experi-
mental results for the observed hyperfine splittings in
As-Ge, P-Ge, Bi-Ge, the magnitude of

~
it &s&

~

' deduced
using the expression PEq. (8)7 and g values are sum-
marized in Table I and compared with similar results
for silicon. '

Although the magnitude of the hyperfine splitting for
arsenic and phosphorus is only slightly smaller in germa-
nium that that in silicon, one might have expected it to
be much smaller since the envelope function spreads out
much further. However, the hyperfine splitting, as
pointed out, also depends on the bunching of the conduc-
tion-band wave functions at the lattice centers (r)o,).

Z. Estimate of rio.

Values for q in silicon have been obtained by Shulman
and Wyluda" and by Solomon" from the nuclear spin-
lattice relaxation times of Si". An expression for the
spin-lattice relaxation time, T~, has been given by
Abragam" in the form

1 128 P'pr')
(2s.)'l' ~r)'iVI(m m ')'~'(KT)'~' (23)

Ts 9 XI)
"H. McSkimmin, J. Appl. Phys. 24, 988 (1953).
'9 M. Prince, Phys. Rev. 93, 1204 (j.954).
'0 R. Shulman, B.Wyluda, and P. W. Anderson, Phys. Rev. 107,

953 (1957).

s' R. Shulman and B.Wyiuda, Phys. Rev. 103, 1127 (1956).The
expression used by Shulman and Wyluda is in error by a factor of 2.
However, their mobility data was also in error by roughly the
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where S is the density of mobile carriers and l is the
number of conduction-band valleys. Wyluda" measured
the relaxation time for Ge7' and found that the relaxa-
tion time at 20'K for N=4&&10"/cms was approxi-
mately equal to that for Si" in silicon samples of
impurity concentration 1&(10'r/cms at room tem-
perature. From this result and the expression above we
deduce a value for the ratio rlo, /rls;= 9.5 and a value for
gG, = 1700+300.

Using this result in the expression for the hyper6ne
splitting (see Sec. IIB) and values for

~
F(0) ~' obtained

from effective-mass theory we obtain estimates for the
hyperhne splitting roughly an order of magnitude
smaller than those observed. A similar discrepancy oc-
curred in the case of silicon. This discrepancy is attri-
buted to the breakdown of the effective-mass approxima-
tion in the near vicinity of the donor impurity.

a = a'+= a(EeB mass/Eobs) (24)

This corresponds to a solution of the Schroedinger equa-
tion with eigenvalue E,b, rather than E,g „,and since
all of the observed ionization energies are lower than the
effective-mass value, this solution will go to infl.nity at
the origin. Kohn and Luttinger cut this solution off at
the central cell and join it on to an almost atomic wave
function. This correction for silicon increases the calcu-
lated value of

~

F (0)
~

' for the singlet by almost an order
of magnitude, bringing the expected value for

~
tP(0) ~'

into agreement with experiment.
Kohn and Luttinger have pointed out this correction

of the effective-mass formalism essentially holds only
for donors with an atomic number close to the host
lattice, i.e., phosphorus in Si or arsenic in Ge. The effect
of substituting a donor with appreciably larger nuclear
change can be seen in the case of bismuth-doped germa-
nium. The ~lt (0) ~' is an order of magnitude larger for
bismuth donors than for phosphorus donors.

With respect to this correction, one might have ex-
pected the germanium donors to fit the effective-mass
approximation somewhat better because of the much
larger spread in wave function. The fact that the dis-
crepancy in the vicinity of the impurity in germanium is
as large as that in silicon undoubtedly arises from the

3. Central Cell Correction

For silicon, Kohn and Luttinger' have proposed the
following qualitative correction to the effective-mass
formalism. Outside the central cell (i.e., r) r„4sr/3r,s

=atomic volume), the e8ective-mass wave function
F(r) is assumed as a solution but with adjusted effective
radii (a*) given by

TAnLz I. g values, linewidth AHo, " (magnetic-Geld difference
between maximum and minima of the absorption derivative).
Total hyperGne splitting and magnitude of the contact term

~
it ~s& ~

'
for donors in germanium and silicon.

Donor
Impurity
conc jcmg g value

Total
Linewidth hfsa

I it (o&(2 X1024
b,H (Oe) (Oe) cm I

Phosphorus 8 X10'4
Arsenic 5 X1015
Bismuth 5 X10'5
Antimony 5 X10'5

Germanium
1.5631&0.0002 10+1 21 &1
1.5700 +0.0002 11&1 107 &3
1.5671 +0.0004 10%1 944 &5

1.60 5100j 20 L1003

0.17
0.69
2.15

Phosphorus
Arsenic
Bismuth
Antimony

1.5 X10'8
1.8 Xioio

Xioto
2.5 X1018

Siliconb
1.99850
1.99837
2.0003
1.99858

2.8
3.2
4,5
2.6

42
212

0.43
1.73

~ ~ ~

1.18

a This does not include any Breit-Rabi correction. The g values and
j g (0) )

2 are corrected for the Breit-Rabi effects. LSee Appendix G in Ref. 8.j
b See Ref. 6,

relatively larger bunching of the germanium conduction-
band wave functions at the lattice sites.

Z. Isotopically Ersriched Sample

Further evidence that the linewidth in the $1001
direction arises from the Ge" hyper6ne interactions was
obtained from the observation of arsenic donor electron
spectrum in an isotopically enriched sample that was
prepared in the following way.

A single crystal of high-purity germanium was pulled
from a melt of isotopically enriched Ge74 obtained from
the Oak Ridge National Laboratory. The Ge" con-
centration in this sample was reduced to 0.86%%u~.

"The
crystal preparation has been outlined by Geballe et ul. 36

Oriented slices from this crystal were subjected to a
slow-neutron irradiation which produced 2X10"/cms

B. Linewidth in [100]Direction

1. Normal Isotope Samples

As expected, the linewidth in germanium is ap-
preciably larger than in silicon, the ratio of the two being
roughly in accord with the ratio of their p's. The line-
width in germanium, however, is very anisotropic with
a minimum in. the L1007 direction. The line broadening
effects that set in as the Cield is rotated will be discussed
later; for the moment we will be concerned only with the
linewidth for magnetic fields in the L100j direction.

Since the increase in linewidth in germanium over
silicon is roughly that expected from its larger p, we
conclude that the principal line-broadening effect in
the $100$ direction arises from the distributed hyperfme
interactions with the Ge" nuclei.

same amount so that their value of gs;=186 is rather close to the
corrected value of qs;=178 obtained by Solomon (Ref. 32).

ss I. Solomon (unpublished).
ss A. Abragam, PrsrsesPtes of Nssetear MagsMtssrg (Oxford

University Press, New York, 1961).
ss B. Wyluda, Phys. Chem. Solids 23, 63 (1962).

35 The isotopic composition of this sample as compared with
normal germanium is

Ge" Ge" Ge" Ge" Ge"
Normal germanium 20.45% 27.41% 'I. 'I"I% 36.58% 7.79%%u~

Enriched germanium 0.80% 1.03'% 0.86% 96.75% 0.56%.
's T. H. Geballe and G. Hull, Phys. Rev. 110, 773 (1958).
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FIG. 3. Comparison of the spectrum for arsenic donors in
isotopically enriched germanium, (0.86% Ge") and normal
germanium (7.8% Ge"), 7'=1.2'K, H= 4000 Oe. Magnetic Geld
along the I 100$ crystal axis, Ãd—2X10"/cms.

reactions of the type Ge"+a=As"'.'" The sample was
annealed at 450'C to relieve radiation damage. "As
expected, the linewidth for this sample is much reduced
(see Fig. 3), the reduction being roughly what one
expects on the basis of the linewidth calculation. The
calculated ratio of the linewidths for the isotopically
enriched sample to one with normal isotopes is
(0.86/7. 8)"'=0.34, in very good agreement with the
observed ratio 3.6/11=0.33. This result proves that the
linewidths in the L100] direction are entirely due to un-

resolved hyperfine interactions with Ge".Because of the
reduced linewidth and enhanced signal-to-noise ratio,
this isotopically enriched sample has proven very useful
in other experiments to be described later.

3. Spread of Wave Flnctiors from Lieevoidth

From the observed t 100] direction linewidths in
normal isotope samples and the calculation given in
Sec. IIB PEq. (14)], it is possible to estimate the
effective spread of the donor wave function (as*).

There are several sources of error in this calculation
that should be noted 6rst. The most significant arising
from the assumption of an isotropic envelope function

F(r) in obtaining Eq. (14). The actual wave functions
are rather pancake-like. Because of the four-valley
phase factors, the assumption of an isotropic wave func-
tion will particularly alter the contributions from Ge"
nuclei on sites along a face diagonal (these will be under-

estimated). We estimate for the anisotropy (roughly
3:1) predicted by effective-mass theory for germanium
that these terms might introduce an error of roughly
30% in the calculation of linewidth. In turn, this would

lead to an error of 20% in the estimate of the spread of
the wave function.

An additional error occurs because we neglect the
build-up of the wave function near the nucleus, which
would particularly affect the contribution from the
nearest neighbors. However, the phase factors produce

ss In normal germanium, 30% of the captured thermal neutrons
give rise to Ga", 9.8% to As", and 1.2% to Se". In the enriched
sample, the corresponding reactions are 3.3% to Ga", 77'% to
As", 2.6% to Se". The remainder of the captured neutrons in
both instances give rise to Ge~3 and Ge74.

3 The sample irradiation and annealing was generously provided
by J. W. Cleland.

C. Linewidth Off the t 100] Direction

For all of the germanium samples observed, the line-
width was found to increase as the magnetic Q.eld moved
away from the L100] axis. The broadening was found
to vary with the sample and was strongly correlated
with the dislocation density. This suggested that the
broadening was a result of random g shifts produced by
strain associated with the number of dislocations (e). As
a check the linewidth off the $100] axis was compared
for magnetic fields of 4000 and 10 000 Oe and was found
to increase linearly as expected. (Note that this makes
very high held spin resonance studies difficult in ger-
rnanium. ) Furthermore, the linewidth in a sample hav-
ing 2&& 10' e/cm' was found to increase drastically when
the sample was plastically deformed to introduce 5&10'
e/cm'. The variation in linewidth with angle for this
sample before and after plastic deformation and several
others are shown in Fig. 4. The number of edge disloca-
tions in these samples was determined by counting the
density of etch pits produced on a (111) face by a
potassium ferrocyanide etch."

At very high dislocation densities, it can be seen that
the linewidth increases so rapidly that the lines are

Tmr. z II. Spread of assumed isotropic effective-mass wave
function F(r)=1/(sras*s)'~'expL —(r/as*)g for donors in germa-
nium as compared with corrected effective-mass values

as* = (&e& mass/&ebs) "'(a'1)"'

Donor

Wave-function
Observed spread a0* from
linewidth linewidth

(nHOs») (Oe) (A)

Wave-
function

spread eff
mass calc
~1/2 (grab) 1/3

(A)

Phosphorus
Arsenic
Bismuth

10
11
10

31.8
29.8
31.8

38.5
36.8
39.0

"The samples are immersed for 5 min in a boiling solution of
8 g KsF, (CN)s+12 g KOH in 100 ml H,O. This etch produces dis-
tinctive triangular etch pits corresponding to edge dislocations on
(111)faces.

a weak contribution from the nearest neighbor term and
the effect on the linewidth calculation should be small. '
This conclusion is supported by the fact that the line-
widths (unlike the case in silicon) vary little from donor
to donor. That is, the wave function spread is so large
that differences of wave function in the vicinity of the
central cell have little effect on the linewidth.

From the observed linewidths we obtain the estimated
spread in wave function for the three donors given in
Table II as compared with values estimated by the
corrected effective-mass isotropic approximation. Since
we have tended to underestimate the contribution of
certain terms in assuming an isotropic wave function,
the estimates of wave function spread from the line-
widths should be on the low side of the true spread.
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Fro. 4. Linewidth of arsenic-germanium 37s=2—5)&10"/cmz for
magnetic fields off the $100j direction. The various samples have
dislocation densities varying from (10z z/cm' to 5X10' o/cmz,
and includes the isotopically enriched sample. The solid lines are
the theoretical results given by Eq. (22) for various assumed
Gaussian average strains (hs).

washed out a few degrees off the L1007 direction. Since
the early studies on germanium crystals were probably
on rather heavily dislocated material, a slight mis-
orientation of the sample from this axis would have
caused the signal to be missed.

In order to compare these results with the calculation
in Sec. IIIE, of the line broadening! see Eq. (22)7, we
have also shown calculated curves (small angles only)
for various average Gaussian distributed strains (ds)
assumed to arise from the dislocations.

We 6nd that the broadening for small angles can be
6tted by the asumption of a Gaussian average-strain
component along the L1117axes. The components along
the! 1107 axes will negligibly contribute for small angles
but will add fractionally to the calculated broadening
for angles approaching the! 1107direction. As expected,
the average strain deduced from the line broadening
increases with the edge dislocation density. It is im-
portant to note, however, that the broadening of the
isotopically ezzriched sanzple is extremely small in corn-
parison with the others in spite of its rather large edge
dislocation density ( 10' e/cm').

In moderately dislocated material the average strain
is given by the expression'

d,s= 10—s (e/cm')'t' (25)

For the isotopically enriched sample, this gives an aver-
age strain of 1.4&(10 ', in good agreement with a value
of 2&&10 ' obtained by fitting the observed broadening.
On the other hand, the normal isotope samples show
broadenings corresponding to average strains an order
of magnitude larger than the above expression yields.

zz W. T. Read, Disfooatiozzs zzz Crystals (McGraw-Hill Book
Company, Inc. , New York, 1953).

This difference between the isotopically enriched and
normal samples arises in the following way: The
isotopically enriched sample was doped by neutron
irradiation and one can be reasonably certain that the
distribution of impurities is random among the dis-
locations. On the other hand, the normal samples were
all doped during the growth process and some degree of
association of the donors and the edge dislocations also
introduce during growth is not at all unlikely. Hence,
the average donor is subject to a strain much larger than
that for donors randomly distributed among the dis-
locations. Our results for donor concentrations of

10"/cm' imply that most of the donors are trapped
in regions relatively near the dislocations rather than
distributed in a truly random arrangement.

D. Antimony-Doped Germanium

The experiments with antimony-doped germanium
gave various results depending strongly on the sample.
In no case was a hyperfine spectrum observed even in
lightly-doped samples. Fritzsche has estimated that the
singlet-triplet splitting for the antimony donor level is"
0.00057 eV so that a strain of only 10 ' will produce a
significant change in the donor wave function. Such
strains are often found in the typical pulled crystal of
germanium. As a result, one expects there to be a
distribution of hyperfine splittings for the antimony
resonance. In view of the fact that there are two isotopes
of antimony with spins of —,

' and ~~, so that a total of 14
lines should appear each with a linewidth of 10 Oe or
more, it is understandable that the hyper6ne spectrum
of antimony has not been observed. An attempt was
made to improve the signal-to-noise problem and
minimize the effects of intrinsic lattice strain by apply-
ing a large static strain in the! 1117direction. No reso-
nance in the lightly doped samples was seen under these
conditions either.

In more heavily doped samples where motional
narrowing occurs, a resonance in antimony-doped
germanium was observed with a go in the! 1007 direction
of 1.6. In all such samples except one the line was very
broad and became broader as the magnetic field was
rotated. In the case of one sample (E d5&&10"/cm')
the line was relatively narrow (20 Oe in L1007 direction)
and could be observed even in the L1107 direction. How-
ever, the line was found to shift rapidly with angle, the

g in the! 1107 direction being 1.9. It is possible that a
built-in strain existed in this sample causing most of the
donor electrons to occupy a single valley. Because of the
small singlet-triplet splitting, the strain need not be
very large.

Several other considerations made the observation of
the resonance in Sb-doped germanium difficult. The
relaxation times are expected to be much shorter than
for arsenic or phosphorus donors (see Sec. VI). The
wave functions are not as compressed so that impurity
hopping sets in at lower concentrations. In addition,
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this resonance. We have examined similar samples
but fail to observe the resonances seen by Pontinnen and
Sanders. The impurity range covered in Pontinnen and
Sanders' samples are in the impurity hopping region so
that motionally narrowed lines would be expected in
these samples. The narrow lines with short relaxation
times observed agree with this conclusion.
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there should be an appreciable lifetime broadening of the
triplet states which may be admixed into the ground
state to a certain degree by static lattice strains.

Pontinnen and Sanders" have observed a spin reso-
nance in antimony-doped germanium having impurity
concentrations )10"/cm' consisting of four lines hav-

ing principal g values very near those we have re-
ported. The lines are narrower than those observed
for the localized electrons on the other donors, have a
much faster relaxation rate, and exhibit a weaker tem-
perature dependence. Their intensities indicate that
only 1/40th of the donor electrons are contributing to

FIG. 5. Ratio of hyper6ne splitting with strain to the unstrained
value as a function of valley strain "„s/E&ofor uniaxial compres-
sion along the L1107 direction. The solid curve represents the fit
for Eq. (15) assuming E»/"„=2.20&&10 4 eV.

VI. EXPERIMENTAL RESULTS ON
STRESSED SAMPLES

A. HyjperQne Splitting

The change of the hyperfine splitting under strain
discussed in Sec. IIIB, was determined in arsenic-doped
germanium for a uniaxial stress in the $110$ direction,
and the magnetic field along a $100$ direction. The
results are shown in Fig. 5. These data and similar
results on phosphorus- and bismuth-doped germanium
have been Gtted to the calculated result [Eq. (15)]
using the values of Eis/

„

listed in Table III. These

Donor

Phosphorus
Arsenic
Bismuth
Antimony
Theory

Optical
ionization

energya
(eV) E&o/-„X10'

0.0125
0.0145
0.0123
0.0098

1.53
2.20
1.47

E,o (eV)

0.0029
0.0042
0.0028
0.00057b

Eo (eV)

0.0096
0.0103
0.0095
0.0093
0.0092

TAnr. K III. Measured values of the ratio E,B/ „

from L1107
uniaxial stress for various donors in germanium. Values for the
singlet-triplet splitting (E~o) are obtained assuming „=19eV.

3.0
a See Ref. 44.
b See Ref. 12.

results are in good agreement with those of Fritzsche"
and of Weinreich. '~ Here, as in silicon, there is strong
evidence that the change in hyperfine splitting with
strain is almost entirely due to the valley repopulating;
this is confirmed by the work of Fritzsche. '4 To check
this, we have plotted in Fig. 6 the "valley strain" in
various samples against the elastic strain where the
"valley strain" is estimated from the change in hyper-
6ne splitting. The linear dependence indicates the
validity of the assumption made above. The largest
strains used here approach 10 ' and result in the de-
pressed valleys being occupied 90%%uq of the time. It is

quite possible to achieve saturation of the effect at
strains approaching 10—'.

The value of „which has been determined experi-
mentally by several workers4' " is 19~1 eV at 1.2'K.
Using this value and the ratios Ers/ „weobtain values
for the singlet-triplet splitting. Subtracting this from

e 25.
LI

2.0
x

'l.5

1.0
~C

0.5X&O 30.4o W 0& 0.3
STRAIN +

FIG 6. Valley strain determined by means of Eq (15) versus
last st T'/«Io

T=1.2'K, v=9 kmc, II parallel to t 1007. The lines drawn give
the values of &o/

„

listed in Table III.

4'R. Pontinnen and T. Sanders Jr., Phys. Rev. Letters 5, 311
(1961).

4' H. Fritzsche, Phys. Rev. 115, 336 (1959).
4' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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the observed optical ionization energies44 we can calcu-
late the position of the triplet (Es). The corresponding
levels are shown in Fig. 7. We have also included the
value for antimony as determined by I"ritzsche. "The
triplet levels lie very close to that predicted by effective-
mass theory (0.0092 eV).

The result that phosphorus and bismuth have the
same singlet-triplet splitting is somewhat surprising.
That is, we might have expected their respective central
cell corrections to be rather different in view of the order
of magnitude difference in their ~f&s& ~'.

Under large stresses, the tetrahedral symmetry of the
crystal is destroyed and the hyperfine interaction is
described by a tensor. The anisotropy in the splitting is
small, however, at the level of stress employed here and
has been neglected in the calculations.

B. g Shifts Under Strain

As pointed out in Sec. IIIC, the admixing of the
triplet into the ground state not only changes the hyper-
6ne interaction but also shifts the center of the resonance
spectrum, the magnitude of the shifts depending on the
single valley anisotropy term gl I

—
g&. The g shifts under

CONDUCTION BAND

Z0
KI-
U 8—
LLI

z

&10—
z
LLI

12—

14—

'(I) (3)
~ (3) (3)

'(1)

'(1) ' '(1)

a ~ (1)

ARSENIC PHOSPHORUS BISMUTH ANTIMONY THEORY

TABLE IV. Values for single-valley g's in arsenic- and
phosphorus-doped germanium as compared with the theory ofI. Roth. These values were obtained from g shifts of respective
spectra under L1107 uniaxial compression.

Pro. 7. Energy level scheme for donor electrons in phosphorus-,
arsenic-, bismuth-, and antimony-doped germanium (assuming
L"„=19 eV) as compared with the effective-mass theoretical value.

Donor

Arsenic
Phosphorus
Theory

gO gll —
gX 2 —gll

1.570 —1.05&0.06 1.13%0.04
1.563 —1.10+0.07 1.17+0.05
1.70 —1.09 1.02

0.08+0.02
0.07+0.02—0.07

a See Ref. 10.

o4 H. Y. Fan and P. Fisher, Phys. Chem. Solids 8, 270 (1962).

varying strains were determined as a function of angle 0
between the L100] axis and the magnetic 6eld where the
stress was applied in a perpendicular L110j direction.
Our measurements were restricted to rather small
strains and small angles under which case the g shift
varies as cos'0. The results are shown for an As-Ge
sample in Fig. 8. The observed anisotropies have been
fitted to Eq. (19) for both As-Ge and P-Ge and yield the
values of go, g», and g& listed in Table IV.

Listed also are the theoretical values of loth. "The
agreement in the case of gll is rather good, but the value
of g& deviates from two in the wrong direction. The
failure to ht experiment has been examined in more
detail by Liu" who found the two-band approximation
inadequate for silicon. In the case of germanium, he
finds it should be essentially correct but finds no reason
for the discrepancy between theory and experiment.
The small shift of the g& from two does suggest, as was
the case for silicon, that contributions to the g shift from
bands other than the valence band may also be
important.

In the case of silicon, the application of uniaxial stress
along the L1111axis produced a g shift by altering the
single-valley anisotropy. A similar effect in germanium
would lead to a g shift for uniaxial stress in the $100j
direction. The presence of such an effect would yield
wrong experimental values for g„and g, for a L1101
uniaxial compression. As a check. , we looked for a g shift
in As-Ge with uniaxial stress applied in the $100] direc-
tion. No shift was observed within the accuracy of our
measurements. Because of the gradient in strain, this

1.65

1.64

1.63

1.62

Ge -AS [I10]
5 x10'~ As/cM~

1.61

1.60

I

T= 3.8 KG/MMo

I&9 ~~ T=1.7 KG/MM~
1+8

Msrgo =1 eros

0 Q,02 Q.04 QO6 Q08 Q,IO 0,12 CU4 Q.I6 QIS Q20 Q22 Q.24 Os26
SIN~ 8

Fro. g. g shift versus sin'0 for arsenic-germanium. (e is angle
between the L1001 axis and the magnetic field) for uniaxial com-
pression in the (100j direction perpendicular to the plane of the
magnetic 6eld. Note e shift vanishes in L100j direction.
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result is good to about 3%. Nakayama and Hasegawass
have estimated the magnitude of the one-valley g shift
in germanium to be less than this experimental
uncertainty.

C. Linewidths Under Strain

Under large stresses (x)1) in t 111$ direction, the
linewidths observed in the $100j direction have been
found to decrease as much as 10%.This is somewhat less
than expected from the valley repopulating effect (see
Sec. IIID). However, strain gradients and misalignment
of the sample will tend to reduce the degree of
narrowing.

As one moves off the L100j axis, however, the small
gradients in the strain cause the linewidths to increase.
At large strains where the shift from go approaches 0.5,
a strain gradient of 5% would result in a linewidth of
the order of 100 Oe at large angles so that the lines are
essentially wiped out. Consequently, no studies of the
line broadening off the $100] axis in strained samples
have been made. As pointed out, however, we have as a
matter of record, compared the broadening at small
angle to the shift in the center of the line in order to
estimate the magnitude of the strain gradient in the
sample.

An additional contribution of the linewidth under
strain comes from the quadrupole interaction of the Ge"
and the crystal fields. "The effect is small compared to
the others we have considered and has not been studied.

VII. SPIN-LATTICE RELAXATION TIMES

A. Relaxation Mechanisms

When the equilibrium donor electron spin distribu-
tion is perturbed as by passage through the resonance,
the disturbance decays with a characteristic relaxation
time. The most important relaxation processes at
helium temperatures in semiconductors have been
analyzed by Pines, Bardeen, and Slichter, 4' Abrahams, 4~

oth '0 and Hasegawa '3

At these temperatures the mechanisms which they
have shown to be dominant include spin exchange be-
tween the donor electrons and conduction electrons
(T,), which can be minimized by using lightly doped
samples, relaxation through the modulation of the
hyper6ne interaction by lattice phonons (T,), and
relaxation through the phonon modulation of the spin-
orbit interaction (T,). In silicon the T, mechanism has
been found to be the dominant one for arsenic- and
antimony-doped samples' and one might have expected
it to be important in germanium as well for the following
reason. The magnitude of the relaxation rate 1/T, will

depend on the ratio ( „/Ers)s for the donor and host

"M. Nakayama and H. Hasegawa, J. Phys. Soc. Japan 18, 229
(t9|3).

46 D. Pines, J. Bardeen, and C. P. Slichter, Phys. Rev. 106, 489
(1957).'" E. Abrahams, Phys. Rev. 107, 491 (&957).

involved. If we compare arsenic-doped germanium and
silicon we Qnd this mechanism will cause the germanium
donor spins to relax two orders of magnitude faster than
the silicon donors. In spite of the enhanced relaxation
from this mechanism, we will see shortly that relaxation
through the third mechanism (T,) will most certainly
dominate the T, mechanism in any of the germanium
samples.

The T, mechanism has been dealt with in detail by
Roth and by Hasegawa. In particular, they have con-
sidered a single-phonon process that operates in the
following way. The time-varying strain of a lattice
vibration with frequency equal to the Larmor frequency
produces a time-varying mixture of the triplet and
singlet states. Because of the different g values of the
singlet and triplet, the electron spin sees a time-varying
effective magnetic field at the Larmor frequency which
can relax the excited spins. For this one-phonon process,
Roth and Hasegawa find that the relaxation rate takes
the following forIn:

ET 0 y, 26

where po is the density of germanium and c a suitable
average of its sound velocities. The angular factor
f(0, p) talces on the following values in germanium for

H„t100jfo,=1,H„[110)fo,=-,', H„)111)jo.=-s'.

A similar expression obtained by Roth and Hasegawa
for silicon has been found to agree closely with experi-
ment. ' Since g&&

—
g& is three orders of magnitude larger

in germanium than in silicon, one expects that the re-
laxation rate in germanium would be controlled by this
mechanism and should be roughly six orders of magni-
tude greater than in silicon, or roughly 10' sec '.

At elevated temperatures, Roth and Hasegawa sug-
gest that the relaxation should be controlled by inelastic
scattering of phonons, that is by a Raman process, the
interaction with the spins again occurring through the
spin-orbit interaction. Their analysis leads to a tempera-
ture dependence of the relaxation rate of T' and a field
dependence of II2.

Because of the great difference in relaxation rate ex-
pected between germanium and silicon arising from the
same mechanism, it was of interest to study the relaxa-
tion rate in germanium.

B. Relaxation Time Measurements

The measurements in germanium, however, are not as
straightforward as they are in silicon by virtue of the
much shorter relaxation time. The poor signal-to-noise
ratio precludes adiabatic fast-passage techniques to
obtain a dynamic measurement of the relaxation time
and one is limited, therefore, to a power saturation
measurement.
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J3= (1+s)—'I' (27)

This expression has been found to 6t the observed
data rather well over a wide range of relaxation times
and passage conditions, although for some of the condi-

'SN. Bloembergen, E. M. Purcell, and R. V. Pound, Phys.
Rev. 73, 679 (1948).

cs M. Weger, Bell System Tech. J. 34, 1013 (1960).
«A. Portis, Sarah Mellon Scaife Radiation Laboratory,

University of Pittsburgh, Pittsburgh, Pennsylvania, 1955, Tech-
nical Note No. 1 (unpublished).

sc K. Halbach, Helv. Phys. Acta 27, 259 (1954).

This type of measurement has been described in
detail by Bloembergen, Purcell, and Pound. "One meas-
ures the signal amplitude of the spectrometer as a func-
tion of the microwave magnetic Geld (2H~ sinoit) in the
cavity. As H~ is increased, the number of stimulated
transitions eventually approaches the number of absorp-
tive ones, the amplitude of the absorption signal de-
creases and the transition is said to saturate. The faster
the relaxation rate, the larger must Hj be to achieve
saturation.

The saturation behavior depends on such conditions
as the modulation frequency (&v ), the amplitude of the
modulation (H ), the rate of passage through the
resonance, etc., in so complicated a manner that only a
few of the many passage conditions have been explicitly
analyzed. ""In most of our experiments the relaxation
times and modulation frequencies were such that
co T,=1. This is an intermediate case which has not
been analyzed. However, it was pointed out by Bloem-
bergen ef u/. , in the case co T,& 1, the saturation shouM
be expressed in terms of a saturation parameter
s= &HrsT, /H, where 7 is the gyromagnetic ratio. The
modulation amplitude H appears in this expression
because the microwave power is essentially spread over
the modulated region. Experimentally, we have verified
the functional dependence of the saturation in our
samples on the ratio HP/H .

Further evidence that the case co T,=1 holds for our
samples (for modulation frequencies of 100 or 1000 cps)
is obtained from the behavior of the dispersion deriva-
tive signal as the modulation amplitude is increased.
Increasing H should reduce the saturation. As pointed
out by Halbach" in the range co T,=1, this leads to a
shift in the phase and ultimately to inversion of the
dispersion signal. This behavior is verified by the
mark. ed changes in the line shape shown in Fig. 9. As we
will point out later, this behavior can be used to detect
small differences in the degree of saturation.

For the usual power saturation measurement the
degree of saturation can be expressed as the ratio (8)
of the saturated absorption derivative signal produced
by a lock-in detector (proportional to the in-phase com-
ponent at the modulation frequency) to the signal pro-
duced with vanishingly small saturation. This ratio of
the absorption derivatives for the case where co T,&1
is given by Portis" as

C"' "

'4aC

.,C

Iqc'i

C"

F::

F&G. 9. Relative amplitude of the in-phase dispersion derivative
versus magnetic 6eld for increasing modulation amplitude
(decreasing saturation) in isotopically enriched arsenic-germa-
nium. The behavior of the dispersion signal indicates that the spin
system is not able to recover completely between successive
passages of the magnetic Beld.

tions where (oi T,& 1) a steeper dependence might have
been expected. Because of this ambiguity in the inter-
pretation of the saturation data, we have attempted to
bridge the range of experimental conditions by deter-
mining the relaxation time from the condition s= 1 when
8=0.5. Since the various passage conditions might
cause 8 to be between 0.3—0.7 when s= 1, we expect the
relaxation time estimates to be accurate within 40%.

C. Exyerimental Method

To improve the signal-to-noise ratio, most of the
measurements of relaxation times were made on the
arsenic-doped isotopically enriched sample that was
previously described. The doping level of 2&?.'10"/cms
was low enough to prohibit relaxation by impurity con-
duction mechanisms (see Sec. VIIIB). The reduced
linewidth permitted observations over a wide range of
experimental conditions and inhibited spin transfer
which might occur between the overlapping lines found
in normal samples. Finally, the increase in linewidth for
H not along the L1007 axis was small enough that it was
possible to study the anisotropic e6'ects.

Since this sample has small amounts of compensation
and unannealed radiation damage produced during
neutron irradiation, its saturation behavior was com-
pared with that of a normal isotope sample of similar
doping at 1.2'K with H along L1007. The saturation be-
havior of the two was the same within the accuracy of
the measurements.

The average saturation behavior of all four lines was
observed using 100-cps modulation of 5 Oe so as to
saturate all of the line simultaneously and eliminate spin
diffusion processes within one hyperfine line. The 100-
cps modulation was used in preference to higher modula-
tion frequencies because it was impossible at high-
modulation frequencies to prevent signal distortion from
small admixtures of the much stronger dispersion signal
at high saturation levels.
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FxG. 10. Saturation behavior of isotopically enriched arsenic-
germanium at various temperatures. The solid lines show similar
behavior for phosphorus-doped silicon (1Vs=2X10"/cm', T,~10 s

sec and iVq= 3X10",T,~10 4 sec).

where t/' is the volume of the cavity in cm' and where
the coupling was adjusted to give a reRection coe%cient
R=-', . The measured Q of the X-band cavity was 6000
and that of the E-band cavity was 2000. The B~ ob-
tained from this expression is the value at the center of
the sample. Because a sample of the full width of the
cavity was required, the microwave field varies across
the sample so that the degree of saturation is not uni-
form. We estimate the error in determining H~ from this
effect and from the Q measurement is about 30/0.
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FIG. 11. Relaxation rates estimated from saturation behavior
of isotopically enriched arsenic-germanium of Fig. 10 by assuming
(off'~ T,/ff =1)when relative amplitude of absorption derivative
falls to ~~. Below 3.6'K the rate increases linearly with 2 indicating
a single-phonon process.

The microwave 6eld in oersteds in the cavity was
obtained from the microwave power P (in watts) enter-
ing the cavity and from the measured Q, using the
expression

H'=(32 Q/ V)I1—R'jP,
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FIG. 12. Change in saturation behavior of isotopically enriched
arsenic-germanium with magnetic Geld. The increase in relaxation
rate by more than an order of magnitude also agrees with expected
magnetic Geld dependence of a single-phonon process (H4).

The saturation behavior for this sample was also meas-
ured at E band (H = 11 000 Oe) at 1.2'K and the results
are shown in Fig. 12, again as compared with a silicon
sample (3X10'T/cm') also measured at E band. The
estimated relaxation rate is 1/T, =4+2 X 10' sec ' for
H along L100$. This result is consistent with the H4

dependence for the single-phonon process.
Although the results are in good agreement with the

Roth-Hasegawa theory, they do not preclude the
possibility that some other single-phonon process may
be present. To eliminate that possibility, it was desirable
to check the angular dependence of the relaxation rate.
For the orientation of this sample it was only possible
to rotate the magnetic Geld in a (100) plane for which
the maximum change in the relaxation rate expected
was a factor of two. The saturation behavior for the
L110j and I 1001 directions are compared in Fig. 13.
The change in the relaxation rate is approximately —,

' as
predicted by the Roth-Hasegawa theory.

D. Experimental Results

The saturation behavior for the isotropically enriched
sample for temperatures from 1.2 to 4.2'K for H along
L100j is shown in Fig. 10.For comparison, we have also
shown the saturation behavior for two phosphorus-silicon
samples (H =2 Oe) whose relaxation times were esti-
mated from their impurity concentrations (3X10'T/cm',
T, 10 sec, 2X10'"/cm', T, 10 ' sec), and from re-
sults of Feher and Gere. The relaxation rates estimated
by the procedure given above for the germanium sample
are shown in Fig. 11 as a function of temperature. The
value obtained at 1.2'K, 1/T, = 1.2%0.6X 10' sec ' is in

very good agreement with that calculated by Hasegawa
(1/T. =2X10' sec '). Below 3.5'K the rate is found to
increase linearly with temperature in agreement with a
single-phonon process. Above 3.5'K the rate increases
much more rapidly similar to the effect in silicon which
has been ascribed to a.Raman-type process.
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FIG. 13. Change in saturation behavior of isotopically enriched
arsenic-germanium as magnetic Geld is rotated with respect to
crystal axes. The decrease in the relaxation rate as B moves from
t 100$ to L110$ is approximately —,

' in agreement with Roth-
Hasegawa theory.

In view of the small changes in saturation, a more
sensitive test for changes in the relaxation rate based on
a method suggested by Hyde" also was used. The micro-
wave Geld was held constant and the saturation condi-
tion changed by changing the modulation amplitude.
The degree of saturation was measured by the changes
in the line shape of the dispersion derivative (as in
Fig. 9). The modulation amplitude was then set to
produce a line shape as in Fig. 9(c). We found this
method quite sensitive to small changes in the relaxation
rate.

The relative modulation amplitude as a function of
the angle between H and the L100j axis is shown in
Fig. 14. The agreement is quite good with the expected
dependence of the Roth-Hasegawa theory. Since the
modulation amplitude which yielded the line shape in
Fig. 9(c) was always greater than the linewidth (see
Fig. 8), the changes in linewidth with angle should have
no effect.

1s5

E.x

x

(ROTH - HASKQAWh
THeoaV)

0
0 10 20 30 ' 40

ANGLE BETWEEN H AND DOOj IN DEGREES

I"rG. 14. Modulation Geld H which produces an in-phase dis-
persion derivative signal shape as in Fig. 9(c) as a function of
angle between ff and the L100j axis. The solid line is the relative
amplitude expected by Roth-Hasegawa theory assuming that the
saturation parameter s= (yH&'T, /ff ).

At large stresses, the decrease in saturation power is
in good agreement with the expected increase in the
relaxation time by an order of magnitude. "

The sum of evidence then strongly supports the Roth-
Hasegawa mechanism for spin-lattice relaxation at
liquid helium temperatures in germanium as well as in
silicon. In view of the fact that the relaxation times of
these two materials span six orders of magnitude, the
theoretical Gt is rather remarkable.

At large (111jstresses which populate a single valley,
it should be possible to reduce the relaxation rate ap-
preciably. As we have pointed out, one should also
obtain a narrower line under such conditions as well as
eliminate the effects of random lattice strains. Under
such circumstances it may be possible to study many
other effects in germanium that are presently not pos-

A further test of the Roth-Hasegawa theory can be
made by measuring the change in saturation behavior
for a sample under uniaxial stress. Such stress not only
favorably populates certain of the valleys but also moves
the nearest levels further away in energy. This can be
seen in Fig. 1. Since the relaxation rate depends
quadratically on this energy separation, it should be
possible to appreciably reduce the relaxation rate by
applying large stresses to the sample. The largest e6ects
should be expected for a stress in the $111jdirection in
phosphorus-doped germanium. Because of the distortion
of the line shape under the large stresses involved, it is
difficult to interpret the results directly in terms of
relaxation times. The change in the saturation behavior
for such a stressed sample for H in the L100j direction
at II=4000 Oe and at 1.2'K are shown in Fig. 15 with
modulation of 10 Oe.

I J. Hyde, Phys. Rev. 119, 1483 (1960).
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53 This calculation is given in detail by Nakayama and Hasegawa
(Ref. 45). These authors also have considered other effects of
strain on spin resonance of donors in silicon and germanium.

FIG. 15. Change in saturation behavior of phosphorus donors in
germanium due to uniaxial stress in the L111jdirection. Magnetic
field along L100$. The decrease in relaxation rate is roughly that
expected from increased splitting of singlet and triplet states.
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sible because of the rapid relaxation, the linewidth, or
the eGects of random strains.

VIII. NONLOCALIZED ELECTRONS

A. EQ'ect of Hoyying on Resonance Syectrum

As the concentration of donors is increased, the donor
wave functions begin to overlap. If compensating
impurities are present so that some electrons are re-
moved from the donor sites, there will be a Qnite proba-
bility that an electron on one donor may hop to a nearby
unoccupied donor. The electrons can no longer be con-
sidered localized on a given donor site. This process is
characterized by some average hopping frequency. The
hopping rate (u) for lightly doped material has been
calculated by Miller and Abrahams'4 and their result
for an isotropic wave function is

1000
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tl)

u . 100l-
lQ

50
X

I
20

10—
pHos —Ge

/ q' =„q'1 R,q''

(hf 3E:J p,c' a*I

2R,q
&&exp — ~A coth +1 ~, (29)

a" ) 2ZT

where 6 is the activation energy for hopping and E, is
the average distance between donors (E,=0.62K~").

At low hopping rates the spin-resonance spectrum will

be unaffected, but as the concentration is increased so
that the hopping rate begins to approach a frequency
corresponding to the donor hyperfine splitting, this
splitting tends to be averaged out and a large line ap-
pears roughly at the center of the hyperfine spectrum.
Further increases in concentration cause this line to
decrease in width and increase in amplitude until it is
the only line observed.

At 1.2'K the broad background line which indicates
the onset of hopping sets in at concentrations of about
10"/cm' in phosphorus-doped germanium and about
5&(10"/cm' in arsenic-doped germanium. These values
compare well with estimates for the onset of impurity
conduction. "The difference between phosphorus and
arsenic-doped samples can be attributed to differences
in the spread of the donor wave functions.

The effect of the motional narrowing on the hyperQne
split lines has been analyzed by Weiss and Anderson"
and they Gnd for the linewidth of the narrowed line

AH= gpDHh(, s/p, (30)

where AHhf, is the magnitude of the hyperdne splitting
and v is the average hopping frequency. Combining this
result with that of Abraham and Miller, we expect the
linewidth to increase exponentially with the average dis-
tance between donors at a rate determined by the
spread of the wave function (a). (Note that the overlap
of the wave functions depends on the lateral spread of

~4 P. W. Anderson and P. R. VVeiss, Rev. Mod. Phys. 25, 269
(1953).
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Fxo. 16. Linewidth of motionally narrowed line for nonlocalized
donor electrons for arsenic and phosphorus-doped gemanium as
a function of the "average" donor separation (R,) rde6ned by
R,=0.6237' 'I3 where Ed is the donor concentration. The slopes of
the lines give average wave function spreads Pao"=rto*) of i00 a
for As-Ge and 2603, for P-Ge.

the pancake-like wave functions c rather than on the
average spread as*=I(a'b)"'.j

B. Exyerimental Results

/. Line7cidth in $100j Directiors

In Fig. 16 we show the dependence of the motionally
narrowed linewidth on the average donor separation for
arsenic and phosphorus donors at 1.2 and 4.2'K. The
slope of the arsenic line corresponds to a donor wave
function spread of 100 A as compared with the effective-
mass estimate of 60 A; the phosphorus slope, on the
other hand, gives donor wave function spread of 260 A

as compared with the effective-mass estimate of 70 A.
In view of the fact that the linewidths in the L100$

compared rather mell with the effective-mass estimates
for the average speed of the wave function, we believe
the above results are due to closer spacing of the donors
than a purely random arrangement allows. This could,
of course, be the result of clustering of the donors about
dislocations as we have already suggested. Our results
here, furthermore, indicate that the effect is much more
pronounced in the case of phosphorus donors than for
arsenic donors.

The activation energies (6) which appear in the
Miller and Abrahams expression can be found from the
change in linewidth with temperature. From the results
shown in Fig. 15 we estimate the activation energies to
be 0.00035 eV for arsenic donors and 0.00055 eV for
phosphorus donors.

The g values for the motionally narrowed lines at
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donor concentrations up to 10"/cm' do not shift
measurably from their respective localized donor values.
Were the electrons free most of the time we would have
expected the same g value for all donors. We conclude
then that the electrons still spend most of the time
localized at donor sites at concentrations up to 10"/cm'.

As the donor concentration is increased, the onset of
hopping will also increase the rate with which the
donor-electron spins relax through spin exchange with
the nonlocalized electrons. In arsenic-doped germanium
with 10'"/cm', the relaxation rate at 1.2'K increased to
10' sec ' or roughly two orders of magnitude over the
nonlocalized value.

Z. Lirtewidkh og [100)

Since the strain gradients that give rise to the
broadening of the hyperfine lines as the magnetic 6eld is
rotated away from the [100jdirection exist over regions
that are large compared to the hopping distances, the
line broadening due to strains will not be averaged out
by motional narrowing. However, because the hyperfine
structure is wiped out, the smear of close-spaced broad
lines of the localized electron case is replaced by a single
broad line at the center of the spectrum. Figure 17
shows this motionally narrowed line for H in the [100)
and [110$ directions. The line shape in the [100) is
Lorentzian as expected for a motionally narrowed line.
However, it is more nearly Gaussian in the [110j, a
result that can be 6tted by assuming a Gaussian dis-
tribution of strains in the sample. The linewidth in this
case can again be calculated from the expression [Eq.
(22)j except that the motionally narrowed width in the
[100] replaces that due to the Ger' hyperfine inter-
actions. The linewidths observed off the [100j are
again strongly correlated with edge dislocation densities
of the samples. For example, the linewidths in Fig. 17 are
for a sample of 2&&10' edge-dislocations/cm'. The line-
width for a sample of the same impurity concentration
but having only 10 edge-dislocations/cm' had a line-
width half as large in the [1117direction. This result
and the fact that the linewidths are greater than antici-
pated indicates that the clustering of donors near dis-
locations which was discussed in Sec. VD is still evident
at donor concentrations up to 10'r/cms.

C. Effect of Strain

The linewidth of the motionally narrowed line in the
[100j direction is very sensitive to uniaxial strain since
it is thereby possible to change the w'ave function over-
lap and hence, the hopping rate. For example, it was
found possible to reduce the linewidth in 5&&10ts/cm'
phosphorus-doped germanium by a factor of four with
a uniaxial stress of 6 kg/mms along [111$.This effect as
pointed out by Fritzsche" agrees with the observed

s' H. Fritzsche, Phys. Rev. 125, 1552 (1962).

I"

?,

FIG. 17. Spin resonance spectrum for arsenic donors in germa-
nium, 1Vq=6X10's/cm~ showing the motionally narrowed line
shapes for magnetic Geld along [100) and L111) directions.
T= 1.2'K, H 4000 Oe. The line shape in $100) direction is very
nearly Lorentzian while that in the $111)direction is more nearly
Gaussian. This sample had a dislocation density =2X10' e/cm'.

changes in impurity conduction under [111juniaxial
compression. Since the variation in hopping frequency
should be calculable from the observed linewidths, this
method may be of some value in studying the impurity
conduction mechanism at low concentrations.
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Using Herring s notation for the deformation potential

E =[ she+ „E,& 'E;& &]us, (A2)

where
„

is the deformation potential for shear and ™q
for dilation, K&o is unit vector to the ith valley. We Gnd,
then, for the energy shifts with respect to the energy
center of gravity, E, , ,

E" E,.s.= „T/6c44, —
E '4 Ea = —Z T/6C44. — (A3)

APPENDIX A: VALLEY POPULATIONS UNDER STRAIN

l. [110]Compression

The strain components for a uniaxial stress T applied
to the [110$ axis are given by
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The unstrained valley-orbit matrix is given by and the valley-orbit term becomes

0
—BVO

0
0

0

(A4)

-4/3x
s[ui] 1

C

1

1 1 1
4/9x 1 1

(A 14)
1 4/9x 1
1 1 4/9x

Substituting into this Harniltonian term, the effect of a
Li 10) stress gives the strained valley-orbit term E/6, = —4x/3+3ao/a&= 4x/9 —2+a&/ao. (A15)

x=Z T/4kc44.

1
g3

1
1

1
1

+ox
1

1
1

7

+-,'x

(A5)

The solutions for the valley populations are then

a)o= 4(2—Li—8x/9)
y(1+4x/9+ (4x/9)o]-»o)

aoo= (1/12)(2+t 1-8x/9) (A16)

&& $1+4x/9+ (4x/9)']»o) .
Generalizing the valley populations fEqs. (A3,4)] for
a L110] stress, we solve the Hamiltonian for a wave
function with valley populations t a&a(a&ao) and Gnd

E/~. = D —;x)+2a,/a, = ii+-o'x]+2a, /a, . (A6)

For the ratio of hyperhne splitting under strain to
unstrained value we get

[P(o) i,'/i0(o) I
=4(1+ii+2x/9]

XLi+4x/9+ (4x/9)') "') (A12)

Using the normalization condition

P a'=1, (A7)

The position of the singlet and admixed triplet states
are given by

E'f/6, = —1—4x/9&2L1+4x/9+ (4x/9)']'i' (A18)
we And

a)'= 4l:1—(*/3) (1+x'/9) '"),
ao'= 4P+ (x/3) (1+x /9)-1). (A8)

The other triplet levels with valley populations
(0, a, a, 0) —and (0, a, a, —2a) are degenerate and
have energy given by

This gives for the energy shifts under a L110) uniaxial
compression

Eo "/h. = 1—4x/9. (A19)

APPENDIX 8: (g SHIFT UNDER STRAIN)

1. t 110]Uniaxial Stress

For an electron in a single jth valley write with

(Aip) respect to valley axis

E"/A = —ia2(1+x'/9)»'

for the ground state and one of the triplet states and

E' "/A, = 1&-'x
g~ 0 0

g(o= 0 g p
0 0 g„

g11 g12 g13

g g21 g22 g28

g31 g32 g33lf&o) I.'
CL

'

[P&o) I ' where for H along (111)we get g, =g„and for P along
(110)we get g&') =g,. Solving, we find=-'L'+ ('+*'/9) "'] (A11)

for the triplet states described by valley populations
(0, 0, a, —a). These are the results plotted in Fig. 1.

For the ratio of hyperine splitting in strained to in $100)frame write
unstrained sample, we obtain

Z. (Zll) Compression

1
1

, (T/3)

1
1

and the shifts from E,., are

E Eo,g. ZoT/3C44
&

E' " E=—g T/9c44—

(A12)

(A13)

go
g(~') =

.Ag

Ao ~o ~o —
o (gii —g.)

go A, go= (g„+2gg);
hg go.

averaging over the four valleys, without strain

g= LZ(a )'(g"'))=go=-'g +og'
For g with t 110]uniaxial compression, write

1 0 0 0 1 1i

g =go 0 1 0 +ho 1 0 1

,0 0 1, .1 1 0
=go]+t) JJ(i) ~

(83)
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then

S g H= S [2(nP+n22)gol+a, Q n, 2U&») H

0 1 0
= S gol+d p(4nP —1) 1 0 0 H. (86).0 0 0. .

3. To Calculate Line Broadening Due to g Shift

Assume only the average Gaussian component hs of
strain along the (111)axis is important, as these give
largest effect for small angles to the L100) direction and
small hs.

g'=go'+2&p"gp(v2 sin28) . (819)
If we take as PrinciPal axes (110)(110)and (001) then Solv;ng for g and expanding we get

3 3 (1+x'/9) "' sin'g. (811)

2. t 111)Uniaxial Stress

Starting from the expression (86) if we take the
valley in the direction of the stress as U', we have

go+6 p' 0 0
SgH=S 0 g,—~,' 0 H, (87)

0 0 gp.

6 '=6 (4nP 1). — (88)

If one looks in the L001)—$110) plane, then

g'= go'L1+ {(~'/go)' —2(~.'/go) }»n'8) (89)

Solving for g and expanding

g/go= 1—sin28(hp'/go)+ (Ap'/go)2(2 2sin'8 —
22sino8)

+terms in (6,'/gp)'. (810)

For small values of strain (x(1) we get upon sub-
stituting for ng'.

Bg= g
—

gp—%26& /gp sin28. (820)

2%2 g[[ gJ
AII*= B As sin20.

27 gp Ega

APPENDIX C: LINEWIDTH FROM Ge"
INTERACTIONS

(822)

Kohn has derived the expression for the linewidth of
the localized donor line as

Substituting in the expression for 6,", the valley popu-
lations n~, n2 for a $111)compression, we have

~,"= (nP —n2') ~,= (~,/3) {1—LI—gx/9)
)& L1+4x/9+ (4x/9)')'"} (821)

for small compressive strains
~

x~((i. This reduces to

~,"=—(2*/9)~, .
Since the spread in H values hH* is given by

aH*= (8g/g, H),
we have

and the term

0 1 1
U'=1 0.1 1 0.

(812)

32% pop
(222/) ~12t Q 22~ )f(r~) (

4)~~2 (C1)
~g Io.

For the singlet ground state
4

P n, U&»= (nP n22)U', — (813) 4(. )
= l 2 e'"""&(«)F'(«). (C2)

gp

Sg H=S
g II

g II g II ,

gp 6," H,
II

Dg gp.
(814)

We will assume an isotropic form for the F(r):

F(r)= e "~ "
(~a 82)1/2

(C3)

ap*——(F.,e „,/E, b,)'"ao= n (aors) "2.

Expanding the sum above,

d,"=( '— ')6, . (815) where

Taking as principal axes (111), (110), and (112), this
matrix reduces to

(C4)

go+2~2"
0
0

$.

where q is the angle between H and (111),or

g2 —
g 2+ 2+ ~12

+(2h "go+6 '")(sin28+2v2 sin8 cos8) (818)

for 8 with respect to $100) axis in that plane.

0 0
gp

—hp" 0 H. (816)
0 gll

If H moves in the plane formed by (112) and (111)axes

g'= (go+26,")'cos'y+ (gp
—6,") sin'(p, (817)

Z «l4(r2) I'

where

p 22~e '""'")p e'"'")' (C5)
j=1

~ P e'2~'"
~

= (256) for the simple cubic lattice positions,
i.e., L400), L440), L444), etc. ,

=0 for the face-centered position such as
L220), t 422), etc. ,

= (16) for all atoms on the displaced face-
centered lattice, i.e., $111),L311), L333).
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h.= (~/ a) pO, O,Oj, (~/a, )L4,0,0$, (~/a, )L4,4,0),
(c6) 28 24 12

(m/ai)L2, 2,0j, (pr/ai)l 4,2,2$.
144 48

4x
~2~—4rtaP dy
82

g /2 o 4r//apa—

2

pr ao~)2

g a/i
' (C7)

In terms of these reciprocal lattice vectors, Kohn writes
for the sum $(~,.~ using the Poisson sum rule,

To correct for the neglect of all the displaced face-
centered lattice atoms we note there are four times as
many atoms that contribute in that lattice, so that we
correct the above sum to account for these times.

g /2 P(Ka Ar+ 1j
22r(ao*ai)'

As a first approximation to the sum in (C5), one can Although P n =44=256, only five essentially different
simply integrate over the simple cubic lattice points, in h appear. These are
which case

4. 16' up*~2

Z -"""=-I 1+
S( 256 ) a, )

substituting this gives us finally

36 pGg 1
(2)2 2) 1/2f 1/2~

3g ~o. (ao*«)"'

Kohn has also given an expression for the sum

(CS)

(C9)

a 4)2- —2

x 1+IK.—h.
l

~

I
. (c13)4)

In this sum, essentially, only those terms contribute
for which K„=h,since (K„ao*/4)((1as the wave
function spreads over many lattice spaces. Among the
h, only the terms or/aiLoooj, pr/a)L440j, pr/a/I 400j ap-
pear in the body-centered reciprocal lattice and the last
term does not contribute to the sum, i.e., so

S(;)=2 «~'(.1) I 2 ~'"""I' (C10) S= (80).
22r(ao*ai)'

(C14)

where

and

m r2 each~ r2

f(«)=~'(«)

8(h r1
I g &(k/ ~ r/I 4

(C11)
Using this result, we Gnd for hH

36 poe
(2)2 2) 1/2f1/2

3g lo (ao ai)
(C12)

i.e., the same result as obtained previously (C9).

(C15)








