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Cascade Capture of Electrons by Ionized Impurities
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An improved theory of cascade capture by ionized impurities in semiconductors has been developed which
retains the basic features of Lax's "giant trap" theory, but which uses a distribution function rather than a
trajectory description. Assuming infrequent acoustic-phonon transitions, the classical Boltzmann equation
describing the capture process near a single ionized impurity is converted into an integral equation for the
distribution function in terms of total energy alone. This equation, which treats transitions between free
and bound states identically to transitions between two bound states, is then transformed into a closely re-
lated integral equation for the "sticking probability. "Numerical solution of the latter yields cross sections
which are substantially larger than those previously found and which are in good agreement with recent
experimental values for the shallow donors in Ge.

1. INTRODUCTION

~ 'HE large capture cross sections associated with
ionized impurities in semiconductors have been

accounted for by Lax' in terms of a cascade capture
process. In this model the electron is assumed to be
captured initially in an excited state of the impurity by
the emission of a phonon, after which it emits and
absorbs phonons until it either reaches the ground state
or is ejected into the conduction band. In Lax's analysis
the cascade process was described completely classically
on the hypothesis that only the highly excited states
were important. Subsequently, Ascarelli and Rodriguez'
performed a calculation of the cascade capture for the
shallow donors in germanium in which the opposite
point of view was taken that only the hydrogenic s
states with principal quantum number e from 1 to 4
constributed significantly. Their reasoning was based
on the fact that for low values of e the capture cross
section falls off considerably for states of higher angular
momentum, but since this is no longer true for high
values of e, where the multiplicity also becomes large,
the a pnort', discard of these higher states would seem to
be invalid. In this paper we return to Lax's point of view
that it is the higher states which are more important and
ca1culate (for weak acoustic-phonon interaction) the
steady-state recombinatioo rate on the basis of classical
mechanics, assuming as in previous treatments spherical,
parabolic bands. However, by using a distribution func-
tion approach rather than a trajectory description, we
avoid an additional approximation that Lax introduced,
which was based on the virial theorem. In this way we
obtain cross sections which are substantially larger than
those found either by Lax or by Ascarelli and Rodriguez
and which are in good agreement with experimental
values for the shallow donors in germanium. '

2. THE DISTRIBUTION FUNCTION METHOD

The capture process will be described statistically by
the classical Holtzmann equation for an electron inter-
acting with an equilibrium acoustic-phonon Geld in the
presence of a Coulomb potential. The electron density
will be assumed suSciently small that the probability
of more than one electron being in the vicinity of
the ionized impurity is negligible. For simplicity, the
recombination will be treated as a steady-state process.
The analysis thus strictly applies only to a situation in
which there is some generation mechanism, such as light,
which prevents electrons from accumulating in the
ground state. Actually the capture cross sections ob-
tained will be applicable to transient problems if the
capture rate is fast compared to the rate at which the
carrier concentration in the conduction band changes.
The previous treatments' ' are subject to this same re-
striction, as has been discussed by Lax.'

Also, as in the previous treatments, we shall assume
that the mean free path for acoustic-phonon interaction
is large compared to the greatest bound-state radius of
interest, which is valid for Ge and Si at low tempera-
tures. Under these conditions the distribution function
is essentially an equilibrium one (that is, a constant)
on each surface of fixed total energy. In fact we shall
see that the approximation of treating the electron dis-
tribution as a function only of total energy yields a
transition rate correct to order (ro/l)' for a bound state
of radius ro, where / is the acoustic-phonon mean free
path. In order to show this we expand the distribution
function f(r,v) in spherical harmonics in velocity space
and keep only the erst two terms:

f(r,v) = fo(r, v)+fr(r, v) v/v+

where we have written the coefficient of the first har-
monic as 3, vector function of position and scalar veloc-
ity, the direction of the vector indicating the axis chosen
for expansion at each r. These functions obey the
equations4
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The explicit expressions for the collision terms are'
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8& is the deformation potential, p is the density of the
crystal, and s is the speed of sound, assumed isotropic.
The lower integrals in (6) and (7) are to be interpreted
as zero if v(r u)(s. We have assumed, along with Lax,
that the probability per unit time that a collision will
take place can be computed at each point by treating
the electron as if it were a plane wave with the energy
and momentum appropriate to that point. The quantity
/ is just the "classical" mean free path for acoustic
phonons since (c)ft/Bt)«)i reduces to —(fiv/l) when
kT))mes and v))s.

For negative values of u we may integrate (4) over
the volume bounded by the surface of classical turning
points, on which v(r, u) =0, and obtain

where P(r) is the potential energy of the electron in the
presence of the ionized impurity. Changing the inde-
pendent variables from r and e to r and the total energy
u=-,'mv'+p(r), we have

/8 fp(r, u)
-', ')7 [v'(r, u) f,(r,u)] = v(r, u)!

at

of electrons with energy I is zero, and hence is a direct
consequence of the original steady-state assumption.
However, if fp were independent of r, then (8) would be-
come an integral equation for fp(u), which together with
the appropriate boundary conditions would actually be
sufFicient to determine the capture rate. Io order to show
that fp is in fact independent of r to a good approxima-
tion, we return to Eqs. (4) through (7).Introducing ex-
plicitly the Coulomb potential energy P(r)= —e'/»r,
we transform for negative I to the normalized coordi-
nates q= r/rp(u), where rp(u) = —e'/»u. Since in the new
coordinates v(r, u) = [(2u/m) (1—1/q)]'~', the scale fac-
tor 1/rp(u) appears only on the left-hand sides of (4)
and (5) through the spatial derivatives, while the factor
1/l appears only on the right-hand sides through the
collision expressions (6) and (7). Hence, if we assume an
isotropic distribution of incident electrons, it is clear
from (4) that to lowest order fi is proportional to (rp/l)
and from (5) that Vpf p to lo'west order is proportional to
(rp/l)'. Thus for rp«l the term dropped in (8) by assum-
ing fp to be a function only of u is proportional to (rp/l)'.
The size of the proportionality factor could, in principle,
be determined by inserting the approximate solution of
(8) into (6) and using (4), (5), and (7) to obtain the cor-
rection term to fp Howeve. r, since this would be quite
tedious and involve numerical calculation, a rough
approximation to this procedure has been carried out in
Appendix A. There it is found that the proportionality
factor is of the order of unity, and hence, as previously
stated, the approximation of taking fp to be independent
of r is correct to order (rp/l)'. The discussion in Appendix
A also shows that for u) 0 we can take fp to be inde-
pendent of r to the same degree of approximation with
ro now being the largest radius at which appreciable
capture occurs, at most the interimpurity spacing.

Returning then to (8) with fp a function of u only,
we note that the integrand is independent of q, but that
the limits of the Ace integration depend on the magni-
tude of q through v(q, u). These limits arose from the
restrictions imposed by energy and crystal momentum
conservation on the amount of energy that an electron
with a given initial speed may exchange. The order of
integration in (8) may be interchanged if these limits
are replaced by a restriction on the region of space in
which a transition involving given initial and Anal

energies may occur. If we carry out such an interchange
and perform the q integration, we find that (8) becomes

du'[fp(u')E(u', u) —fp(u)E(u, u')]=0, (9)

4m2s2tkX
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Equation (8) is just a statement that the rate of increase
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In obtaining (10) we have multiplied (8) by (47r/m) in
order to make fo(u)E(u, u')dudu' correspond to the total
probability of transition from energy shell (u, u+du)
to (u', u'+du'). It should be remembered that fo is still
a density in (r,v) space.

Equation (9) holds only for u(0. For u)0 we may
specify fo(u) arbitrarily since the approximation of
neglecting the r dependence of fo means that the posi-
tive energy distribution is just that of the incident elec-
tron. In particular, if the conduction electrons are in
thermal equilibrium at temperature T„ then

fo(u) = (m/27rkT )' exp( —u/kT, ) .

3. STICKING-PROBABILITY FORMULATION
OF THE CAPTURE RATE

Since E(u,u') in (10) gives the transition, rate from
energy N to N', the easiest way to calculate the capture
rate would be to shift immediately to Lax's "sticking-
probability" formulation, ' the sticking probability at
energy m&0 being dehned as the probability that an
electron of that energy will reach the ground state before
escaping into the conduction band. However, we will

follow the longer route of setting up the calculation for
the capture rate in terms of the integral equation (9)
and then transforming to the sticking-probability forrnu-
lation. This is done partly for the sake of completing the
approach already begun, but mainly to show the rela-
tion between (9) and Lax's integral equation for the
sticking probability.

In the physical problem the capture rate is the rate
at which electrons en.ter the ground state. (As previ-
ously discussed, it is assumed in the steady-state analy-
sis that there is some generation mechanism to prevent
accumulation of the electrons. ) Since the validity of the
entire classical-mechanics treatment depends on the
fate of the electron being determined before it reaches
the ground state, the exact way of mathematically
simulating the ground-state sink. is not important, as
long as it depends only on large negative energies. We
will place an absorbing barrier at some 6nite energy
No, which will later be allowed to approach negative
in6nity. The capture rate 8& will then be given by the
rate at which electrons cross this barrier:

negative, the rate of direct transitions from the incident
distribution to below the barrier will be negligible.

The presence of this barrier must also be rejected in
the integral equation for fo, so (9) will be modified to

fo(u) E(u,u')8u'= E(u')u) fp(u')Ju'

E(u', u)fo(u')du', (13)

where the N' integration on the right-hand side has been
divided into two ranges to separate the term

s(u) = E(u', u) fo(u')du', (14)

which represents the Aux from the incident distribution
to the bound states at energy u. If we introduce the
normalized kernel

and Aux

E(u', u) =E(u', u) E (u,u")du" (15)

s(u) =s(u) E(u,u")du",

then (13) may be written in the standard form of an
inhomogeneous Fredholm equation of the second kind:

fo(u) = 8 (u', u)fp(u')du'+s(u) .
QP

(17)

We now have a complete formulation of the problem,
but one which is cumbersome to deal with since for
every incident distribution it is necessary to solve (17)
and then substitute into (11) to find Br. In order to
transform to the more convenient sticking-probability
formulation, let us introduce an abstract vector space
whose vectors will represent functions in the interval
uo&u&0. Then (17) may be written as

I fo) =El fo)+ I s&

Substituting the formal solution

where

du du'E (u', u)fo(u')
QQ

du'c(u') fo(u'),

lf &=(1—E) 'ls&

into (11), we find for the capture rate

2lr=(clio&=(cl (1—E) 'Is&

—= (pls&

(19)

(20)

c(u') = E(u', u) du. (12)

The upper limit of the u' integration in (11) has been
chosen as 0 rather than +~ because for uo sufliciently

Knowledge of (p l, which is de6ned by (20), would enable
us to calculate Bz directly for any incident distribution
without solving the integral equation for fo. From its
definition we see that (pl satisfies the equation

(pl(1 —E)=&cl
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FIG. 2. Normalized
capture rate as a func-
tion of free-electron en-
ergy for two values of
dimensionless tempera-
ture y =kT/-,'ms'.

take into account the existence of neighboring traps,
P(u) need not go to zero at u=0.

In Fig. 2 we have plotted for y=10 and y=50 the
normalized differential capture rate (m/4s. s'o.i)b(u) as
a function of (u/-', ms)s, using (29) and the numerical
values for P(u). Note that b(u) remains finite at u=0,
so that the cross section is in6nite at zero energy. For
germanium 0.~ has a value of about 7X10 ' cm'.

We have also computed the total capture cross sec-
tions for a thermal distribution of incident electrons
using the same parameter values for Ge employed by
Lax: m=srms, s=4&(10' cm/sec, l= .80&&1 0 cm at
300'K, and I(:=16."Our results are shown in Fig. 3, com-
pared to those ofLax's theoryand the recent experimental
data of Koenig, Brown, and Schillinger. The calculation
employed the sticking-probability results of Fig. 1, and
an analytic approximation to these curves for inter-
polation to intermediate temperatures. The upper branch
of the solid curves in Fig. 3 was computed using the
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Fxo. 3. Computed capture cross section for thermal electrons
versus temperature compared with experimental results of Koenig,
Brown, and Schillinger (Ref. 8) and theoretical results of Lax
(Ref. 1).Following Ref. 8, the cross section was obtained by divid-
ing the capture rate Br by the rms velocity (3k T/m*)'", where m*
is the density-of-states mass.

'The correct dielectric constant for Ge was used by Lax,
despite the statement to the contrary in the caption to his Fig. 1.

8 S. H. Koenig, R. D. Brown, and W. Schillinger, Phys. Rev.
128, 1668 (1962).

kernel (10) directly, and corresponds to the limit of
zero ionized-impurity density. To examine the effects
of neighboring iomzed impurities, the kernel was modi-
6ed to include a volume cutoff corresponding to a den-
sity of approximately 10"/cm'. Trial calculations of the
sticking probability with this modified kernel indicated
that a good approximation could be obtained simply
by shifting the results from the unmodified kernel along
the energy scale (to the left in Fig. 1) by an energy equal
to the Coulomb potential at the cutoff radius. When this
is done, it should be noted, the sticking probability is
no longer zero at zero-binding energy, in accordance
with previous discussion. Trapping cross sections com-
puted with the cutoff kernel and the approximate cutoff
sticking probabilities are shown as the lower branch
of the solid curve in Fig. 3. We see that the slope of this
curve seems in good agreement with experiment. The
agreement in absolute magnitude must be regarded as
somewhat fortuitous, however, since the average values
of electron mass, speed of sound, and deformation po-
tential were chosen somewhat arbitrarily. A derivation
beginning with an accurate model of the ellipsoidal
conduction-band valleys and the phonon-spectrum
branches of Ge would have to be carried out to find a
systematic method of computing the necessary param-
eters. In addition, a more rigorous treatment should in-
clude an averaging of cutoff kernels over a distribution
of interimpurity spacings, rather than the simple cutoff
correction used here.

We have not shown the theoretical results of Ascarelli
and Rodriguez' in Fig. 3 since their introduction of a
factor of 4 in their cross section to account for the 4
valleys in Ge is incorrect. They argue that the thermal-
excitation rate (and hence the capture rate of thermal
electrons) is approximately equal for excitation from a
bound state associated with a certain valley to equiva-
lent free states in either the same valley or another
valley. However, since the energy of the intervalley
phonons is comparable with the binding energy of the
donor ground state, intervalley thermal excitations from
the states important in cascade capture must proceed
at a negligible rate compared to intravalley emission.
In addition, these authors used the rather large value of
20 eV for the (effective) deformation potential, which
together with their reasonable but slightly higher choice
for the value of s makes their cross sections about six
times larger than those of Lax or ourselves for the same
physical situation, not counting the factor of 4 just
mentioned.

As a rough check of the self-consistency of our initial
assumption of the importance of the highly excited
states, we recomputed the cross sections for thermal
electrons for several temperatures, cutting off the inte-
gration over the sticking probability —the I integration
in (26)—at an energy corresponding to the 5s state. The
change produced was less than 10% in all cases. This
is to be contrasted with the substantial reduction that
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occurred in the very low-temperature cross sections
when a cutoff of the higher states was introduced to
correspond to an impurity density of 10"/cm'.

APPENDIX A: SPATIAL DEPENDENCE OF fp

The spatial dependence of fp will be estimated by a
perturbation calculation, using as an initial approxima-
tion a distribution fpo(u) which is uniform on each
surface of constant energy. Consider 6rst the case where
—(kT)'/Sms'&u( ——,'ms'. Since we are dealing with a
steady-state problem, the total rate at which electrons
enter a surface of energy I is the same as the rate at
which they leave, and from (S) is given by

fp'(u) 2m, S (@+A)

4m's'lkT 2m' (y—s)

AM IApp [

d(App)
eAe/kT

=-,'nrp' foo(u), (A1)
egal

where rp(u) = e /~u—Unfo. rtunately, we cannot deter-
mine how these entering electrons are spatially dis-
tributed over the energy surface without solving (8)
for fo'(u), and this we wish to avoid because of the
complexity involved. However, in order to obtain an
upper limit for the correction to fo, we consider an
extreme situation in which all of the electrons leave at
a single radius r~ and all enter at a single radius r2.
Then combining (4) and (5) we have

(lv' rp'[u[ 8(r—ri) 8(r—r,)
V

I
~fo' =fo'—

3mt rP

where fp' is the correction term to fp, and (Bfi/Bt)„ii
has been approximated by f&ii/t, which is—valid for
—(kT)'/Sms'&u&omso. The first integration of (A2)
yieMs

'1, ry&r&r2
X

2Pr(ro r) 0, elsewhere—
r0

0 (A3)
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Again taking an extreme situation to exaggerate the
spatial dependence of fp, we assume all of these electrons
leave at a single radius rj and an equal number enter
at r„ the latter amount representing the sum both of
electrons making direct transitions into the region
r &r, and. of electrons captured into r&r, which subse-

quently Row into the region r(r, before being re-

emitted. A calculation similar to the one above yields

t r,)'5 r, (rp —ri)
fo'& fo'I —

[

—ln-

E f ) 4 ri(r, —r.)
(A6)

and hence fo'/foo is of order (r,/l)'. Actually since

r, 10 ' cm in Ge, the cutoB due to interimpurity
spacing will generally come sooner than that due to r, .

For the free electrons we have a similar situation. Let
r be the maximum radius which is effective in the cap-
ture process, at most the interimpurity spacing. It can
easily be shown that the worst situation occurs for the
low-energy electrons with u& (Sms'e'/~r )'~', their total
capture rate being approximately

e~ 1
$prr ' fo'(u)—

ar m/
(A7)

If we again assume aB of these electrons are removed at
a single radius r& and that an equal number, representing
both re-emitted electrons and incident electrons, are
added at radius r, then

Since the positions of the source and sink enter only
logarithmically, we conclude that even in the extreme
situation being considered fo' is of order (ro/t) com-

pal'ed 'to fo .
When u( —(kT)'/Sms', the average value of t is

reduced by the factor kT/(ms'[u[)'", but fp'/fp' con-

tinues to decrease monotonically with I since r0 varies
as 1/[u[.

For the case —~~ms'& m&0 it is important to note that
we must have e&s for downward transitions to occur,
and hence that there is a maximum radius r, =2e /~ms

for which such transitions can take place. The total rate
at which electrons leave the region r &r, of energy sur-

face I, either because of upward or downward transi-

tions, is approximately

o4m r, (5s /2l) fp (u) . (AS)

and the Anal integration gives

/rp)' 1 r, (rp-r, )
fp'&fo'I —

[
»-

E l ) 2 ri(rp-r, )

rt'r )'1 r„(rp+ri)
fo'& fo'I —

[
-»

'E t l 2 ri(ro+r )
(A4)

where ro= e /~u. Hence fp'/f po is of order of (r /l)'.

(AS)


