
YH E R M AI. D I SORDES I N D I SLOCAT ION CORE

and
Uo ——(GPb'/47r) 1n(kR/p)

ciUo/Bp= —(GPb'/4rrp) .

where k is of the order of 2.5 and depends on the
geometry of the outer conductor, and mks units are
used. Therefore

The same expression is obtained by an approximation
in which the material within a circle of radius p is
taken to be uniformly stressed, in tension above and in
compression below the strip, while outside the circle
it is stressed just as if the strip were of infinitesimal
width. This relatively simple stress distribution appears
to be a good approximation to the exact situation.
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The secondary emission yield of metals by the surface effect 5 is expressed in terms of the surface photo-
electric yield y(~) for a radiation of frequency a& and angle of incidence of cos ' —,

' (5& ') which is about 52'.
It is shown that S~(2snE~) 'J „,"' y(ao)Cku/co, where E„ is the primary energy in atomic units, n = 1/137, co&

is the threshold frequency, and co2 depends on the energy of the primary and may be replaced by ~. For a
square-well potential model for a metal, S 10 s/E„with a relative error oi order (Ez/E~) ln(E„/Es),
where Ez is the Fermi energy.

1. INTRODUCTION

HE purpose of this paper is to establish a general
and simple relation between the surface effect in

secondary electron einission' (SSE) from metals and the
surface photoelectric effect" (SPE), and to use this
relation to show clearly why the SSE is so small that it
can be neglected in explaining the experimental facts.
Such a relation is of interest for its own sake, and in
addition a new examination of the problem is desirable
since most of the published papers on the SSE, are
incorrect. 4 '

' For a review of secondary emission see O. Hachenberg and
W. Brauer, in Advances in Electronics and Electron Physics
(Academic Press Inc. , New York, 1959), Vol. XI, p. 413; A. J.
Dekker, in Solid State Physics, edited by I". Seitz and D. Turnbull
(Academic Press Inc., New York, 1958), Vol. 6, p. 251.' K. Mitchell, Proc. Roy. Soc. (London) A146, 442 (1934).'I. Adawi, Phys. Rev. 134, A788 (1964). This paper will be
denoted by I.

A. Viatskin, Zh. Eksperim. i Teor. Fiz. 9, 826 (1939) treated
a semi-infinite square-well potential model. The basic formulation
is correct but the final integrations and conclusions are obscure
and incorrect.' W. Brauer and W. Klose, Ann. Physik 19, 1M (1956). This
paper has been assumed correct in the two review articles cited
in Ref. 1, but it contains unfortunately basic errors. They treat
a finite square well of width 2u in the limit that g -+ca. The cor-
rect final state which should be used in the transition matrix ele-
ment is the function v* used here. Using the notation and Eq.
(4.5) of I we have that the incoming wave o is given by
o=g(gI/A, ~+& /A, ~). When the correct hmiting procedure is
applied as e ~~, the results of the finite and the semi-infinite
square well become identical as has been discussed in general in I.
With this in mind, and for a primary electron incident normal to
the metal surface, none of the four delta functions obtained by
Brauer and Klose and on which essentially all their discussion is
based should arise; and the effect is precisely determined by terms
similar to those they ignored. The yield by the surface effect in
secondary emission as in photoelectric emission is independent of
the dimensions of the model analyzed, and there is no need to
introduce an ad hoc depth d, for calculating the eGect.

gj We shall use for convenience Hartree's atomic units
in which A, the electron mass m, the Bohr radius u~, and
the electron charge e are unity, and the speed of light c
is 137. As was done in discussing the surface photo-
electric effect in l, we treat the conduction electrons as
independent noninteracting particles. The motion of a
single electron in the y and s directions is free and can
be described by the plane-wave L ' expi(k„y+k, z) obey-
ing cyclic boundary conditions and normalized to unity
in a square area of side L. The x motion is bound by a
general surface potential V(x) which is the same for all
electrons and varies only in the direction x which is
normal to the metal surface. This motion is described
by the wave function L, 'l'po(x) normalized to unity.
The length L is the thickness of the metal plate which
extends from x= L to x=0. The f—unction Po(x)
satishes the wave equation,

where

+140 +040

H (x)= ——,'c)'/cix'+ V(x). (1.2)

Inside the metal, V(x) is a constant equal to —Vo,
and we can. write po(x) =2'l' sin(k~+y) where y is a
phase f'actor depending on V(x), and sk,'=So+Vs.
The potential V(x) rises to zero in the surface barrier
regions near x=0 and x= —L in a distance much less
than L, and go(x) behaves as exp( —px) for large x,
where —

sp'= Eo. We ignore thermal effects and assume
that all energy states below the Fermi energy Ep are
occupied, and all energy states above the Fermi energy
are empty. The conduction electrons in this model
assume lr values which fill "a Fermi hemisphere" given
by k'= kp' and k,&0, where kz is the Fermi momentmn,
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i.e., Eg= 2'kp'. The number of electrons per unit volume
in the interval d'k is given by 4d'k/(8s-s), where the
factor 4 is contributed by the usual factor 2 for spin
and an additional factor 2 to take account of the dis-
tribution of the bound states of the x motion in the
continuum limit' (large Vp'~'L).

We consider a primary electron of momentum I and
energy E„=—,'E' incident eormal to the metal surface,
namely, K= (—Z, 0, 0). The mutual Coulomb repul-
sion between the primary electron and the conduction
electrons bound by the surface potential offers a direct
mechanism for a secondary electron emission from the
bombarded metal surface. It is with this process that
we are here concerned. We do not concern ourselves
with those electrons which are left excited after colliding
with the primary, and which diffuse in the metal, and
appear later as secondaries. We hardly need to empha-
size that the effect we are discussing exists only by
virtue of the binding of the conduction electrons to the
surface potential, since it is well known that no second-
aries can be directly emitted from a metal surface
bombarded with normaNy incident primaries if the
electron gas is completely free. '

In Sec. 2 we discuss the scattering problem of the
system consisting of a primary electron and a conduc-
tion electron, hereafter referred to as secondary. We
shall consider only fast primaries (nonrelativistic)
whose energy is much greater. than the Fermi energy.
Indeed, the situations of most practical interest' are
those where the primary energy E~ is of order 10 (272
eV) and E~/Er of order 100. We are then justified in
treating the Coulomb field of the two electrons as a
perturbation and neglecting the effect of the surface
potential on the primary w'ave functions. We shall,
however, treat exactly the effect of the surface potential
on the motion of the secondary in the final state which
leads to the use of the mell-known "incoming wave'"'
in the transition matrix element. The two electrons
will be treated as distinguishable particles described by
a product wave function, since we shall see that the
main contributions to the SSE come from small-angle
scattering for w'hich exchange effects are not important.

In Sec. 3 we use the small-angle scattering approxi-
mation and derive the main result of the paper which
expresses the secondary emission yield by the surface
effect as an integral over the surface photoelectric yield.
In Sec. 4 we illustrate this result by treating two ex-
amples. In the first example we use experimental meas-
urements on the SPE. In the second example we apply
our formulas to the previously treated4' square-well
potential model for the metal, and obtain the yield by
the SSE which turns out to be in agreement with
Baroody's unpublished result. '

6 H. Frohlich, Ann. Physik 5, 13, 229 (1932).
r See G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954);

I. Adawi, Am. J. Phys. 32, 211 (1964).
s E. M. Baroody (unpublished report); and abstract in Phys.

Rev. 92, 843 (1953).

Hp= Hi+ Hs+Hs,

H s
'—(ci—'-—/By'+ 8'/Bz')

H3= ——,'VR',

(2 1)

(2 2)

(2.3)

where r= (x,y, z) is the position of the secondary and R
is the position of the primary. The perturbation po-
tential H' is given by the Coulomb field,

H'=1/~ R—r~. (2.4)

We consider as in Sec. 1 a metal plate defined by—L&x&0, and discuss the secondary emission from
a square region of area L' of the surface x =0 which is
bombarded by a uniform primary beam moving in the—x direction. The interaction volume is L' and we
normalize the primary wave function to unity in this
volume. Thus the initial primary state is L "' exp (iK R)
with K= ( E, 0, 0). —The initial state of the secondary
has been defined, and we take for the initial state of
the system the wave function its defined by

Hpgp hPp, ——

it p
——I. ' expi(K. R+k, .r)gp (x),

h= Ep+-', (&i'+E'),
(2 5)

where for any vector s, si=—(O,s„,s,).
The solution i/+ of the perturbed problem for out-

going waves satisfies the scattering integral equation, ' "
P+= fp+P1/(h Hp+i e)]H'P+. — (2.6)

If w'e write
4+= it p+4", (2 7)

where it, is the scattered wave, we obtain to first order
in H' that

it, = L1/(h —Hp+ie) jH'it p.

We expand H' in terms of the eigenfunctions of the
primary and write the usual Fourier series,

H'=1/~ R—
r~ =P.(4s/a')L s expLix (r—R)$, (2.9)

in which the components of sc: are given by (2s./L)
times an integer which is also the case for t|;„and k,.

If in (2.8) we substitute for H' and Pp the expressions
given by (2.9) and (2.5) and observe that the relation

(h —Hp+ie) —' expi(K'. R+k, ' r)
= Lexpi(K' R+k, '. r)j

&(Lh —Hi ——'(It"ykJ')) ', (2.10)
9 B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
1o M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398

(1953).

2. FORMULATION

The unperturbed Hamiltonian of the system Ho con-
sists of three commuting parts: Hi defined in (1.2), Hs
the kinetic energy of the secondary for the y and s
motions, and H3 the kinetic energy of the primary.
Thus,
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y(x, x) = G+(E', x,x')e'" "ys(x')dx' (2.12)

G+(E') = (E'——Ht+ze) —'

E'=——',q'=—Ep+co,

(2.13)

(2.14)

holds for a general K' and k', we obtain

y, =Q exp(i((K —x) R+(k,+x,) rj)
&&(4~/")L 'g(ex), (2.11)

the secondary, ~ must be eegati~e. Furthermore, ~ of
(2.15) must exceed the metal work function cur before
any secondaries can be emitted directly by the present
mechanism. This implies that some screening of the
Coulomb field is automatically included in the model
and we see from (2.15) that, to a good approximation,
all "(&or/E do not contribute. "

The SSE yield 8, which is the number of secondaries
emitted per incident primary, is obtained by dividing
I by the primary current E/L, namely,

M= KzE KK— k'K (2.15) 5=(2/~E) (dsk/2~s) ass(s 4q 'lM'') (2.22)

which reduces the problem to a one-dimensional prob-
lem, since the Green's function G+(Z') contains only
the Hamiltonian of the x motion.

To obtain the secondary current we examine the
asymptotic behavior of f, for positive large x. For large
x and finite x' we have as in I that,

G+(E'; x)x') ~(iq) 'e"*—e(x') (2.16)

where e(x) is the "incoming wave" defined as the
incident wave exp( iqx) p—lus the re/ected aud trams
mitted wanes due to the poteetsal V(x). From (2.16) and
(2.12)

y(x, x)—(iq) 'Me"—* (2.17)

M—= s(x)e'"*'gs(x)dx=(e*l exp(ia, x) lyo) (2 18)

From the cylindrical symmetry of the problem, the
total secondary particle current is in the x direction,
and we need to calculate, therefore, the current element
dI, contributed b. y f, and threading the area L'. Using
(2.17) in (2.11) and the usual formula,

1 8$, 8$,*
dI (x) =— P.* f, — dsRdy—ds, (2.19)

2z — Bx t9$

we obtain

dI.=+„16 .-4lM
l

q-'L;r. (2.20)

Notice that in (2.19) the y and s integrations give L,
the R integration gives L', and the orthogonality of the
primary final states eliminates any interference terms
between different values of x. The total current I is
obtained by summing (2.20) over the conduction elec-
trons in the volume L', and if we replace the summations
by integrations we obtain

I,=L '(d'k/2m') (2/~)dsg—(K
—4lMl'q —') (2.21)

where the k integration is extended over the Fermi
hemisphere and the x integration is restricted by the
condition that q is real.

If the normally incident primary is to lose energy to

To show clearly that 8 is independent of L as L —+~,
w'e must investigate the nature of M in this limit. It
was shown in I that in discussing electron emission
from the surface x=0, a finite plate model with two
surface barriers, one at x=0 and the other at x= —L,
reduces in the limit L —&~ to a semi-infinite model
with one barrier at x= 0. The limiting "incoming wave"
s(x), which must be used in (2.18), is a solution of the
wave equation for this limiting potential for x& —L,
and is zero for x( L. Thus ins—ide the metal e(x)
"exp( —ik, 'x) where a cutoff is implied to render v(x)
zero as x —&", and where k "=q'+2Vs=k '+2'. The
integrand in (2.18) for x&0 is of the form

expi( k,'+—k,+s,)x
for which the phase cannot vanish, since k '&k and
~,&0, and hence the integral cannot display a delta-
function-type singularity which, if it were present,
would bring a length" L in lMl'. Obviously, the inte-
gration in (2.18) over x between x=0 and x= ~ is con-
vergent since ps(x) is a damped wave for large x. We
conclude that except for thin films, to which still the
present formulation can easily be adapted, lMl', and
8 are independent of L, and we can set formally L= 1
in the preceding equations.

For completeness, w'e give now' the results of the
time proportional transitions method in discussing the
scattering problem. A detailed derivation can be found
in Gell-Mann and Goldberger, ' or obtained by other
means. The transition from the initial state fp of (2.5)
to the plane-wave final state fr of energy h', where

Ps ——expi(K' R+k' r), K'=K —r. and k'=(q, k„',k, '),
is determined by the transition matrix element T~o

"For a uniform electron gas screening sets in for momenta
&ar„/E where co„ is the plasma frequency, see, e.g., H. A. Kramers,
Physica 13, 401 (194'/), J. Lindhard, Kgl. Danske Viedenskab.
Selskab, Mat. Fys. Medd. 28, 8 (1954). In the surface problem
under consideration, the electron density, plasma frequency, and
dielectric constant are variable in the region of interest, and it is
not deemed worthwhile to discuss screening beyond what naturally
occurs in the problem.

"Notice that as L~~, 2mb(k) =J' i'2r. '" dxexp(ikx), and
2n. ~e(k) ~' is interpreted as LS(k). If M had a delta function be-
havior the sum over k would have to be restricted to a length d,
and not L, where d, is a characteristic escape depth for the second-
ary, but then we would be really discussing a volume effect t
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~f0 4'&K ~~ky', kfI+s(y~kz', kg+gg ~ (2.25)

By summing the transition rate, 2v.
I T~p I

'8(h' —8), over
k„' and k,' holding x fixed, and integrating over q we
obtain 16m'lc 'I M

I

'q ', which when summed over tp and
k gives exactly Eq. (2.21) for the total current (with
L= 1).

which is given by

Tr p (Pg
——
I
H'+ V

I
P+) . (2.23)

After some algebra (2.23) gives to first order in H' the
result,

T~p= Qr I
H'I A), (2.24)

where Pr ——v*(z) expi(K' R+k, ' r), the only differ-
ence between (2.24) and the simple version of the Born
approximation is the replacement of exp(i'm) by v*(x).
The R integration in (2.24) gives 4prs ', and the y and s
integrations give Kronecker deltas, since momentum is
conserved for these directions, and we have

M K~X KJ (3.3)

whose accuracy will be later discussed.
By using (3.2) and (3.3) in (2.22) we can hold u

fixed and integrate over k, and we can write

8= (pr o!E) rf K Ir cp y(pp) (3.4)

and cp kv'. The dipole approximation (3.1) applies and
there is no need to consider large values of K .

The expression (2.15) for ~ will now be simplied. To
estimate various terms, we recall that for a fractional
energy loss 6 by the primary and for a scattering
angle 0" we have E'= (1—s A)E', —a =

& (A+ O' )PE, and
le&= O~E. The terra —,'s ' can certainly be neglected. The
term k, xi is zero on the average, and it is small com-
pared to s,E' fo—r 0'«A ki'/E' or O(kv/E. For
0~))kv/E, ass))u, k,. We can, therefore, neglect the
term xi k& without committing a serious error. Equa-
tion (2.15) now takes the approximate form

3. RESULT

The yield 8 of (2.22) is controlled mainly by the Cou-
lomb scattering which is proportional to K 4, and by
the matrix element M which is the Fourier transform
of vip where v and gp are eigenfunctions of Hi whose

energy difference is co. The problem is basically the
same as the ionization of atoms by fast electrons for
which the physical principles are well established. "We
shall here use the energy kp' as a characteristic energy
to obtain order of magnitude estimates, in much the
same way as the binding energy is used in atomic
collisions. For K,=O, M=O, and for small K, we write
exp(i', x) 1+ilc,x, and we have the well-known dipole
approximation,

(3.1)

From the commutation relations, fx,Hi)=8/8@= D, —
and

I D,Hij=8V/8x, we can rewrite' (3.1) as

where, by definition,

y(pp) =2prncp ' (dsk/2v')q 'IM, ls, (3.5)

Ii——137ey(pp) sin'8, (3.6)

where ts is the number of photons/unit volume in the
incident beam, and 0 is the angle of incidence. By
dividing I~ by mc cosg which is the normal component
of the photon current density, we obtain the SPE yield
Y(cp,8), namely,

and n= 1/137. To identify y(o&) we shall use the results
of I on the first-order SPE. For a monochromatic
radiation beam of angular frequency co and polarization
(E vector) in the plane of incidence, we find by sum-
ming Eq. (2.15a) of I over k that the photoelectric cur-
rent density Ij is given by

M= —iK Or 'Mg,
(3.2) Y (pp, 8) = y(cp) (sin'8/cos8) . (3.7)

For ~&)les the binding effect of the potential V(g)
should become negligible, and the conduction electrons
can be treated as free electrons. Since we know that in
such a situation no secondaries can be emitted, ' we
conclude that 3f must decrease very rapidly as K

becomes large. This coupled with the fact that the
Coulomb Geld strongly favors small momenta transfer,
leads to the conclusion that the major contributions to
the yield come from those values of K for which K ((kp

"H. A. Bethe, Ann. Physik 5, 325 (1930). See also N. F. Mott
and H. S. W. Massey, The Theory of Atomic Collisions (Oxford
University Press, New Yorf, 1952), 2nd ed. , Chap. XI; L. D.
Landau and E. M. Lifshitz, Quantum Mechanics, translated by
J.B.Sykes and J. S. Bell (Addison Wesley Publishing Company,
inc. , Reading, Massachusetts, 1958), Chap. XV.

Thus, y(cp) is the SPE yield for 8=cos '-,'L(5)'"—1j
=St 50'.

The azimuthal integration in (3.4) gives 2pr. The re-
maining double integral is written using the new vari-
ables, cp = s,E Kis as in (3.—3) and—u= sip, and we have

8= (2praEv) ' (~~/~)y(~)F(~), (3 g)

where
QP

F(cu) =2E~v du 1+F„ IL(u+pp)'+2Evu) —' (3 9)
0 "8F.„&

Here, co2=K 0', where K,0 is a maximum value of —K,
consistent with the approximation —K (&kg, and N0
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=cup —co. Perf'orming the integration in (3.9), we obtain

o)E„'I'
E(~)= 1n

(E„+2~)s~' u —us

2E,[(E,+(u) u+ pp']

(Es+2pp) [u'+2(Es+(o)u+(o'j p

where

ui, s—=—(E„+(u)& (E '+2E„o))"' (3 10)

For ~'/E~&(up&&E~, Eq. (3.10) gives

F (a)) =1+(cu/E, ) ln(1+2upE, co-') . (3.11)

It is evident that F (co) is a slowly varying function of
pp and up and hence the SPE yield in (3.8) controls the
SSE yield. It is well known that' ' y(~) reaches a peak
for co k p and drops rapidly with increasing frequency.
If we take K p kp/4 we see that cop))ks' for E/ks))4
and cvs may be replaced by ~ in (3.8). This shows that
the important values of co are of order kg' and that the
emitted secondaries are of low energy. If up&((o'/E„,
(3.10) shows that P(pp) is small, but then y(co) is small
since ~2))kg' and these values of ~ are not decisive in
determining 8. We set up=Ms ln (3.11) and neglect the
one in the logarithmic term, and substitute the result
in (3.8) to obtain

bracket of (3.13). Since this correction is smaller than
the second term retained in (3.13), we can ignore it.

(b) Large ~,: If in (3.10) we set up E—~—&u
—which

would allow for the primary to lose all its energy we
obtain (for a&«E~) that

F (o), E„co)= —(4/3)+ ((o/E„) ln(4E„'/3pp') . (3.14)

Comparing (3.14) and (3.11) we see how little the large
momenta transfers contribute to the eGect. Since the
dipole approximation of (3.2) is expected to overesti-
mate 3II for large a„Eq. (3.14) cannot be trusted and
will be discarded.

(c) ——',s,' term: This term can easily be included in

(3.3). The resulting integral is similar to (3.9) and can
be evaluated exactly. We find that E(cv) of (3.11)
remains the same (except that 1 is replaced by si inside
the logarithm) and (3.13) is not altered. Equation
(3.14), however, now takes the form,

F ((v, E~ (o) = (5/3)+—(a)/E„) ln(8E„'/3oP), (3.15)

to which the previous remarks apply.
Thus our approximations are good, and we conclude

that the simple formula,

(3.16)

0= (2snE~) ' (der/cv)y(pp)
&1

X[1+(o&/E~) ln(2ppsEs(o ')). (3.12)

To simplify (3.12) we treat the logarithmic term as a
constant in which we set ~s ——PiksE and ~=co, ,
where Pi is a small fraction and &o, is the angular
frequency for which the SPE yield y(&v) is maximum.
We can write cv, =Pshaw' where Ps is of order unity,
and denote Pi/Ps' by a new parameter P. We obtain
the result,

p = (2snE„)—' (d(o/a))y (pp)

X I 1+(pp/En) 1nP(E„/Er )sl'j. (3.13)

The leading term in (3.13) would have been obtained
if we neglected the term ~is in (3.3). The logarithmic
term gives a correction term of order -', (Ei,/E„)
Xln(E„/EI) which is about 25% for E„/Er 20.

Let us now return to the approximations made:

(a) k~. ui term: This is the most bothersome term in
the calculation and was neglected in (3.3). We can
estimate the error by including this term in (3.9) and
averaging the denominator over k to obtain (u+pp)s
+ 2( u„E+E/ s)f5or the new denominator. The integra-
tion can be carried out and we obtain the correction
term, (Er/5E„) 1nP(E~/Er)s", to be added inside the

is quite satisfactory, and that (3.13) contains the major
corrections to the SSE yield 8.

4. EXAMPLES

A. Experimental

To obtain an estimate of (3.16), let us use the experi-
mental yield curves V(~, |)) for Na and K which are
reproduced in Weissler's review article. '4 From the
relation (3.7) we obtain y(&o). By a crude numerical

integration we find that the yield integrals, J'y(~)da&/co

are 6.7 && 10 ' and 4)& 10 ' for Na and K, respectively,
which lead to the values 8 1.5X10 '/E„and 0.9
X10 '/E„, respectively. This shows clearly that the
effect is entirely negligible, since the observed values'

of 8 are of order unity for E„10.

B. Theoretical

A theoretical calculation of 8 is possible for a square-
well potential model. Let V(x)= —Vp for x(0, and

V(a) = 0, for x)0. The wave functions s and gp can be

'4G. L. Weissler, Bandbnch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. 21, p. 351. For Na we use
the measurements of Maurer at 8=60', and for K the measure-
ments of Suhrmann and Theissing at 8=65 . The yield curve for
K has to be cut off, since a true SPE must asymptotically drop
rapidly with frequency. For square well potential„ for example,
y(~) ccsr'I' as &o ~op as can be deduced frem Eqs, (4.4) and (4.5).
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written down easily as in I, namely,

( 2q q
—k,'

( )=I —-"*".-'"+
(q+k, ' q+k, ' )

)k. i—p 2P,
4,(e)=2 '"l e ' ~'*+e'" e ')

&&.+ip
'

u,+ip
for @&0 and x&0,

(4.1)

16 —411 1
r/

'" —gC 171++ ~(
—

2/)
—"

2r2E„15 n=o 22) (222+5)

where

X + C , (4.9)
222+3 (42+1) (222+7)

Expanding S in a power series of e and integrating
term by term we obtain

where the propagation constants have been previously
defined. By using (4.1) in (2.18) we obtain after some
lengthy algebra:

~

M
~

'= 32K,'q'k, '(//:, ' —q) (k,'+q) '/R,
(4.2)g= (2~ 2/4 P '+14 2)2L44p2+/4 2(/4 2+4P2 —44p)]

We see that if 2g,'«+, 8= 16cv4 and

1
1/2$ (1+1)1/2

1
1/2]2 O + 1 )

—(4+n)/it

0

) 1/2 2/2+9 8
( 1)n+1

I 7r (4.10)
&22+2 222+6 (2m+5) (222+3)

C i ——72r/8 —8/3=0. 0822, Cp= (32r/16) —8/15=0 0557,
I
~I'=2~, 'q'0, '(0,' —q) (k,'+q)- " ' ' ) C,= (11~/128)—8/35=0. 0414.

+2E„q p

oo

dl [(t+~)" l."']'—

which is precisely the dipole approximation of (3.2)
with which we could have started. The advantage of
giving the exact ~M~2 is to show how good are the
approximations of Sec. 3. It is evident from (4.2) that
for a finite 4p and large /4„~M~2~/4, ' which justifies
the neglect of large values of rc .

It follows from Eqs. (4.3), (3.2), and (3.5) above, or
from Eqs. (3.9) and (3.10) of I, that

y(4p) = (1642/lr) (4p/E p) 2J1(pp), (4.4)
a=1

7 1(4p) =— (1—p) (p+0—2/)'/2

2g &+0—y&0

Xpi/2t'(p+fl)i/2 (0+0 2/)1/2]2dp (4 5)

where A=pl/Er, p= (Vp+Ep)/E/, and 2/= Vp/E2.
If we substitute (4.4) and (4.5) in (3.13), define the

parameter X by

7 = (E2/E~) 1nP(E„/Ep)2/2, (4.6)

and introduce the integration variables p and t where

t =p+0 —
2/, we have

The leading term in (4.9) is 8~0.06 (lr'E~2/P/') ' which
is of order 10 '/E~ since 2/ is about 2. The relative error
committed by neglecting terms in X is of order
Lg (C 1/Cp)+ 9/7]X 4X, which could amount to 25'%%uz

for E„/E2 100 (if we take p=1).
This agrees with Baroody' who obtained the first two

terms of (4.9) with lan=0, by using the same method as
did Viatskin, but making an independent evaluation of
the final integral. It also agrees surprisingly well with
the estimate obtained above from the measurements on
the surface photoelectric effect of potassium.

Note added in proof Equat. ion (3.16) predicts that
the energy loss of the primary (essentially 4p) by SSE is
nearly peaked at the energy value for which y(4p)/4p is
maximum, and this is usually of order 5—10 eV. It
would be interesting to investigate if such an energy
loss can be detected in experiments on the character-
istic energy losses of electrons in thin foils. Since the
relative intensity of the scattered primaries by this
effect is of order 10 '—10 2//'E~, primary energies E„of
order 10 (i.e. , 272 eV) are preferable, if experiments
with these energies are now feasible.
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where

(1—p) p'/2+/, l p) Jp (4 7)

S(X,l', p) = (2/+1 p) 4+ii(2/—+ t
—

p)
' —(4.8—).
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