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could lead one to conclude that the nature of the mag-
netic interaction that leads to these phenomena is of the
same physical origin. Graphical analysis of the low-
temperature resistance characteristics of dilute Zn-Mn
alloys, assuming the sum of two terms; one due to
magnetic ordering and one due to resonance scattering
results in a value of J in agreement with that derived
from other transport phenomena. This then suggests a
method of separating the resistance minimum from

total resistivity in the presence of a resistance maximum
produced by magnetic ordering.
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The theory of covalency in crystal 6eld phenomena is examined, using, as example, the Ni-F6 complex in
KNiF3. The Hund-Mulliken-Van Vleck molecular orbital-linear combination of atomic orbitals treatment
is followed. The role of the antibonding and bonding electrons in the complex is discussed from a multi-
electron point of view. The exact self-consistent one-electron Hamiltonian is discussed in some detail.
Emphasis is placed on elucidating the source and nature of the covalent effects appropriate to the various
physical phenomena. We find that it is the covalent mixing of those bonding electrons having no antibonding
partners which contribute to all experimental observables (including the crystal 6eld splitting 10 Dq,
transferred hyperhne interactions, neutron magnetic form factors, and superexchange interactions). This
view of covalency differs markedly from the one followed by Sugano and Shulman, in that the covalency of
the antibonding electrons, which are assigned the sole role in their approach, is totally irrelevant. Quantita-
tive numerical estimates (using approximations to the exact Hamiltonian) are given for the two models
of the covalent effects in KNiF3, i.e., "unpaired" bonding and antibonding; they are shown to diRer strongly.
The relative roles of overlap and covalency are discussed; covalency is found to play an important but
by no means dominant role. Numerical agreement between the present inexact cluster theory and experi-
ment is found to be poor. The various sources of this disagreement are reviewed.

I. INTRODUCTION

RYSTAL field theory" has had a long and varied~ history: when treated as a semiempirical theory,
with the crystal field splitting 10 Dq considered as an
adjustable parameter, it has been highly successful in
6tting experimental data; when considered as a funda-
mental theory for the behavior of transition metal ions
in crystalline fields, it has been strikingly unsuccessful
in predicting, from first principles, the fundamental
parameter 10 Dq. Following the pioneering computa-
tions of Van Vleck' and Polder, 4 a series of theoretical
investigations' ' succeeded in pinpointing the basic

* Supported by the U. S.Air Force Once of Scientific Research.
' H. Bethe, Ann. Physik 3, 133 (1929).' J. H. Van Vleck, Phys. Rev. 41, 208 (1932).' J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939).' D. Polder, Physica 9, 709 (1942).
~ W. H. Kleiner, J. Chem. Phys. 20, 1784 (1952).
e H. S. Jarrett, J. Chem. Phys. 31, 1579 (1959).
r Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 11, 864 (1956).
J. C. Phillips, Phys. Chem. Solids 11, 26 (1959).

shortcomings of the theory, and indicated the need for a
multielectron many-center molecular approach.

The recent work of Sugano and Shulman" (henceforth
denoted as SRS III), representing the most detailed
computations undertaken to date, attempted to obtain
a quantitative basis for the theory by including all the
terms in the ionic model considered by their predeces-
sors, as well as the effect of metal ion-ligand covalent
mixing. A cluster model consisting of the metal ion and
its nearest ligand neighbors in an external Madelung-
like potential was invoked. Considering KNiF3, they
obtained a theoretical cubic field splitting parameter
(10 Dq) for Ni which gave the first quantitative indica-
tion that covalency plays an important role in the
crystal field interactions of salts as highly ionic as

e A. J.Preeman and R. E.Watson, Phys. Rev. 120, 1254 (1960).
This reference also contains a useful review of the theoretical
investigations prior to the work of Ref. 10.

'e S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963);
henceforth denoted as SRS III.
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KNiF3. In addition, they considered the role of the
computed covalent mixing in the P" transferred
hyperGne interactions. "

While the role of covalency in superexchange, "and
transferred hyperGne eRects"" '~ have been particular
objects of study, overlap and covalent mixing signif-
icantly affect almost every observable in an iron series
salt. Covalent behavior must be understood in detail
before matters such as the theory of superexchange can
be put on any sort of quantitative basis.

Sugano and Shulman's modification of crystal field
theory to include covalency in the cluster model may
be viewed as an extension of the traditional approach
to crystal Geld effects in ionic salts. In KXiF3, the
familiar triply (ts,) and doubly (e,) degenerate 3d
orbitals, describing the Ni'+ ion in its ground-state
configuration (itsiqset'), in the ionic model, become
antibonding orbitals in covalent theory. These orbitals
are shown schematically in Fig. 1.Also included are the
bonding orbitals, which are formed predominantly from
ligand 2s and 2p functions. Since their energy is lower
than that of the antibonding orbitals, they are com-
pletely occupied. According to SRS, it is the covalency
of the antibonding electrons which must be considered
in order for the experimental observables to be repro-
duced. Thus, in the theory of the transferred hyperGne
effects only the covalency of (spin) unpaired antibond-
ing 3d electrons of majority spin contribute, while the
crystal Geld splitting is associated with the 3d antibond-
ing electrons of minority spin. Sugano and Shulman
utilized the conventional approach of treating electrons
of either spin identically and therefore obtained a
common estimate of this covalent mixing for the two
phenomena. In this approach, the bonding electrons are
considered to play no role (other than to provide
orthogonal partners for the antibonding electrons).

In this paper, the theory of covalency in crystal Geld
phenomena is examined using the cluster model for
K.NiF3 as example. We Qnd the covalent mixing of
those boedzeg electrons which ha, ve no antibonding
partners, to be the appropriate manifestation of
covalency in experiment. Unlike the antibonding version
described above, it is the covalent mixing of the same
(unpaired bonding) electrons (of minority spin in
KNiFs) which contributes to both 10 Dq and the

"K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130,
512 (1963);denoted as K, SgrS II. R. G. Shulman and S. Sugano,
ibid 130, 506 (196.3); denoted as SOS I. R. G. Shulman and
K. Knox, ibid 119, 94 (1960.) Pin particular, see the discussion
between Eqs. (1) and (4)g.

"See, e.g., P. W. Anderson, Sohd State Phys. 14, 99 (1963);
of the references cited therein, see, in particular, J. Kondo,
Progr. Theoret. Phys. (Kyoto) 18, 541 (1957).

'3 F. Keffer, T. Oguchi, W. O' Sullivan, and J.Yamashita, Phys.
Rev. 115, 1553 (1959).

'4 M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956).
~~ A. M. Clogston, T. P. Gordon, V. Jaccarino, M. Peter, and

L. R. Walker, Phys. Rev. 117, 1222 (1960).
'6 A. J. Freeman and R. E. %'atson, Phys. Rev. Letters 6, 343

(1961).
'r W. Marshall and R. Stuart, Phys. Rev. 123, 2048 (1961).
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FIG. 1. A schematic representation of the antibonding and
bonding electrons grouped into bonding-antibonding pairs and
unpaired bonding electrons. For each, the predominant atomic
orbital, from which the molecular orbital is formed, is indicated in
parentheses; the F hgand 2s, 2p, and 2p orbitals are denoted
simply bys, p, and p .

transferred hyperGne interactions and, in fact, to all
experimental observables. The covalency (but not the
overlap) of the antibonding electrons is entirely
irrelevant because it is exactly compensated by the
covalency of their bonding partners. This agrees with
several features of the role of bonding electrons in
transferred hyperGne theory which have been described
in the context of the Heitler-London method by KefIer
et cL" and for the molecular orbital (MO) method by
Clogston et al. '5 These matters are important for if we
solve the Hartree-I ock equations for the two types of
covalent mixing we hand them to differ markedly. This
difference does not imply different orbitals for different
spin in the sense of unrestricted Hartree-Fock (UHF)
theory, because the antibonding covalency (which has
iso physical or variational meaning) may have any
value —including that appropriate to the unpaired
bonding electrons. (We brieRy discuss, for the case of
Cr'+, the implications of "UHF covalent mixing. ")

Two basic aspects of this crystal Geld theory are
considered in what follows: (1) the quantitative impli-
cations of the approximations made in the treatment of
a Hamiltonian, its matrix elements and related matters, '

(2) the source and nature of the covalent and overlap
effects appropriate to the various physical phenomena.
We concentrate on the latter in some detail in the
present investigation and leave some aspects of the
quantitative calculations to a future paper. Our studies
of covalency are described in terms of the occupied
one-electron orbitals of the cluster. An alternate
approach to crystal field problems consists of dealing
with the unoccupied antibonding orbitals, i.e., the
antibonding holes (which are associated with the
unpaired bonding electrons). Such a treatment of
covalent mixing, and the resulting estimates of 10 Dq
and other experimental parameters, is exact1y equi-
valent to that associated with the unpaired bonding
orbital treatment provided that certain restrictions (to
be discussed later) are maintained. For this reason, we
will consider only one approach in detail but will make
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brief contact with the unoccupied orbital prediction
when describing results.

In Sec. II we describe the covalent mixing of interest
to us. A discussion of the one-electron Hamiltonian
appropriate to the system follows (in Sec. III). Sections
IV and V discuss the covalent mixing appropriate to
transferred hyper6ne and crystal field splitting eBects,
respectively. The role of the unpaired bonding electrons
becomes apparent in. these sections. Throughout, the
traditional (and incorrect) antibonding model is ex-
amined in parallel. In Sec. VI, we have cause to return
to the matter of our Hamiltonian and the crucial role it
plays in causing the two types of computed covalent
mixing to diGer. Since we use an approximate Hamil-
tonian, as in Ref. 10, certain "self-energy" problems
arise which lead to serious internal inconsistencies in
the results. The nature of these inconsistencies are
explored. Their resolution requires the use of a better
approximation to the true one-electron Hamiltonian, a
matter reserved for the future. The various matrix
elements appearing in our calculations are discussed,
and their numerical values are reported, in Sec. VIII.
Results, a discussion of their implications for other
physical parameters, and conclusions follow.

Il. THE MOLECULAR ORBlTAL APPROACH

The molecular orbital approach is by now well known;
hence, we will but briefly recapitulate some of the
definitions and ideas required by us here. The antibond-
ing molecular orbitals are defined by

4,"—=X,(q,—X,X2,—X.X2„.),
%e"——1Ve(A —X x2„),

where the N, are norma, lization constants, the q
's are

Ni2+Bd orbitals of t (xy, ys, an.d sx) and e (x'—y' and
322—r2) symmetry, and the X's are appropriate linear
combinations" of 2s, 2po, or 2pvr atomic orbitals (P s)
associated with the six nearest-neighbor F ions. The
X s are the covalent mixing parameters. The normaliza-
tion constants are given by

1V,= L1—2X,S,—2X,S,+X,2+X,2+2K,X,S„]'~',

S,=t 1—2X S +X '] 'I2,
(2)

where an S; is the overlap integral between X; and the
pa~ orbital with which it is being combined, and S„is
the overlap integral between I, and X„ it need not
be zero valued, as is often assumed.

One can alternatively speak of the covalent mixing
associated with the bonding molecular orbitals,

+- =&-'(X2.+V.V .+V-X2n.)
+er +er (X2yr+Vr'Pe+ YreX2e) ~

~e =&e'(X2..+V.2 e),

where

E„'=t 1+2y,S,+2K„S„+2y,y,.S,+y,2+y„2] '",
X„'=$1+2y.S,+2K.,S„+2y,y„S,

+y.'+v..'] "', (4)
N, '=$1+2y S +y '] '~2.

The bonding and antibonding orbitals are to be ortho-
normal, so to lowest order

X,=y,+S„
X.=y,+S„
X =y+S,

+Sly +F8 So'8 ~

The bonding and antibonding orbitals are to be
eigenfunctions of the Hartree-Fock (H-F) equations
for a (Ni —F2) cluster in KNiF2, i.e., they are to satisfy

(6)

where h is the one-electron self-consistent H-F Hamil-
tonian. In the present paper, we will follow Sugano and
Shulman and approximate the sects of the crystal
external to the cluster by an electrostatic Madelung-like
potential V t,, i.e., we assume that there are no covalent
or overlap eGects, between the cluster and its environ-
ment, which significantly affect the metal-ligand
covalency of interest here. This approximation is
necessary in order to make the problem tractable. (On.e
can improve on the approximation by making V & the
most accurate description of environmental effects
obtainable with a local effective potential, but it is
well to note that there are shortcomings in such an
approach —shortcomings which are particularly signif-
icant when one considers superexchange or any other
interaction between ions in different clusters )The u. se
of such a V, t, is compatible with a self-consistent H-F
treatment for the cluster itself.

One automatic result of a self-consistent H-F treat-
ment is that a set of orthonormal one-electron eigen-
functions is obtained. We are thus supplied with a test
of the seriousness of any approximation we make in our
Hamiltonian (or in evaluating matrix elements) which
causes us to fail to have a proper self-consistent theory.
The test consists of independently obtaining an anti-
bonding orbital, 0", and its bonding partner, 0'~, and
checking their orthogonality. We will see that the
present approximate cluster theory does not always
meet this orthogonality requirement.

We will solve Kq. (6) for 4 within a very limited
function space, namely, one spanned by the molecular
orbitals constructed from Ni'+ and ligand-free ion
orbitals. (One well might wish to allow greater varia-
tional freedom in a future calculation. ) However, what
is important to us here, is that the limited nature of this
space in no way eKects eigenfunction orthogonality or
the self-energy problem to be discussed in Sec.VI.Let us
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now consider, in detail, the nature of the one-electron
Hamiltonian.

III. THE ONE-ELECTRON HAMILTONIAN

We are interested in obtaining the exact one-electron
H-F Hamiltonian, appropriate to Eq. (6), derived from
a many-electron Hamiltonian consisting of kinetic and
electrostatic terms, where the environment external to
the (Ni —Fe) cluster is approximated by a Madelung-
iike one-electron electrostatic potential V t(r;). The
process is made trivial by the fact that the two H-F
many-electron states of interest to us are single deter-
minants constructed from orthonormal one-electron
orbitals (4~'s and %~'s). For such states the one-
electron Hamiltonian h;, for electron orbital i, is simply

V„(ri)=—
j=all Ni~+

electrons

~12
~~*(r2) ~ (r2)dry (9)

r12

Vl, .' These are similar contributions from the ligand
lons )

6 —ga
V(r)=Z + Z

1—F12
A, *(r2)

a=1 j=all electrons
on ion a

r12

&&&, , (r2)dr2 . (10)

Let us now consider the individual terms separately.
V: This term is simply the H-F nuclear and inter-
electronic Coulomb plus exchange potential for an
isolated Ni'+ ion;

~12
+V-t(ri)+Z + *(r2) + (r2)dr2 (7)

r12

in atomic units. The n summation (over nuclear
potential contributions) is limited to the one Ni and
six F nuclei for we have already introduced the potential
accounting for all electrons and nuclei (presumed)
external to the cluster. The F12 operator permutes
coordinates r1 and r2 giving us the interelectronic
exchange terms, which occur only between electrons of
common spin. The sum over interelectronic terms is
limited to the cluster and consists of contributions from
all electrons in the cluster including the ith electron
itself. This is allowed in a self-consistent H-F theory
because the ith electron Coulomb contribution is
exactly canceled by its exchange term. We will have
occasion to return to the matter of including or exclud-
ing an electron's self-energy contribution to Eq. (7)
later.

We now with to re-express the interelectronic po-
tential of h in terms of one-electron functions localized
on the seven nuclei in the cluster, for it is in terms of
these that the potential, of Eq. (7), can be evaluated.
In this simple procedure the 4's are expressed as linear
combinations of the local atomic orbitals (LCAO's),
i.e., 0' is broken up into Ni q and ligand X; orbitals
Lwith the X s themselves expressed in terms of local
orbitals (f s) at the various Quorine sitesj, whereupon
Eq. (7) may be written as

h'(rl) = g~l +V t(rl)+ V (r1)+VL(rl)

+Vs ' (ri)+ V,"'(rl)+ Vs (rl)
+V,"'(ri)+ VBL(ri) (8)

As we shall see, the terms of the second line account
for the important fact that the local one-electron
functions of one center are nonorthogonal with those of
another (i.e., SWO) and that there is covalent mixing.

The above terms would make up the interelectronic
contributions coming from the cluster if there were
neither covalent mixing nor any overlap between
orbitals on different sites. The omission of overlap terms
may be thought of as yielding a potential of the form
one would have when the ions of the cluster are infinitely
separated. It is important to note that such a potential
Lactually the full first line of Eq. (8)j was used by
Sugano and Shulman in their work. The consequences
of this approximation will be discussed later.

Next we consider the overlap contributions to the
potential. Vs&'&(ri) and Us&'&(ri): The most obvious
overlap effects are associated with metal-ligand non-
orthogonality. In the case of zero covalency, this
nonorthogonality is resolved by having );=5; while
y;=0 for the bonding-antibonding pairs. Setting X;
and y; to these values, we can inspect the overlap
terms arising in Eq. (8). There are terms linear in S, i.e.,

-P12
VB&'& (ri) = —p 2S1 p,*(r2) X, (r2) dr2, (11)

r12

where the sum is over all bonding-antibonding pairs.
Note that Eq. (11)is written in terms of the multicenter
ligand molecular orbitals, X;.There are also higher order
overlap terms in S;, i.e.,

VB"'(ri) =+2 S1' q;*(rg) q, (r2)dr2
r12

& —&12
+ x&'~ (r2) X~'(r2) dr 2 +0 (S') (12)

r12

These second-order terms are of the same order of
importance as Vg&'& which involves an 5; times an
overlap charge density. Note that a p, appears twice
in the summations in these equations to account for
its two partners, X, and X . Third and higher order
terms are, of course, less important.
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20.0

1 0.0

form

1—E'12
S„' X,*(rs) X,(rs)drs+ X,*(rs) X, (rs)

c9 0
cc-o.oe—

).0

s'[y„' +x']-es y„x„I

[y'„-x'„]+sr[a„x -s x'J
I

—2S„X,*(re) X, (re) dr s (13)

similar to what we have seen. in Eqs. (11) and (12).
Finally, the simultaneous nonorthogonality of p, with
X, and X, which leads to terms involving the X X,
charge densi. ty, have been arbitrarily included in VB&.
The lowest order term is of the form

0
I

0.5
N'

I I I

).0 1.5 2.0
r

I I

P 5 5.0 s.5
F

1—P12
2S,S. X,*(rs) x.(r,)drs

FzG. 2. The charge density of 4m y„' of the u(=32,"—r')
orbital compared with the p electron overlap charge den-
sitZ 4m. (S ~pp s+x,x]—2S,+„x,l and covalent charge density
4e(y'Lp '—x 'g+2Lp~x~ —S,x,')}plotted along the s axis from
Ni'+ to F . Densities are all in the same units, normalized such
that 1'v~q'(r)dr = 1; the free ion S value was used (see Table VII)
and S+y was chosen so as to reproduce the experimental (Ref. 11)
anisotropic I' hyperhne term.

In Fig. 2 we plot the overlap charge density, giving
rise to the sum of the VB&') and Vq"' terms, along a
metal-ligand axis, and for comparison, the charge
density associated with an antibonding electron prior
to the introduction of overlap and covalency D.e., just
I y, (r) I'). We see that the antibonding charge density
has been delocalized, by the addition of the overlap
terms, in the sense that there has been a buildup of
charge on the ligand (which is one of six so affected),
but, there has also been an increase of charge on the
metal as well. These increases have been compensated
for by a decrease of charge due to the —2S,Ly,*(r)X,(r)j
term, in the region between the ions. In other words,
one is not dealing with a shift in charge (or spin) simply
from one ion to another but onto the ions from the
region between. The often cited picture of overlap
(and covalent) effects delocalizing charge and spin off
the metal ion is, therefore, not valid, for we are dealing
with a process which is more complicated. Whether the
overlap effect acts as if there is a shift onto, or off, the
metal ion, depends strongly on the nature of the
operator whose expectation value is in question.

VqL, .These are additional overlap potential contribu-
tions due to the nonorthogonality between ligand
orbitals. First, ligand-ligand (P f) overlap enters —into
the evaluation of the second line of Eq. (12) (where we
have X'), and elsewhere. We will include the latter
terms as part of V8~ but will not write them out
explicitly. It should be noted that the normalization of
the X s as defined in SRS I [Eq. (2.4)], is affected by
this nonorthogonality; however, for the purposes of
this paper, we assume their normalization covention.
Secondly, X,—X, nonorthogonality leads to additional
potential terms, the lowest order ones being of the

&
——antibonding

orbitals

2y; q;*(rs) x, (re)drs

1—I'12
+ Q 27; p,*(r )sX,(rs)drs. (15)

q =bonding
orbitals

It is immediately apparent that contributions from
members of an occupied. bonding-antibonding pair
cancel one another, leaving us oely with contributions
coming from mrspaired bondilg orbitals, i.e.,

~12
2v v *(rs)

&.
——unpaired bonding

orbitals

Xx, (re)drs. (16)

Such cancellations also occur for the covalent mixing
involving (a nonzero) y„ in a O'P —4',n pair. A similar
cancellation occurs in second order giving us

unpaired
bonding

1—P12
x (rs) x, (r,)dr,

1—F12—2y;S; x; (rs) x, (rs)drs
~12

+higher order terms. (17)

and is of higher order than the contributions written out
explicitly in Eqs. (11), (12), and (13), i.e., it is the
product of two overlap integrals times an overlap
charge density potential. Finally we come to covalent
contributions. Vr &" (rt), V~t" (rs): These are most
simply obtained by evaluating the interelectronic term
Eq. (8) for nonzero y; (with X;=y;+S;), and sub-
tracting off the overlap terms already accounted for in
VB&'~ and V8&'~. One obtains linear terms of the form
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The cancellation illustrated in detail above follows
simply from a well-known property of determinantal
functions: Any linear combination of occupied orbitals
in a Slater determinant leaves unchanged the expecta-
tion value of an operator —and hence does not affect
the prediction of any physical observable.

The first line of Eq. (17) is associated with an obvious
physical effect, namely, the transfer of charge from
ligand to metal ions due to covalent mixing. The
number of electrons so transferred is simply

g =unpaired bonding
orbitals

(18)

Antibonding-bonding pairs do not contribute to this
transfer because the covalency of one is compensated
for by that of the other, as is required, to second order,
by the orthogonality conditions LEqs. (5)$. The third
line of Eq. (17) is coupled with V~o& which is 2&, times
an overlap potential. The two terms represent a 6rst-
order (in y;) shift of charge off the ligands into the space
between ligands and the Ni'+ ion. It should be noted
that as the unpaired bonding orbitals are of minority
spin, the covalent terms involve a shift of minority spin
onto the metal ion, effectively reducing the net spin
localized at the Ni'+ site. These covalent charge density
terms are plotted for a bonding 2PO electron in Fig. 2
(their negative should be taken when considering spin
effects) where y was chosen so as to reproduce the ex-
perimentaV' anisotropic transferred hyperfine interac-
tion. This choice causes these covalent effects to be
greater than the overlap terms for the same e, electrons.
Such a dominance need not always occur. Note that
there are also t2, and Ni closed shell overlap charge, but
cot spin, density effects. The overlap and covalent e,
terms act cooperatively in their contributions to the
Ni'+ charge and F- spin densities while making opposing
contributions to the Ni'+ spin and F charge behaviors.

We have seen a covalent shift of charge associated
with unpaired bonding electrons and no such shift for
bonding-antibonding pairs. This fact is of great interest
to us for reasons beyond the mere matter of estimating a
potential, for it indicates the profoundly different
nature of the two types of covalent mixing. The mixing
of a bonding-antibonding pair conserves the charge on
the metal ion while that of an unpaired bonding electron
involves the shift of charge from ligands to metal. This
observation suggests that the computed covalent
mixing, i.e., the y;, differs for the two cases and is the
reason for our preoccupation with bonding electron
behavior in this paper.

In the above discussion of the overlap and covalent
contributions to the Hamiltonian, h, we deliberately
neglected to specify exactly which orbitals were so
involved. As covalent terms only occur in low order for
unpaired bonding orbitals we need only consider those
electrons which can enter into bonding with the open
3d shell; i.e., the 2s, 2p, and 1S shells of the ligands.

The 2s and 2p electrons are expected to make small
contributions, and the 1s electrons insigni6cant contri-
butions, to V "& and V &'&

We also expect the overlap terms to make a
more significant contribution to the potential terms
than do the covalent terms. Now, any shell which
significantly overlaps another ion shell should be
included in VB&'&, Va"', and/or Vsz, . Hence, when
including overlap terms in the potential one must
inspect terms other than the Ni 3d and ligand 2S
and 2p electrons, to which consideration is normally
limited. In particular, one should, at the minimum,
explore the role of the Ni 3s and 3p shells since their
overlap with the ligand electrons is only moderately
smaller than that of the 3d orbitals.

In the present paper we will follow the Sugano and
Shulman treatment and mostly limit ourselves to a
Hamiltonian (denoted by hp) consisting of the first line
of Eq. (8) alone for two reasons. First, we believe it
imperative to fully explore the implications of their
approximations, approximations which at first glance
seem to yield excellent agreement with experiment,
before going on to a more complete (and more compli-
cated) treatment. Secondly, a more complete treatment
appears to require far greater care in the numerical
evaluation of matrix elements than does a treatment
based on ho alone. Greater care is not only necessary in
the handling of overlap and covalent terms but also in
the evaluation of the hp matrix elements. Approxima-
tions which were apparently adequate for the simple
case must be re-examined before one attempts the more
detailed treatment; this is due, in part, to the severe
numerical differencing which occurs in the course of
evaluating matrix elements. Our reasons for being
cautious on this matter will become obvious when we
inspect the results of the present paper.

As Sugano and Shulman have emphasized, the use of
hp can be viewed as the 6rst iteration of a self-consistent
theory for the (Ni —F6) covalent mixing problem. This
is so, providing that overlap as well as covalent terms
are included in a later iteration. As we shall see, the
results of Sec. VIII suggest that a proper evaluation of
covalent effects cannot be had without the inclusion of
the overlap and covalent terms in the Hamiltonian
Li.e., the second line of Eq. (8)j. It is our intention to
investigate the effect of such terms in a future paper.

In going beyond the use of hp, one is involved in an
ever increasing commitment to details of the cluster
model, details which do not reflect the situation in
the actual crystal. The use of hp and the MO's as
de6ned earlier for the cluster already imply a strong
commitment.

IV. UNPAIRED SPIN COVALENCY AND
TRANSFERRED HYPERFINE EFFECTS

We now consider the role of covalent mixing in
transferred hyperfine effects. In doing this, we assume
that the orthogonality relations of Eq. (5) hold and
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that orbitals diGering in spin may have diferent
covalent parameters.

The isotropic F" hyperfine parameter is considered
to be primarily associated"" with the unpaired 2s
spin induced by nonorthogonality and covalency on the
F site. After a variety of other contributions
accounted for, the parameter is written as the product
of the hyperfine constant associated with a single F 2s
orbital times the fraction, f„of induced unpaired 2s
spin character at the F site. Making the standard
assumption of constant covalency for electrons of
either spin, the value of f, in KNiFS is

1',=X,'N, '/3

and arises from the antibonding electrons alone. The
~& accounts for the fact that X is defined in terms of
molecular orbitals and that we are interested in the 2s
character induced on a single F site (via both antibond-
ing e& orbitals). The anisotropic hyperfine interaction
is complicated by the presence of (1) both p, and p
conbributions and (2) a substantial correction for
classical spin dipolar effects (which must be made
prior to estimating covalency from experiment). The
p-electron interaction is entirely spin dipolar (i.e., not
orbital) and given the experimental covalent hyperfine
parameter, the fractional difference (f,—f )between
induced p, and p, behavior can be inferred.

The coventional assumption of common covalency
for either spin leads to f =0 for KNiF3 since all t

orbitals are occupied in the ground state. Experiment,
therefore, would seem to yield information concerning
the 2s and 2p, covalent mixing in the antibonding t,'t
orbitals from the observed isotropic and antisotropic
interactions.

The above discussion assumes that the transferred
hyperfine interaction is entirely due to the spin density
associated with a ligand's P orbitals. However, the tails
of the free ion Ni @3' (and neighboring ligand) orbitals
overlap into the region of a F nucleus and contribute"'
to the spin density and hyperfine interaction via the
y' and qx terms. These terms are not negligible. "
Unfortunately the use of free ion orbitals is inappro-
priate for this evaluation since these orbitals do not
take account of the presence of neighboring ion nuclei.
We will encounter similar problems, introduced by
inappropriate orbital tail behavior, when discussing
orbital reduction effects in Sec. IX. These matters will
be ignored in the remainder of this section.

Let us now consider how the picture changes when
one accounts for all covalent mixing while maintaining
the necessary orthogonality of bonding and antibonding
orbitals to second order in 5;, x;, and y;. We will again
consider the 2s effects as they are the least complicated.
The implications for anisotropic eGects will then be
immediately apparent.

Consider the contributions to f, from the bonding et
and eg, and antibonding et electrons. Writing out the

normalization constant in Eq. (17) and making use of
Eq. (5), the antibonding contribution becomes

f t A —& {S2+2S p t+p t2}+0(S3) (20)

Combining all these contributions results in

f,= ', {S,'+2y,-gS,+y,g')+0(S').
Similarly, one obtains

(23)

f.= l{S'+2S.V. +V. '}+o(S') (24)

In other words, if bonding and antibonding orbitals of
one spin are simultaneously occupied, there will be an
5 overlap contribution, but their covalent terms cancel
exactly. Hence, it is the covalency of the hording e,&~

electrons which contribute to the isotropic transferred
hyperfine interaction in KNiF3, and if there is any
question as to the constancy of 2s covalent mixing
within the set of e orbitals, it is the mixing estimated
for the eg~ electrons which must be compared with
experiment.

The coventional cancellation associated with spin
pairing has been lost, but the Inore fundamental pairing
cancellation between bonding and antibonding orbitals
has been seen. The immediate effects of this for the
anisotropic F hyper6ne interaction are (1) that $& and
tg electrons cannot contribute, no matter what their
respective covalencies, since antibonding-bonding pairs
of both spins are occupied; (2) that there will be S', but
no p contributions from the majority spin e&~ and et~
electrons; and (3) that covalent contributions come
solely from unpaired e&~ electrons of minority spin.
It is clear from the identical form of Eqs. (20) and
(23) that the usual phenomenological approach,
which uses the antibonding expression LEq. (20)),
actually determines" the unpaired bonding covalent
mixing parameter.

Complications occur for almost empty d shell ions
such as Cr'+(tt")' which has but three antibonding
d-like electrons. There are no e~ electrons in the ground
state and diR'erences in eq~ and eg~ covalent mixing
can lead, for example, to an isotropic F hyperfine
term which would be zero in the traditional analysis.

(We will henceforth use superscripts A and 8 to denote
antibonding and bonding, respectively, whenever
appropriate for clarity. ) In the absence of covalent
bonding and x,—x, overlap, the f con.,tributions are
+1 for spin ) and —1 for spin &, and hence cancel.
Covalency affects these f, contributions via (1) the
normalization of the @„~orbitals $cf. Eq. (4)j and
(2) the z2, term of O', . With differing covalency, these
contributions need no longer cancel. The individual
spin contributions are

f,t~ =g'. t'+ 3&.t'v-~'

=3{1—2y, gS, —y g'+S ')+0(S')+ . , (21)

f,g~= —-', {1—27.,)S,—y,g'+S, .'}+0(S')+ . . (22)
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Transferred hyperfine effects have been observed" in
K~NaCrF6, the isotropic term is almost zero valued.
This either implies that the e~ covalency differences are
very small here or that an accidental near cancellation
of a number of contributions has occurred. Neutron
diffraction experiments on such a system could test for
e electron character in the cluster's spin density.

It must be stressed that any computed differences in
et~ —eg~ covalency, for this case, come from a different
source than do the differences between the covalency of
an occupied Ni'+ bonding-antibonding pair of one
spin and that of an unpaired bonding orbital of the
other. The covalent "unpairing" of the Cr'+ orbitals
has its source in the unbalanced exchange terms of the
open 3d shell. By this we do not mean the HF exchange
polarization of the F ion by the 3d shell, a matter
discussed elsewhere. "Instead, we mean the imbalance
in covalent mixing caused by the imbalance in 3d
exchange contributions to ho and, in turn, the various
matrix elements appropriate to the determination of
the covalent mixing. Although these exchange terms
also contribute to the Ni'+ case, a more fundamental
role is played by the intrinsic differences in the character
of the antibonding-bonding pair covalency, on the one
hand, and that of the unpaired bonding electrons on
the other. Note that the unbalanced exchange terms
cause the single determinant description of the Cr'+
cluster to be an improper eigenfunction, and of the
Ni'+ cluster, to be a proper eigenfunction, of the spin
operator (S'). The Ni'+ description preserves its
symmetry because of the presence of unpaired bonding
orbitals of but one spin. "

V. THE CRYSTAL FIELD SPLITTING

We use the conventional definition of the crystal
field splitting, namely,

10 Dq= ts[(tEA) 5(ezA) 3] h[(tk) 6(eri)2] (25)

where the latter is the energy of the ground state and
the former is the energy of the excited state (hence the
superscript E to designate this state) obtained by
replacing the t(xy) &~ electron of the ground state by an
e(x' —y') &" electron. If we make the conunon, but often
unjustified, " assumption that all electrons but the
promoted one maintain constant orbital behavior in
the cluster states, we have

10 Dg= e[e(x'—y')pe~] —e[t(xy)z "], (26)

where the e's are the eigenvalues obtained with Eq. (6)
for the one-electron Hamiltonian appropriate to the

's R. G. Shulman and K. Knox, Phys. Rev. Letters 4, 603 (1960).
'9 A. J. Freeman and R. E. Watson, J. Appl. Phys. 34, j.032S

(1963); and (to be published)."This observation is subject to the restriction that the +'s be
constructed from a set of free ion q's and p's having a single
radial function per shell (although difFerent y. and gg radial
behavior is allowed).

» For example see, R. E. Watson, Phys. Rev. 118, 1036 (1960);
in particular Tables V-VIII and related text.

particular cluster state involved. To second order,

«'= &~~ lhl «&—2s,&«lhl «)—2&~&«lhl «&

+([~~+~~]'&x~lhl «&+[5'—~~']&v~lhl «&}, (27)

which is obtained by multiplying Eq. (6) from the left
by 4, reexpressing the 4's in terms of p's and p's,
integrating and keeping all terms to second order.
The first term of c is simply the diagonal energy and
includes the classic point charge crystal potential,
Kleiner's correction' to such a potential, and ligand
exchange terms; the second term is the first-order
contribution to the overlap energy of the sort inves-
tigated by Tanabe and Sugano'; we then have the
first-order term of the covalent contribution, which
Sugano and Shulman concluded was important; and
lastly, the second-order terms in overlap and covalency.
The expression for e,~ is of the form of Eq. (27) except
that there are first- and second-order overlap and
covalent contributions from both the Xg and X mixing,
i.e.,

e "=&a.lhl q )—2 {2(~'+~~)&v.lhl x'&+[~'+~~]'
%=S,0'

x«, lt IX,&+[s —7, ]&p, lt I ~,&). (28)

One may obtain alternative expressions" for the ~'s, for
example, by multiplying Eq. (16) by x instead of N, in
which case e~ is given by

&%&lhl «) (~&+'Y&)&«lhl «&

+~~(~~+v~)&«l tt
I «) (29)

Note the omission of the two multiplying the linear
term. s' Unlike Eq. (27), this relation only holds if 4' is
an eigenfunction of Eq. (6) (within our y, x subspace),
in which case Eqs. (27) and (29) differ from one another
in third and higher order in 5 and y. This point is of
some importance for we shall be evaluating Eq. (25)
[and thus Eq. (27)] using noncovalent orbitals (7=0).

We have already seen indications that the computed
covalent mixing appropriate to a bonding-antibonding
pair differs from that of an unpaired bonding electron.
This suggests that the covalent mixing of the paired
t (xy) t~ Pand unpaired e(x' —y') qn] orbital [s], appear-
ing in the ground state, might very well undergo
substantial changes on. becoming an unpaired (and
paired) electron in the excited state. We must then
inspect the role of bonding orbital crystal field energies.
The one-electron energy of a bonding t electron is, for
example,

«n=(«lhl «)+»r&~lhl x~)+4~'(~lhl ~&
—(2&~+v')« lhlx&) (30)

~Their counterpart of the second line Le.g., in SgzS lIl,
Eq. (2.11)g shows a (y~~ho(v, ) matrix element but we 6nd
(q q ~

ho j up&) more appropriate for this case.
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The energy of a bonding-antibonding t orbital pair,
Q~, in a crystal field is then

0,=~ ~+~,"—(4,"+,~l@P+ ~)+(0 "@Pl@,"%P)
= —S,(x, l el „&+(1+S){(„Ital„,H (X, Ital x,

(—Ptvtl x4xt)+(Ptxtl Ptxt&}, (31)
where

(4'g%'ii
I
4'o%i))

d7'i JT2% g (ri)% B (ri)—+c(r2)%'D*(r2) . (32)
'r 12

The two-electron terms of the first line of (31) account
for the fact that the interelectronic interaction between
the pair of electrons has been counted twice when
summing e plus e . An equivalent expression is
obtainable for the e bonding electron; its derivation is
but slightly complicated by the simultaneous presence
of s and a. mixing.

In Eq. (31) as in Eqs. (16) and (17) we see the effect
of the antibonding-bonding cancellation. The covalency
of a bonding-antibonding pair plays no role in the
cluster's energy" and hence in the crystal held splitting.
Of course these pairs still make diagonal and overlap
contributions to both the crystal 6eld energy and to
the Hamiltonian.

It is clear that only the unpaired bonding electrons
make covalent contributions to the energies of Eq. (25).
These total energies (h) can be evaluated by a simple
summation over one-electron ~'s, providing that we
account for the fact that this procedure introduces each
interelectronic interaction twice by subtracting inter-
electronic Coulomb and exchange terms [as we did in
Eq. (31)].Here, we wish to concentrate on those e's

which contribute to a nonzero 10 Dq, namely all
unpaired bonding electrons (which contribute covalent
terms) and the bonding-antibonding pairs involved in
the transition (which make diagonal and overlap
contributions). The resulting h's are

h[(t")'(~")']= ~*.i "+~"i'+~...i'+ ",-i'+ ~..i'+ ~.,-t'+2 [(+'+' I +i+;)—(+'+i
I +'+i)]+@. (33)

where 8, is common to both energies and the sums go over all pairs of orbitals represented by the e s. The subscripts
v and I designate the (x'—y') and (3s'—r') orbitals of e symmetry, respectively. The v orbital is involved in the
crystal field transition (t,„"—+ e,' „2~) and the u orbitals are the "odd" unpaired bonding orbitals common to
both crystal field states. Evaluating Eq. (25), rearranging terms and affecting appropriate cancellations, we have,

1oDq = {(y,I

h~ v,„~' v, ,
„—~~ v —

I y ) —(e~ I
h U —U.;"—U—

,-' U—.,"I ei)—}

+ Z {s'L(x,.lh -U-, '-U. .'-v. - '—,'v, ,.'I X.,.)+(~.le -U-, -U. .-"-U.,-"—:v,,.'l~.)]
t =S,J=0'
i =o, j=s

—2s,(x; „Ih~ —U„&~—v, ,
„&~—v, ,

„& ——,
' v, ,„ I qh„)}—{s '[(x

I
ti —v, ,

„&—v. , „&—v, , „&—v, ,„'Ix.)

+(y,„le—v, ,„'—v. ,„'—v, '—v. Iy,„)]—2s (x.lh —v, ,„"—v. .."—v, " v, le* )}

h.„, )2[(x.
l
h —v, . —v. „ I

x,)—(y,„II' —v, ,
„—v. ,

„.Iy,„&]

—2y, i~~[(x Ih~ —V, ,
„~~ V,„~~If,„) —S(x

I

h~ V— ~x V~~—
l
x )]}—

+ 2 {h, ,„i')[(x,,„l ti —v, ,
„—v. ,

„—-', v;,„ I x, , „&
—(y„ I

h —v, ,„—v. ,
-'—l v, .' I e.)]

z=s, j=o.
t=0'

~ J=S

—2y; „i,~[(x;„I
h —v, ,

„~—v, „——,
' v;,„ I q4) —s,«',.I

ji—U*,-'—U. ,-'—k v, , I
x', &]}

+ 2 {(v;.- ')'[(x', -I @—l v;, -"Ix', -)—(4-Ih —l v;, "I4-&]—2~', -i'[(x', -I Ii—lv, -'I x', -&

—S(x;,.I
h —

& U, , "Ig &]}— 2 {(v' -is') [(x'.- I
h' —i V .-"'

I x', -&
—8 - I

Ii' —k V~,-"I ~-&1

—2y;,„i ~[(x,, Iti ——',V;,„ IX;,„)—S;(x;,„lh —-', U;, lp )]}, (35)
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where each sum has but two terms (i=s and j=o and vice versa) and where

V .s —g.2
1—Pg2

q ' (r2) qir(r2)dr 2+ X ' (rs) X '(rs) Jrs 25 ' q ' (f2) X '(r2)dr 2 (36)
r12 r12 r12

U, 'r=+», P12 1—P12
q '(r2) X'(r2)drs S' X'(rs) X (r2)drs

r12 r12

r12

1—Pg2
qi (rs) qi (rs)d'rs X,*(rs) &'(rs)dr2 (37)

r12

and h~ is the one-electron Hamiltonian defined for the excited state. The (I VI) integrals in Eq. (35) are the sole
remaining interelectronic contributions from Eqs. (33) and (34), all others have cancelled. The first line of Eq.
(35) consists of the diagonal crystal field terms; the next two lines are antibonding orbital overlap contributions;
lines 4 and 5 are covalent contributions from the unpaired bonding t and e„orbitals involved in the transition";
and the last two summations are covalent terms associated with the odd unpaired e„bonding electrons. Within
the cluster approximation Eq. (35) is an exact expression, to second order, for 10 Dq subject to the following
three conditions:

(1) The Hamiltonian must be self-consistently defined for the set of 4' s actually used, in which case Eq. (35)
is correct independent of whether the 4's are, or are not, eigenfunctions of Eq. (6).

(2) The radial behavior of the q and f atomic orbitals (not necessarily equal to that of free ion H-F functions),
must be the same for the two crystal field states, otherwise there are additional contributions to 10 Dq.

(3) It is assumed that the ligand 1s shells do not enter into the bonding. Otherwise, there are additional covalent
contributions from unpaired bonding 4i,. orbitals. Such contributions are straightforwardly added to Eq. (35).

As already noted, the last four lines of Eq. (35) arise from the odd unpaired 4, „bonding orbitals common to
both crystal Geld states. These and the V;,„&contributions to the other lines sum to zero if an excited state param-
eter p;,„~~ (and its associated matrix elements), equals its ground state, y;, „~, counterparts. Assuming this
equality to hold, Eq. (35) becomes more simply,

10Dv=f&q. lh lq.&
—

&q Ihlq &)+(s".L«. l& I&.&+&q. lh lq.H —»«. I& lq &)

+(s.L&x. la I
x.&+&q, lh I q,&3

—2s.&x.la I q.&}
—(s.'C(x. lI

I
x.&+«, II I «8—2s.

—(h-i")'L«- II 'I x-&—&«I &
I q i&j—»-i"«.

I

@"
I q i&+».i"s-«.Ih'I x-&)

+((& i )'L&x'lI
I
x

&
—« Ihl q &)

—27 t'(x. lhl q.&+».i's.(x Ihl)c.&)

+(h"i )'L« lhlx )—&q I@l ~ &j—».i'&x. l@l q &+» i s &x lhlx &)

+&I V.„r"I&+(I V, I&+&I V, ,„sl&. (38)

The three (I Vl) terms have not been written out
explicitly, in anticipation of the fact that we will

evaluate this equation in terms of the approximate
Hamiltonian, hp, which does not contain V, and V~
terms. Hence, the (I Vl) corrections of Eqs. (35) and
(38) need not be made since these interelectronic effects
were not counted twice in our sum over e's. We will thus
omit the last line when evaluating Eq. (38) with hs.
Without these terms, Eq. (38) would be identical
with the traditional one given in terms of antibonding
covalency, provided that (1) the ground-state unpaired

"When treating the covalent mixing of three orbitals (e.g. ,
the ep, e,&~, e p ) only two of which (the e,p and e,p ) are
occupied, there are covalent contributions to a quantity such as
10Dq. These include, first, the y, and y, terms of Eq. (35) and
second, nonzero y„ terms Lace Eqs. (3)—(5) and related text]
caused by nonzero s—0. mixing. The y, .contributions enter in the
third and higher orders in 7 and S and were therefore not listed in
Eq. (35). In addition, there are contributions arising from any
nonzero overlap of closed Ni'+ shells with ligands, but these appear
in third (and higher) order in 10 Dg.

and y, g values and their associated matrix
elements are identical with those of the excited state
e, i~'t and e, i.

~" electrons and (2) a similar equality
holds for the unpaired p i~~ and p i" contribitions.
The present calculations indicate that these require-
ments are not met.

Before closing this section, we should note that, sub-

ject to two requirements, the unpaired bonding e electron
covalent mixing contributing to 10 Dg is exactly that
which is appropriate to the transferred hyperfine
interactions. This differs with the antibonding orbital
picture where ground-state antibonding spin $ covalency
contributes to the hyperfine interaction and excited
state antibonding spin $ covalen. cy contributes to 10 Dq.
The two requirements are: (1) that the covalent mixing
of the two ground-state unpaired e~ orbitals be identical,
a requirement fulfilled by symmetry considerations
alone; and (2) that the "odd" en orbitals maintain
constant covalency in the two cluster states, for
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otherwise we have Eq. (35). It is reasonable to assume
that this last requirement holds in a lower order theory
but that, at some point, we must revert to using Eq. (35)
where these orbitals contribute to 10 Dq.

VI. THE EVALUATION OF THE COVALENT MIXING
AND THE ROLE OF SELF-ENERGY TERMS

We are interested in obtaining the unpaired bonding
orbital covalency which contributes to 10 Dq and to
transferred hyperfine effects. Also, as noted in Sec. II,
independent estimates of the mixing occurring for the
members of an antibonding-bonding pair supply us
with a test of the internal consistency of our theory.
With this factor in mind, we will estimate the cova-
lency of all the occupied bonding and antibonding or-
bitals in the ground cluster state and of selected ones
in the excited state. Let us now consider the process of
estimating y.

As already discussed, we wish to solve the H-F
equations PEq. (6)$ defined" for the cluster, in a two-
function space consisting of p~ and X~ for the 3 mixing,
and a three-function space, made up of q„X, and X,
for the e mixing, i.e., we solve 2&&2 and 3X3 secular
equations, respectively, for our Hamiltonian h. For
the 3X3 solution, we need the matrix elements (X,

~

h
~

X,)
which were not considered by Sugano and Shulman.
As these are intimately associated with the cluster
approximation and also include important three- (and
four-) center integrals and thereby divert us from the
purpose of this paper, we shall not obtain these in the
present treatment, deferring this matter, along with
others which have been brought up, for a future effort
involving the proper Hamiltonian, h, not hp. Ke will
instead explore the consequences of following the
traditional view of assuming X,—X mixing and overlap
to be zero valued (i.e., y„=y„=0). In this approxima-
tion we obtain the following relation for any one of the
y values appropriate to Eq. (3):

S,&x, lhl x,)—&„lt lx.,&+~,5&x,, lt I
x

&
—

&&, II I v,&j

+~''C«'ItgI ~'&—S'&v'Ihl s')j=o (39)

There are two roots to this equation: The ~7~ (1 root
is appropriate to the bonding orbital; the other, with

~y~ )1, is appropriate to its orthogonal antibonding
partner. Upon dropping the quadratic term, we obtain
the Sugano-Shulman relation for y;, namely" LSRS III,
Eq. (2.13)],

&., It I~.)-s.«. lt IX,&

(40)
&x'Il I x') —&v'It I ~")

'4 Since the antibonding-bonding pair mixing does not contribute
to the cluster's total energy, we cannot properly derive the H-F
equation appropriate to that mixing for such a derivation must
follow from application of the variation principle to the total
energy. One can write a one-electron H-F Hamiltonian LEq. (7)g
by inspection and solve for the pair mixing. This we will do but
we must remember that the solution has a mathematical but not
a physical meaning.

2~ Note the typographical error in the sign of the S(x ~
h

~ x) term
in Eq. (2.13) of SRS III.

They also give a relation for ) LSRS III, Eq. (2.12)]

&v ~It IX.& —s.(v ~lhI v i&

«.II I)f-)—&V -I@I ~-&
(41)

4,"'(rs) 4;"(r,)drs,

but in view of the fact that ho is de6ned in terms of the
(zero overlap) ionic (Ni —Fs) cluster Li.e., the first
line of Eq. (8)j, one would be subtracting out terms
which did not appear in our Hamiltonian if we sub-
tracted out Eq. (42). A possible choice, consistent with
using the interelectronic potential of hp, is to omit the
Coulomb and exchange potential terms associated
with the parent 3dp; (i.e., the overlap ionic counter-
part of 4,") as was done by Sugano and Shulman in
the course of estimating antibonding covalency.
Likewise, the equivalent X, contributions would then
be omitted when estimating bonding covalency. The
use of an approximate Hamiltonian has led to this
choice of an approximate self-energy term. We will
consider the effect of going to the more exact term after

' For example, see A. J.Freeman and R. E. Watson, Treatise om

3fagnetr'sm, edited by G. Rado and H. Suhl (Academic Press Inc. ,
New York, to be published).

~~ Providing that we do not constrain spin pairs of bonding or
antibonding orbitals to have the same covalent mixing. Such a
requirement would involve us with the nonorthogonality assoc-
iated with the conventional Hartree-Fock theory (Ref. 26).

which we find is closely associated with the inverse of
the second root of Eq. (39). We will obtain y values
appropriate to both bonding or antibonding mixing.
We expect the smaller root of Eq. (39) and the result
obtained from Eq. (40) to differ negligibly since the p's
are small; this will prove to be the case.

As discussed in Sec. III, in computing the matrix
elements appearing in Eqs. (38)—(40), our H-F one-
electron Hamiltonian, h, will be replaced by the
approximate Hamiltonian hp. Now, when evaluating
the matrix element of a one-electron H-F Hamiltonian,
one often may or may not, as one wishes, include the
interelectronic Coulomb and exchange potential terms
due to the electron for which the matrix element is
being evaluated (in this case @;) because these terms,
being equal, cancel one another. The inclusion of such
self-energy terms leads to a common Hamiltonian for
all electrons in the system, an important and often
exploited feature of self-consistent H-F theory. ""If
by any chance the cancellation does not occur, these
terms must be omitted from the Hamiltonian. Such a
cancellation does not occur for hp, since it is not a
self-consistently defined Hamiltonian, and some am-
biguity arises concerning the appropriate form of the
self-energy term to be subtracted. Consider the evalua-
tion of a matrix element appropriate to an antibonding
orbital 0;~. The exact self-energy contribution to the
potential is
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first considering the implications of this (zero-overlap)
ionic approximation.

The question arises, as to whether the p„bonding and
antibonding matrix elements, for example, evaluated
with different self-energy terms will, on insertion into
Eqs. (40) and (41), yield )i " and y n values which
satisfy the orthogonality relation [cf. Eq. (S)j. A
failure to satisfy Eq. (5) may arise from approximations
in our Hamiltonian, in the treatment of the self-energy
terms or in evaluating matrix elements; but, whatever
its source, this failure implies a breakdown of theory.
The matrix elements, for bonding and antibonding
orbitals, are best compared by writing them for the
proper ionic Hamiltonian, ho [the first line of Eq. (8)
minus the appropriate q or x self-energy termsj and
for a Hamiltonian, hp', without the self-energy subtrac-
tion [literally the first line of Eq. (8)$. (Up to this
point, we have not considered the role of self-energy
terms in discussing the hp Hamiltonian. We here redehne
hp to include the above self-energy term so as to conform
to existing usage. ) Upon doing this, we have the
relations

«'Iho'I x'&' —«'Ihol x')"=&~'~'I ~'x'& —«'~'I ~'x'&

&v 'I ho'I x'&' —
& v 'I ho

I
x'&'= &x'x'I x'v ')—«'x'I x'~'&

«, I
ho'I x,)'—«, I

ho
I
x;& =(x,x, Ix,x,)—(x,x,

I
x;x;).

(43)

But, what is more important, we will see that the
(I ho

I
)"'s, on insertion into, say, Eq. (39) yield a diferent

y than do the (!ho!)n's. This means that the theory,
with its present approximations, fails to yield the
required bonding-antibonding pair orthogonality. We
will see this failure to be severe.

Not only does the theory suffer this internal incon-
sistency but it is difBcult to ascertain which of the
approximations is most at fault. Use of the full Hamil-
tonian of Eq. (8), the exact self-energy term [Eq. (42)$,
and extreme care in the evaluation of matrix elements
would resolve this problem but would also be beyond
the scope of this paper. We do wish to inspect one
feature of the theory here, namely, given a Hamiltonian
(in this case hp' ), what part do the self-energy terms
play in the behavior of individual matrix elements and,
in turn, on the resulting estimates of covalency. Such an
investigation will further indicate the nature of the
computed covalency and its sensitivity to computa-
tional details (including assumed covalency) while
enabling us to avoid the serious numerical problems
associated with a proper treatment with the proper
covalent Hamiltonian. We believe this to justify a
partial handling of the problem.

Let us dehne a Hamiltonian, B', which is equal to hp'

minus self-energy terms de6ned for the covalent +,'s
in Eq. (42). One may then obtain equations similar to
(43) or (44) such as

The integrals on the right-hand side of Eq. (43),
coming from the Coulomb and exchange self-energy
terms, obviously cancel, indicating that these matrix
elements are independent of whether such terms are
included in the Hamiltonian. However, we also have

&o 'Iho'I x,")—&~;I &I x&'
=&'{(~'v 'I o 'x*&—&~'v, I v 'x;&—»'(vx I v x&

+);(vxl vx&+),&o ~lxx)+)i (xxl ~x)
—) ''&xo

I xx)}
= —4{(&xi&x)—&«Ixx)}+0() ) (46)

&v" Iho'I zzz'& (v"!hol zzo'&
=—&v'i''I x'x &

—&v"x'I v"x'&

(x'I @o'I x'&"—(x'Idol x')"=&a 'o *I x'x~& —&~'x'I o 'x*&,

(44)

and here the cancellation of terms does not occur.
Noting that the bonding and antibonding matrix
elements of hp' are, by definition, identical, gives us the
following relationships between bonding and antibond-
ing hp behavior for a bonding-antibonding pair:

(~'I ho
I
x'&"=(o 'I ho

I
x'&',

&~'Ihol ~')"=&o 'I hol ~'&'+«'~'I x'x'& —
&o 'x'I ~'x'),

&x lholx)"=&x l@olx ) —&io;io, lx x)+&y x,
l
px) ~

(45)

The two-electron integrals are most definitely nonzero. 28

's The fact that self-energy terms cause (~h~) matrix elements
to diGer from their (~h~)" counterparts is, in itself, a necessary
but not sufhcient condition for a computed y~ to differ from y~.
A computation with the exact one-electron Hamiltonian and
with the exact self-energy terms )Eq. (42)] will have (~h))s
N([h[)" for the (x)h)x), (x)h( y) and (zz(h~ w) matrix elements,
one will obtain identical y values. In the present case, the dif-
ferences, in (y ~

ho
~ x) matrix elements will be seen to cause severe

differences between a y~ and its partner y~.

ol

&~'I&lx')"=&v*lholx'&" —) *{&o'~'Ix'x*&
—&q,x,

l o,x;)}. (47)

For the other matrix elements we obtain

&v 'I &
I
x'&'=

& v 'I ho
I x'&'+v'{&~'o 'I x'x'&

—(q;x;I q,x;)},
&o I&lo &"=&& Iholo )"—)'{&o o Ixx&

—
&o 'x'I v'x')},

&x;I&lx;&"=&x,lh. lx,)"+[1—& 'j
X {&v 'v'I x,x,)—(v;x'I o;x,)}, (48)

&o I
&

I o &'=(~
I
ho

I o &'+ [1—(& ')'l
x{(p,oo, lx,x;)—&oo;X, I

oz,x;)},
&x I&lx)'=(x lb. lx&' —v'{&o v Ixx&

—&q;X, I q,x;)},
where terms ot order X', y', or higher have been dropped.
We will report solutions of Eq. (39) utilizing the linear
covalent contributions to the off-diagonal (y!H!x)"
and (pIH!x)~ matrix elements (omitting second and



A1538 R. E. WATSON AND A. J. FREEMAN

higher order corrections). We will see the computed
covalency to be sensitive to the estimates of covalency
used in evaluating these matrix elements.

We have so far considered the differences which do,
but should not, occur in the estimates appropriate to
members of a bonding-antibonding pair. Let us now
consider how these do (and should) differ with that
appropriate to an unpaired bonding orbital. When
obtaining the (q;Ihl p,) and (q, lhlx;) matrix elements
for either member of a bonding-antibonding pair, the
Coulomb and exchange contributions of y; to V
[see Eq. (9)] cancel after the manner of the right-hand
sides of Eqs. (43). The Coulomb repulsions of the
sever other Ni 3d electrons remain, and the potential
contributed by the Ni ion to these matrix elements is
that characteristic of Ni'+. However, no such cancella-
tion occurs when evaluating the same matrix elements
for an unpaired bonding orbital because the p; involved
in the bonding is not one of the eight contributing to
the Ni potential. Eight 3d electrons make Coulomb
contributions in this case, causing the potential to be
characteristic of Ni+, not of Ni'+. [Such a 3d electron
Coulomb contribution to (q lhl p) which is 1 a.u. ,
is to be compared with (1) the denominators of Eq. (40)
which are as small as 0.25 a.u. , (2) the (y q I xx) Coulomb
self-energy terms of Eqs. (44) and (45), which are

0.3 a.u. and (3) 3d—3d exchange interactions, which
are the order of 0.1 a.u.) It must be emphasized that
this difference occurs whether we evaluate matrix
elements with hp or with the exact self-consistent
Hamiltonian h. In other words, such an effect on the
current results involving hp, is indicative of what
actually occurs for the exact self-consistent LCAO
treatment of the cluster.

From our experience with the potential terms of
Sec. III, we should have anticipated the differences in
the Ni potentials appropriate to the various (q lhl p)
and (pl hlx) matrix elements. The fact that these
differences occur is a key to the intrinsically different
nature of the covalency of a bonding-antibonding pair
on one hand and an unpaired bonding orbital on the
other. The magnitude (1 a.u. ) of the difference in the

(q lhl p) matrix elements has observable quantitive
repercussions on one's theoretical estimates and makes
it imperative that the pertinent covalent mixing be
investigated.

VII. THE MATRIX ELEMENTS

In this section we evaluate the hp matrix elements

appropriate to the various bonding and antibonding
cases of interest, and examine the effects due to the
net 3d spin on the Ni'+ ion. Wherever possible, we will

rely on the one- and two-electron integrals already
obtained in SkS III and the same approximations have
been made when evaluating the VL, matrix elements.
The additional required integrals have been evaluated
with conventional (or restricted) analytic H-F (hence-

TABLE I. The one-electron energies (Ref. 32) of the RHF 3d
orbitals, for the 'F(Ms=i. , M, =S) state of Ni'+, as defined by
Eq. (52). In these tables, the appropriate si, value is denoted by
the arrow (t' and l denote is, =-,' ancl ——,', respectively). Also
included is the ~znp value. All quantities are in atomic units.

63/
ml 2

1
0—1—2

eH, HF = —1.41254

—1.46199—1.44377—1.41399—1.44377—1.46199

—1.39472—1.34007—1.34007—0.38057 unoccupied—0.38057 orbitals

forth denoted as RHF) functions for" Ni'+ and" F .
However, no additional three- and four-center integrals
were obtained for this work although they are required
in a proper treatment of the theory. The Switendick-
Corbato IBM 7090 program" was used for such two-
center integrals as arose.

hp =XN +Vz, (r) . (50)

Since our 3dq s are RHF functions this suggests that
we simply have

(~'I ho'I ~') = e»F+(v 'I I'~
I v ') (51)

where &~HE is the 3d eigenvalue. Unfortunately, this
equation does not hold, for the RHF Ni2+p's are not
exact eigenfunctions of Eq. (49). RHF theory requires"
a single radial function per shell. For an open-shell ion
this is only obtained by constraints, for there exists no
single radial function which, when inserted into the
occupied q, 's, will satisfy Eq. (49) for all electrons in a
shell. The immediate implications of this can be seen by
first inspecting Table I where the values" of

(52)

'9R. E. Watson, Technical Report No. 12, Solid-State and
Molecular Theory Group, MIT, 1959 (unpublished).

' C. Sonnenschein (unpubhshed).
3'A. C. Switendick and F. J. Corbato, Quarterly Progress

Report No. 34, Solid-State and Molecular Theory Group, MIT,
October 1959 (unpublished) .

~' See p, 229 of Ref. 29,

A (f" I
&oI ~')

It is in this matrix element that 3d shell exchange and
Ni+ versus Ni'+ potential repercussions are most
important. Ke are constructing our molecular orbitals
from free ion H-F orbitals and this suggests that we
make use of the familiar" one-electron Hartree-Pock
equation,

XN;q;(r, o) = e, p, (r,ir),

when evaluating (y, lhsl &p,). Here p, is a one-electron
spin orbital (i.e., a function of space and spin), e, is its
H-F energy eigenvalue, and BCN; is the one-electron
H-F Hamiltonian for Ni +, consisting of kinetic, nuclear
potential, and interelectronic Coulomb and exchange
terms. With the self-energy terms included, XN; is
independent" of which Ni'+ orbital it operates on and
is related to hp' by



COUALENCY IN CRYSTAL FIELD THEORY: KNiFg

TABLE II. One-electron energies for the cubic 3d orbitals of
Ni'+ as defined by Eq. (52) for the configurations indicated in
the text. All quantities are in atomic units.

~gg = —1.42742 e,g = —0.38057
egg = —1.35829 e,g

~ = —1.35829
e.g = —1.47226 egg

~ = —0.38057
&RHF =—1.41254

But since the y s are not exact eigenfunctions of that
equation, the (x, lBCN;I pp,) contribution should not be
estimated in this way. This contribution has, with one
approximation, been evaluated explicitly and the results
appear in Table IV. The one approximation, neces-
sitated by numerical inaccuracies in the 1s integral,
consists of omitting the Coulomb potential term due to

for the various occupied and unoccupied 3d orbitals of
the RHF Xi'+ ion are listed. Also included is eRHp,
which was used in SfkS III when evaluating Eq. (51)
for (pp;lhpl tii;). We see that the occupied orbital e,'s

vary by as much as 0.12 a.u. Energy denominators as
small as 0.22 a.u. occur in Eqs. (40) and (41), suggesting
that these variations can observably affect the evalua-
tion of these equations. One notes that the smaller e,'s

occur for occupied 3d orbitals of minority spin as one
would expect since exchange lowers an electron's energy.
The unoccupied orbital e's lie approximately 1 a.u.
higher than the others and show (cf. the discussion in
the preceding section) the Coulomb energy penalty of
attempting to place a ninth 3d electron on the ion.
This penalty, which the unpaired bonding orbital
covalency must pay, greatly influences results.

One may rigorously use Eq. (51) providing one inserts
the e;, defined by Eq. (52) for the orbital artsd multi-
electron Ni state of interest. The e s of interest are
readily obtained with the available" integrals and are
listed in Table II. The resulting (p, l hpl p,)'s evaluated
using Eq. (51), with self-energy terms properly ac-
counted for and utilizing the SRS III approximate
values for the (p~, l VLI q,)'s are given in Table III.
Also listed for comparison are the matrix elements as
obtained by Sugano and Shulman; these are (tp;I hpl &p;)A

values.

B. (x, I
hp

I y;)

TABr.E IV. Values of (xilSCNil fr) and ERHFSj (with 5' taken
from SlcrS III) for ground and excited (E) configuration covalent
mixing. All quantities are in atomic units.

tg
et (s)
et (P.)
es (s)
e~ (P.)
eg (s)
e~(P )
]~@

—0.10528—0.10406—0.11751—0.15150—0.11751—0.14695—0.08478—0.09572—0.0739

—0.1067—0.1067—0.1150—0.1564—0.1150—0.1564

TABL.E V. The matrix elements (X;~hp~y;) for ground and
excited (I') configuration covalent mixing. ' All quantities are
in atomic units.

the is' shell, and compensating for this with a nuclear po-
tential term for a nuclear charge two less than that of Ni.
Otherwise, the Switendick-Corbato program was used
to obtain all integrals occurring in the (X,IXN;I iii;)'s.
The eRHpS, products are included in Table IV and we
see that these differ but slightly from the exact values,
indicating that assuming Eq. (42) has less significant
repercussions here than it does for (q lhl pp) matrix
elements.

Using the SRS III estimates of the (X;I ULI pp,)
contributions, the (x, l kpl rp;) matrix elements are given
in Table V. As we see from Eqs. (45), these matrix

If one assumes Eq. (49) to hoM, then these matrix
elements are obtained by erst evaluating

(53)

TABLE III. The matrix elements (y~hp( p) for bonding (8),
antibonding (A), and excited configuration (E) covalent mixing.
All quantities are in atomic units.

et(s)
et(P )
p~'(r)
e)F(p.)
eg (s)
e~(P.)
~~g

Present
calculation

—0.0428—0.0416—0.1185—0.0937—0.1185—0.0891—0.0858—0.0379—0.0115

SRS III
(—0.0443)

(—0.1160)
(—0.0986)

e~EA 0.1744

]tA 0.1216
ggA 0.1907

(s or P ) 0.0604

SRS III
values

(0.1365)
(0.1365)
(0.1202)

(0.1202)

]~B
IgB
e&B(s)
etB(P.)
eg' ()
e) F~& B(p )
e~ B(s)
e~B(p )
$g

F~&B

—0.1358—0.0667—0.2058—0.2178—0.0918—0.1038
0.8859
0.8739
0.9110

a These matrix elements are independent of whether we are dealing with
bonding or antibonding effects (see text).

elements, unlike (x I
hp I x) and (p I hp I pp), are independent

of whether we are dealing with bonding or antibonding
orbitals. The matrix elements are sensitive to whether
they are for an antibonding-bonding pair or for an
unpaired bonding orbital [e(s)l, , e(po)q, and fgsf. We
see values for the latter to be appreciably smaller in
magnitude.
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TAnLE VI. The matrix elements (x;(hp~x, ) for bonding (8),
antibonding (A) and excited configuration (8) covalent mixing.
All quantities are in atomic units.

]~A

pt A (s)
et'(u. )
pt EA(s)
etss(p )

—0.0837—0.0835—0.9965—0.1659—0.9959—0.1628

(—0.0835)

(—0.9959)
(—0.1628)

~tB
))B
ets(s)
et (P )
e~ EB(~)
e~EB(P )
es (s)
e& (P.)
]~ZB

+0.1737
+0.1739—0.7303
+0.1123—0.7297
+0.1154—0.7300
+0.11.62
+0.1753

the Xi+ potential. Secondly, we see a sign reversal,
similar to the one in Table II, on going from the anti-
bonding to the bonding member of a p or p, pair, which
is again due to the self-energy terms of Eqs. (45).
Their effect is to reverse the sign of the denominator of
Eq. (40) and of the linear term of Eq. (39), a feature
which will be of great importance to us when discussing
results.

D. The Overlay Integrals, 8;
As already noted, the present investigation has

utilized analytic HF functions in its evaluation of
integrals. Sugano and Shulman used the same Xi 3d,
but different F, orbitals. They used simple two-
exponential analytic approximations to the F functions
of Froese, '4 a choice which was necessitated by the
extensive nature of the computations. S; values which

TAsI.E VII. Comparison of overlap integrals obtained by
SRS III and in this calculation.

This
calculation SRS III

c. (x;lhpl x,)
The various values of this matrix element are readily

obtained using the integrals appearing" in Table II of
SRS III. The results appear in Table VI. Two features
of the matrix element behavior should be noted. First,
as expected, unlike the cases of ()(I hp) ip) and (y I hpl p&)

matrix elements, the (xlhplx) matrix elements appro-
priate to the unpaired bonding orbitals differ but
trivially from the paired bonding orbital values. This
small difference indicates that these matrix elements
cannot compensate for the shifts, appearing in the
unpaired bonding (& I «p

I &) and (p I hpl &p) values, due to

were obtained for the current set of functions, along
with their SRS III counterparts, are listed in Table VII;
the differences serve as a measure of the error, due to
wave function uncertainty, that should be attached to
such integrals as these. The 5; obtained with Son-
nenschein's F orbitals will be used in the following
section.

E (I&l)
From the definitions of Eqs. (47) and (48), we see

that these matrix elements are functions of covalency
and as we will want them for varying p and ) values, we
list in Table VIII the terms

$(q;p;I x;x;)—(p,x;I ~p,x;)],
which are necessary for evaluating these equations and
the corresponding terms of Eq. (45) (used in the
evaluation of Tables III and VI). These were obtained
from integrals appearing in SRS III, which only include
two-center integral contributions. It should be noted
that by basing these terms on two-center integrals
alone, we are making ligand x self-energy corrections

I
the first equation of (44)$ which are strictly compatible

with the Vl, in our hp Hamiltonian. Here too, the inclu-
sion of three-center contributions to these integrals
may have appreciable quantitative effects on these
terms. In the calculations which follow, we will keep
only the linear covalent contributions occurring in the
(q; I

H
I
x;) matrix elements; the other elements will then

keep their hp values. In view of our decision not to use a
proper covalent Hamiltonian in this paper, a more
detailed treatment seems unjustified.

VIII. RESULTS

Equations (39) and (40) have been evaluated with the
hp matrix elements of the preceding section for the
various bonding and antibonding y's. The results
appear in Table IX. Only the p's, which are less than
1 in magnitude, have been reported for Eq. (39); as
stated earlier, the larger roots are redundant.

An important feature of the results in Table IX
concerns the internal consistency of a theory relying on
hp. We see that the y,~ and pP, of a p, or p anti-
bonding-bonding pair, differ in sign while those for s
bonding differ in magnitude. As we have already
stressed, a y," must equal its partner y,~ if the ortho-
gonality requirements of Eqs. (5) are to be realized.
Any failure to meet these requirements implies a

Sg
S,(s)s (p.)

0.07077
0.07977
0.10499

0.07557
0.08143
0.11071

TAnLE VIII. The P(v;v„)x,x,)—(cp,x;~ p;x;)g values necessary
for obtaining the covalent contributions to the (IH~) matrix
elements. All quantities are in atomic units.

'3Two a,dditional integrals are needed. Their values, in the
notation of the S8rS III Appendix, are: (da, pa+~)dS+, pir )
= —0.000255 a.u. (d~, p~+~~p~, ds+) =-0.000059 a.u. The (x I h&iIx)
integrals are the most seriously affected by the (almost) complete
omission (Ref. 10) of three and four-center integrals.

"C.I'roese, Proc. Cambridge Phil. Soc. 53, 206 (1957).

$

e(&)
e(P.)
~(P )

L(s 's 'I x,.x,.) (v,.x'I p,.x,.)

0.26618
0.27823
0.25741
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TAnrx IX. The y; covalent mixing parameters, as estimated with Kqs. (39) and (40), for bonding (8), antibonding (A) and excited
configuration (E') cases, and compared with the SRS III values.

Eq. (40) Kq. (39) SgrS III values Eq. (40) Eq. (39)

~tA
t)A
e~ A (s)
e~A(p )
eg ~A {S)
eg P&iA(p )

0.180
0.130
0.037
0.337
0.033
0.214

0.171
0.127
0.037
0,298
0.033
0.201

(0.1727)

(0.0313)
(0.2848)

~tB
])B
ot'(~)
egB(P.)i' n(s)
egL&'B(p )
eon(s)
e~B(p.)
]gEB

a, b
a, b
a

—0.178—0.224
0.114—0.319
0.094—0.462
0.0171
0.0661
0.0325

—0.174—0.217
0.112—0.287
0.093—0.404
0.0169
0.0654
0.0322

a Contribute to 10 Dq.
b Contribute to transferred hyperfine effects.
0 Contribute to 10 Dq in the traditional antibonding model.
d Contribute to the transferred hyperfine sects in the traditional antibonding model,

breakdown of the theory. The deviations seen in Table
IX lead to antibonding-bonding orthogonality integrals
as large as 0.6 instead of the required zero. Thus, the
severity of this orthogonality breakdown renders any
quantity estimated with these p's at best suspect.

The y„sign reversals of Table IX have been caused
by the reversal in sign of the [(x~ho~x) —(a~ho~ p)P
term of Eqs. (39)—(41), due to self-energy effects. We
expect a similar sign reversal in this term if we go to a
theory utilizing the exact self-consistent Hamiltonian
(and the exact self-energy expressions). The only way
in which this exact theory can then yield a common
q'„" and q'„a will be if (oo~h~7t) reverses sign as well
(note that here we refer to a matrix element of h, not hp).
We will shortly see indications that this does indeed
occur.

Three other features of the results of Table IX should
be viewed before we leave them. First, Eq. (40) and
the more exact (39) give results of similar cha, racter
but occasionally differ by as much as 10%. Secondly,
the difference in p s, for pairs of orbitals differing only
in spin, are not negligible. These do not a6ect our
predictions for Ni'+ but such effects are of sufhcient
magnitude to observably affect the transferred hyper-
fine spectrum associated with an ion such as Cr'+ (cf.
Sec. IV). Finally, we see the unpaired bonding orbital y
values to be appreciably smaller than their paired orbital
antibonding counterparts, suggesting that one must not
assume them equivalent and that one must utilize the
unpaired bonding results when estimating 10 Dq or
some other experimental parameter. The large uncer-
tainty which one must attach to the antibonding y's
(due to the antibonding-bonding pair breakdown)
makes this comparison tenuous. The results which we
will now inspect, also indicate substantial differences
between the y" and unpaired y~ behavior.

We are not prepared in the present paper to attempt a
calculation involving the full Hamiltonian, h, of Eq. (8),
but we do wish to gain some idea of the sensitivity of
the predictions to covalency. To do this we will go
over to the covalent treatment of the self-energy
correction, utilizing the H ma, trix elements of Eqs. (47)

TAnLE X. The covalent mixing y;, as estimated using Eq. (39)
with (rp;~H~~;) matrix elements for bonding (8), antibonding
(A), and excited configuration (L') cases as a function of assumed

co vaIency.

0.05
Assumed Ys0

0.1 0.2 0.3 04 0.5

egA(g)
egB(s)
egA(tr)
egB(g)
ttA
ttB
tgA

tgB
egEA(g)

egZB(g)
e gzA (3)
eg&B(s}
e )B(s)
e gB(o.)
t gE&B

0.057
0.112
0.38

—0.30
0.24

—0.17
0.19

—0.22
0.27

—0,40
0.051
0.093
0.017
0.065
0.032

0.069
0.088

0.062
0.073
0.009
0.047
0,015

0.081
0.064
0.44

—0.23
0.34

—0.094
0.27

—0.12
0.33

—0.31
0.073
0.053
0.0008
0.0295
0.0030

0.50
—0.15

0.42
—0.12

0.33
—0.10

0.38
—0.20

—0.016
—0.007
—0.033

0.55
—0.07

0.48
—0.07

0.39
—0.096

0.43
—0.085

0.59
0.017
0.53
0.15
0.44
0.19
0.47
0,046

0.62
0.10
0.58
0.22
0.49
0.28
0.50
0.16

a,nd (48) (actually we will only consider the linear
contributions to the (q ~H~x)'s). Computing q s as a,

function of assumed y' values (appearing in (q ~H ~x)),
we obtain the results of Table X. We see that the
bonding-antibonding pair results are quite sensitive to
this covalent contribution and that the negative y's
turn positive with increasing covalency because of a
sign reversal in the (p~H~x) elements. Since we have
not used the proper Hamiltonian, we cannot expect
complete convergence of the p electron bonding-
antibonding y; pairs. The table also suggests that, given
the Hamiltonian, we have underestimated the bonding-
antibonding covalency if we use the antibonding results
of Table IX.

In contrast with the paired bonding behavior, the
unpaired bonding y's of Table X show a tendency of

(p~H~x) to reverse sign. The ((x~ho~7f) —(&p(ho~ y))
term does not have a nega, tive sign (as do the paired
bonding elements), and this causes the trend toward
negative y's. The tendency towards increased paired
orbital y's and decreased unpaired bonding y's serves to
accentuate the diferent nature of the two types of
covalent mixing.
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TABLE XI. The covalent mixing parameters, p;, as estimated
using Eq. (39) with (q;~H~&;) matrix elements for the unpaired
tts~, eye(s), and ei.e(o) orhitals for assumed y, o values.

eg~(s)
e~'(~)
tg~~

Input y,'
0.01
0.05
0.025

Computed y;

0.0154
0.047
0.0236

In Table XI we have reevaluated the unpaired y's
with input (p~H~X) covalent contributions suggested
by Table X. The results show internal consistency and
are in crude agreement with the noncovalent estimates
of Table IX. This is largely due to the fact that the
covalency is small and hence the covalent self-energy
repercussions are small (but not insignificant).

So far we have only considered the occupied orbitals
of the cluster and have not used the alternate approach
of dealing with the antibonding holes. As stated earlier,
such an approach is exactly equivalent to the unpaired
bonding method provided that one maintains various
restrictions of the present paper (e.g. , common radial
behavior for the q's and x's appropriate to an anti-
bonding-bonding pair on the one hand and to the
unpaired bonding orbitals and antibonding holes on
the other). In a less restricted treatment, the two

approaches need not be equivalent but one is then
involved with an unrestricted H-F theory and its
associated difficulties. "Estimates of antibonding hole

q values involve no self-energy corrections [e.g. , in
Eqs. (44), (47), and (48)], and the results must equal
(to second order) their unpaired bonding counterparts
in order to maintain orthogonality requirements. Using
Eq. (40) and the matrix elements and integrals of
Tables III—VIII, we obtain values of y equal to 0.0147,
0.048, and 0.024 for the e(s), e(o), and fe orbitals,
respectively. These are in remarkable agreement with
the values listed in Table XI.

While we seem to have converged on "self-consistent"
unpaired bonding values in Table XI, this by no means
implies that they are in detailed. agreement with what
will be yielded by the more exact theory. On the other
hand, they differ strikingly with those bonding-anti-
bonding results obtained either by Sugano and Shulman
or in Tables IX and X. This is due to the Xi+—Ni'+

Coulomb cancellation differences and will remain in
the exact self-consistent 6eld cluster theory.

In order to facilitate the discussion of 10 Dq and
transferred hyperfine effects, the y values, appropriate
to the unpaired bonding and antibonding models, have
been extracted from Tables IX to XI and listed
together in Table XII. The SRS III antibonding results
are included for comparison, as are the y~ values
suggested by Table X, since these would be appropriate
to 10 Dq and the transferred hyper6ne effects if we had
adhered. to the traditional (but incorrect) antibonding
model. Different y~ values are reported for 10 Dq and
for the transferred hyperfine effects as spin $ parameters

are appropriate to the former and spin t' to the la.tter
in the antibonding model. Computed 10 Dq or f, values
based on these y~ will not be reported since this would
be incorrect. We merely note that the use of these p~'s
wouM predict even stronger covalent effects than those
apprearing in S8zS III.

B. Crystal Field Sylitting Parameter

Our expression for 10 Dq )Eq. (38)] was derived for
the exact self-consistent Hamiltonian h, but, as discus-
sed earlier, we shall use ho matrix elements to estimate
the diagonal, overlap, and covalent contributions.
Before proceeding to this task, it is instructive to

TABLE XII. The p values appropriate to the unpaired bonding
and the antibonding models for 10aq and the transferred hyperfine
effects as obtained from Tables IX—XI. Included are the SRS III
antibonding estimates.

Unpaired bonding
A 8 C

Table Table
IX IX Tables

Eq. (40) Eq. (39) X, XI
For transferred hyperfine effects

Antibonding
D

SOS
III

Table
X

0.017+
0.066

For 10Dq
0.017+
0.066
0.0325

0.017
0.065

0.017
0.065
0.0322

0.015
0.047

0.0154
0.047
0.024

Ps/
Vtr 1

0,031 0.05—0.08
0.285 0.4 —0.6

0.031 0.05—0.07
0.285 0.2 —0.5
0.173 0.2 —0.5

A. Transferred HyIIerfine Effects

Values of f, were determined by using Eqs. (23) and
(24) for the various sets of unpaired bonding q, 's

reported (and defined) in Table XII. The separate
spin I and spin J, contributions to the f; values are
listed in Table XIII along with the experimental"
values of f,. The experimental f, value includes the
so-called is—2s cross-term correction. "' Under the
antibonding column, we list the SRS III predictions
and give their pure overlap contribution separately
from the covalent terms [cf. Eq. (20)].

The predicted f, values are not in good agreement
with experiment; the SRS III antibonding prediction is
in somewhat better, but by no means good, agreement.
What agreement there exists for the unpaired bonding
results, arises largely from the spin t' electron overlap
term rather than from the spin l covalent terms.

The experimental f, value lies between the SRS III
antibonding prediction and those of the present calcula-
tions. The theory is again seen to be in poor agreement
with experiment. Quite aside from the fact that the
SRS III predictions involve the inappropriate anti-
bonding y's, we do not find them in marked numerical
agreement with experiment. The present results con-
sistently and appreciably underestimate both J, and

f, We will se.e a similar, and perhaps related, low value
for 10 Dq. Let's consider that case now.
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TABLE XIII. Comparison of unpaired bonding Lcf. Eqs. (23)
and (24)g and antibonding (SgrS III) transferred hyperfine
parameters, f;, with experiment. The various calculations are
defined as in Table XII.

Unpaired bonding
A B

Spin g overlap =0.0021 0.0021 0.0021
Spin g covalent =0.0010 0.0010 0.0009

Total fa =0.0031 0.0031 0.0030
Experiment =0.0054

fu
Spin t overlap =0.0037 0.0037 0.0037
Spin g covalent =0.0060 0.0059 0.0040

Total f~ =0.0097 0.0096 0.0081

Experiment =0.0378

Antibonding
SOS III

Spin g overlap =0.0022
Spin g covalent =0.0020

Total fs =0.0042

Spin t overlap =0,0041
Spin t covalent =0.0480

Total f~ =0.0521

compare this estimate with the results appearing in
SRS III. Such a comparison, however, cannot be done
directl'y since their equation for 10 Dq [SRS III, Eq.
(2.11)j diGers with Eq. (38). For example, they have
an e, overlap term,

and a covalent contribution

Here, the second-order contributions appear in the
"renormalization" term of their equation. Equations
(54) and (55) obviously differ with lines 1 and 4 of
Eq. (38) which are their counterparts here. Prior to
comparing our results with SRS III, we must then ask
whether the differing equations for 10 Dq in any way
affect our observations. Kith this in mind, we will first
evaluate Eq. (38) with the antibonding y's and matrix
elements of SRS III. LEquation (38) is readily converted
for use in their antibonding model by replacing the
values of y and the matrix elements of the fifth line
(for the fss electron) by the corresponding t" values
and similarly replacing the e, and e,~ of the sixth and
seventh lines by their counterparts e,~" and e,~",
respectively. ) The results of this calculation are given
in Table XIV along with the values obtained by using
Eq. (2.11) of S8zS III, with and without second-order
terms. Sugano and Shulman identified the linear terms,
alone, as specific overlap or covalent contributions.
With the inclusion of second-order terms, we see from
Table XIV that the two equations yield the same to/al
contribution from a particular electron but differ
appreciably as to the relative roles of "covalent" and
"overlap" effects. This implies that one equation or the
other has incorrectly identified these contributions.

As already discussed, Eq. (38) was obtained from
one-electron energy expressions Le.g. , Eqs. (27), (28),
and (30)j by the explicit evaluation of &Nlhl%'&, a
process which correctly yields the energy whether or
not 4 is an eigenfunction of h. The matrix elements of
the resulting equations were then in no way manip-
ulated. Equation (38) correctly yields a value of 10 Dq

TABLE XIV. The overlap and covalent contributions to 10 Dq
obtained using Eq. (38) Lmodified as indicated in the text) and
by using Eq. t SgrS III, (2.11)] when evaluated with the matrix
elements and p~'s of SRS III. All quantities are in cm '.

Eq. (38)

S&S III Eq. (2.11)
Linear plus

Linear terms second-order
only terms

s contributions
overlap
covalent
total

po contributions
overlap
covalent
total

P2r contributions
overlap
covalent
total

Total overlap
Total covalent

Total

2870
240

3110

4680
5035
9715

—1535—1440—2975
6015
3835

9850

2070
790

2400
6170

—730—1680

3740
5280

9020

2250
855

3105

2720
7000
9720

—905—2075—2980
4065
5780

9845

3' The total antibonding value for 10Dq differs by 70 cm ' with
that appearing in S8zS III. This occurs because we differ as to
the matrix element appropriate to the second-order $29 orbital
contribution (see footnote 22).

in the limit of zero covalency by the simple expedient of
setting the y values equal to zero: the terms which
remain are considered to be diagonal or overlap contri-
butions; those which are introduced in the process of
allowing nonzero y's are considered covalent e6ects.
Thus, we conclude, Eq. (38) gives the proper break-
down of covalent and overlap eGects.

Equation (2.11) of S8rS III is based on one-electron
energy expressions such as Eq. (29) which in turn was
obtained from

(~lhI+&/&~l+&=e (56)

a relation which holds only if 0 is an eigenfunction of
the H-F equation LEq. (6)$, i.e., only for the ore value
of p appropriate to that equation. One can alternatively
obtain Eq. (29) by using Eq. (40) to remove a linear—(y+S)&plhlx& term from Eq. (22). However, in
doing this, one assumes a specific relation between y,
s, &~lhl v», &~lhlx» and &xlhlx&, namely, that v be
appropriate to the H-F solution. The resulting expres-
sion is simpler than Eq. (38), but it yields correct results
only if the H-F p value is inserted, and we can no longer
correctly separate the covalent and overlap contribu-
tions by simple inspection, as we did for Eq. (38).
From Table XIV we see that in SRS III the role of
overlap effects was underestimated and that of cova-
lency overestimated.

Computed unpaired bonding values for 10 Dq are
listed in Table XU: Cases 2 and 8 (described earlier)
have been merged since they yield identical results;
the SRS III antibonding values" of Table XIV have
again been included for comparison. All of these results
have been obtained by using Eq. (38) and all indicate
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TAnLE XV. The diagonal (as estimated in S8rS III), overlap
and covalent contributions to 10 Dg evaluated with Eq. (38)
and the h0 Hamiltonian for the unpaired bonding y's of sets 3—8
and C, and for the antibonding y's of SRS III. All quantities
are in cm '.

Diagonal
Overlap

e ~EA

e gEA

t~A

Total overlap

Covalent
Unpaired e,g~
Unpaired e,g~
Unpaired tg~~

Case A-8 Case C

—3570 —3570

3000
4135—1410

5725

3000
4135—1410

5725

100
665—160

105
725—170

Total covalent 660

10 Dq= 2815

Experimental 10 Dg =7250

605

2760

es)EA
e gEA

tgA

SaS III

—3570

2870
4680—1535

6015

240
5035—1440

3835

6280

tha, t overlap effects dominate. The covalent contribu-
tions play a small role in the present calculations a,nd
the resulting 10 Dq values are observed to be substan-
tially smaller than experiment.

Upon seeing such a disagreement with experiment,
one might well inquire into the role played by uncertain-
ties or errors in the y values. From a given set of matrix
elements (say, the unpaired bonding (Ihel)'s), an un-

paired bonding y, which is obtained variationally, gives
the lowest one-electron (and in turn cluster) covalent
crystal field energy obtainable for the orbita, l in ques-
tion. Any deviation in the y eigenvalues, for electrons
appearing in the cluster ground state, will raise the
ground-state energy, hence decreasing 10 Dq. Any
similar deviation for a y~ will raise the excited state
energy, thereby increasing 10 Dq. If we utilize the
unpaired bonding (I hei) integrals, any variation in the

or y, , from the values of Table IX, will, therefore,
decrease 10 Dq, while a variation in y~~~ will increase it.
Consider the effect of varying p, ~, since it contributes
the dominant covalent term in Table XV. If we assume

Eq. (24) to be rigorously appropriate to the experi-
mental f, value, we can obtain an experimental y,n

which is four times the value appearing in Tables IX
and XI. Inserting this into Eq. (38) yields a e, covalent
term of —1100cm ' which, holding all other contribu-
tions constant, leads to a 10 Dq of only 1000 cm '.
Thus, a mismatch between a p value and a set of matrix
elements can severely a6ect a computed 10 Dq. The
behavior of these matrix elements determines the result;
they could be of suf6cient accuracy to yield qualitatively
correct p values while being quite unsatisfactory for a,n
estimate of 10 Dq.

As stated, Eq. (38) should be evaluated for the exact
self-consistent Hamiltonian. In the absence of such
computations, we can again gain some indication of the
sensitivity of the results to matrix element behavior

by eva, luating Eq. (38) for 10 Dq with the bonding
(p H )t)s matrix elements of Eq. (48). Replacing a
(p he x) integral by (&plHI)t) affects both covalent
and overlap contributions to 10 Dq. The results of
Table X indicate that (p I

B
I
x)s is smaller in magnitude

than its partner (q Ihelx)s for small covalent mixing
(eventually reversing sign for greater covalency), and
imply, in turn, a decrease in 10 Dq. Using (&plHIX)n
values appropriate to the computed y's, decreases the
covalent and overlap contributions by 2000 cm ' and
yields a 10 Dq value =800 cm ', again increasing the
numerical disagreement with experiment.

As was the case for the f s, the present calculations
yield a 10 Dq which is appreciably less than experiment.
These underestimates may be related; if so, more than
a simple underestimate of 7 values has occurred. We
are involved with the more subtle, and more difficult,
matter of matrix element behavior. Unfortunately, we
have little evidence of whether a treatment involving
the exact one-electron Hamiltonian, will or will not
improve the numerical agreement with experiment.
It is important to note that approximations were made"
in estimating the Vz, contributions to the (ylhely)
a,nd (xlhelx) matrix elements, but it is presently not
obvious what repercussions, if any, these had on the
results. This will be investigated in the future. Of
greatest interest, of course, is the question of whether a
treatment, such as the one outlined above, with the
exact h, yields reasonable agreement with experiment.
It need not.

(+'II-I+)=&', , -(vs. 'li-I v s~~), (58)

36 See, e.g. , J. C. Slater, Quarztuez Theory of atomic Structure
(McGraw-Hill Book Company, Inc. , New York, 1960), Vol. I.

3 K. W. H. Stevens, Proc. Roy. Soc. (London) A219, 542
(1953)."J.Hubbard and W. Marshall (unpublished).

IX. OTHER PARAMETERS AFFECTED BY COVALENCY

Other parameters are affected by covalency, including
the orbital reduction factors appropriate to the inter-
electronic Slater F~ (or Racah 8 and C) integrals of
multiplet theory" and to g shifts and spin-orbit coupl-
ing, "and the determination of superexchange" interac-
tions and neutron form factors. "

In the antibonding approach to the expectation
value of a one-electron operator, Op, one compares
(4';~IOpl@;") with the free ion (p;IOpl p,) value.
Quite often, a reduction factor defined by

~e =«"'
I
op I ~")/(~'I op I ~ )

is introduced to account for observed differences. Such
a factor is, in principle, straightforward to obtain but is,
in practice, almost never evaluated because of diKcul-
ties associated with the (y I Op I q) and (g I Op I x)
matrix elements. The one case where Eq. (57) has been
evaluated occurs for Stevens' orbital reduction factor,
fg,
""appropriate to
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where l is some component of the orbital angular
momentum l. The yx and xx contributions to k can be
included and k tends to be less than one.

For other operators it is often assumed that the
reduction effects are adequately predicted by the
approximate relation

(+,"iOp i@',")=X;X;(p,i Op i y;), (59)

s9 P. O. Lowdin, Phys. Rev. 97, 1474, 1490, 1509 (1955).

where the E's are the normalization constants of Eq.
(2). The (rp~Op)7t) and (7t)Op~x) terms are neglected,
because they are inconvenient to evaluate and are,
hopefully, negligible. Detailed inspection of the Stevens
orbital reduction factor suggests that this approxima-
tion is inadequate. Nevertheless, necessity led Tinkham
to rely on such a normalization estimate when discussing
spin-orbit effects."Sugano and Shulman also used this
approach when dealing" with the experimentally
observed" reduction of the Racah 8 and C integrals
from their free ion values (here, the normalization
enters in the fourth power because two-electron terms
are involved).

In the (multielectron) unpaired bonding approach,
the simple one-electron picture of the traditional model
is lost. As discussed earlier, the overlap effects arise
from the bonding-antibonding pairs and covalent
contributions come from the unpaired bonding electrons.
Now, if one ignores the Lio*(r)x(r)] overlap density
terms, overlap effects increase the charge and spin on
the Ni'+ ion. Covalent mixing also increases the charge
but decreases the spin (i.e., increases minority spin).
Our picture of reduction effects therefore depends on
whether we are dealing with a charge or a spin-depend-
ent effect.

The complications introduced by the multielectron
considerations increase the size of the computations, but
introduce no formal diKculties. When dealing with a
diagonal one-electron operator matrix element one need
only sum over paired bonding-antibonding, and un-
paired bonding contributions. The neutron magnetic
form factor is an interesting example of this case. For
an off-diagonal matrix element [e.g. , between the ground
and excited states of Eq. (25)j we must remember that
as one changes the occupation of antibonding orbitals,
the bonding orbitals are also changed by the change in
covalency t it was this which invalidated Eq. (26) as an
expression for 10 Dqj. Such variations cause the orbitals
of one state to lose their orthonormality with respect
to orbitals of the other. These complications are easily
managed computationally by using a formalism such as
Lowdin's" for dealing with nonorthogonal functions or
by evaluating the matrix element in terms of the anti-
bonding holes (s). The difhculties associated with

(q ~Op)x) and (x~Op~x) matrix elements, mentioned
above, also occur in the present approach. Detailed
estimates of orbital reduction effects will not be at-

tempted in this paper. Let us briefly consider an ex-
ample using the incorrect normalization correction to
make an estimate of a reduction effect. In Sugano and
Shulman's calculations, the competition between the
overlap and the (dominant) antibonding covalent contri-
butions, led to reductions in the Racah 8 and C integrals
equal to those actually observed. If one were to consider
such simple normalization corrections for the unpaired
bonding results, one finds that the antibonding overlap
terms lead to a 3 and 4%%uo enhancement of the Racah 8
and C integrals and a negligible covalent contribution
from the unpaired bonding electrons.

Similarly, the small magnitude of the unpaired bond-
ing covalent mixing leads to poor agreement )using,
say, Eq. (59)]with the various experimental "l's" values.

On several occasions in this section, we have cited
difEculties associated with evaluating (@~Op~ p) and

(X~Op~7t) integrals. As this matter has implies, tions for
any more exact theory of crystal field effects, let us
consider it briefly here. One is frequently interested in
the highly singular r ' operator appropriate to fine
structure and hyperfine interactions. Matrix elements of
this, and other, operators often nearly diverge because
the LCAO wave functions were not required to have
the proper singular behavior in the vicinity of each of
the nuclei present (cf. the previous discussion of trans-
ferred hyperfine effects). Thus, even if the (q ~Op~x)
and (x ~

Op
~ x) integrals are well behaved, their computed

numerical values could be quite unrealistic. To our
knowledge this matter has not been investigated and
correcting for it promises to be a most interesting
problem. Until this is done, one cannot claim complete
quantitative understanding of the various orbital
reduction effects.

X. CONCLUDING DISCUSSION

A large number of observations, some major and some
minor, have been made, concerning the application of
the LCAO molecular orbital method to crystal field
theory, in this paper. Perhaps the most important of
these is the fact that it is the unpaired bonding electrons
and not the antibonding electrons, which make covalent
contributions to physical observables. The importance
of this observation is largely due to the intrinsic (hence,
quantitative) difference in the nature of the two types
of covalent mixing (based on diagonalizing the one-
electron Hamiltonian). In addition, we saw indications
that a theory based on the incomplete Hamiltonian ha,
is internally inconsistent, hence inadequate. The results,
obtained with hp, were also seen to be in poor agreement
with experiment, the covalent contributions being signifi-
cant but by no means dominant. We are not optimistic
that the same theory, evaluated with the exact H-F
Hamiltonian, will recapture good agreement with all ex-
perimental parameters. (These observations are, of
course, made for the molecular orbital theory. The alter-
native Heitler-London approach to the crystal field prob-
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lem" is being studied by Rimmer and Hubbard. The
Heitler-London method introduces covalency through
configuration mixing and thereby loses the simplicity
of the single determinant description of the MO
theory. )

The fact that the unpaired bonding orbitals make the
only covalent contributions to an observable, is not
surprising. It has been recognized for some time that,
when dealing with Hartree-Fock single determinants,
any mixing between a pair of occupied orbitals in no
way affects the expectation value of an operator. "
This immediately implies that the covalency of the
simultaneously occupied orbitals of a bonding-antibond-
ing pair, cannot in any way, affect the prediction of
any observable, for the (NiFs) cluster states considered
here.

Our understanding of orbital reduction effects and
of the covalent "delocalization" of charge and spin
differs in the two approaches. In particular, the
covalency of a bonding-antibonding pair conserves
charge on the metal ion while that of the unpaired
bonding orbital involves a shift of charge from the
ligands to the metal. Such differences in the maigre of
the two types of covalent mixing, have quantitative
repercussions on the estimates of y values (cf. Table
XII). This is the most immediate quantitative reason
for our preoccupation with unpaired bonding effects in
this paper. As noted, the differences between computed
paired and unpaired covalent mixing do not destroy the
required spin symmetry of the cluster (i.e., it is an
eigenfunction of 5'). The unpaired bonding approach,
may be viewed as the proper application of restricted
H-F theory to the current cluster model for KNiF3.
Spin symmetry is maintained and what is more, if we

apply the variation principle to the total energy of the
cluster (with respect to the cova, lent mixing param-
eters), subject to the (RHF) requirement that the two

types of covalent mixing be identical, one of necessity
obtains the unpaired bonding (or antibonding hole)
values. (The discussion for Cr'+ has, of course, en-

compassed UHF theory and the breakdown of spin
symmetry. )

We also noted that a theory based on the mixing of
free ion metal p and ligand lt orbitals and based on the
approximate Hamiltonian, ho, appeared unsatisfactory
(quite aside from the fact that quantitative agreement
with experiment was not obtained) for we saw serious
internal inconsistencies in the covalent mixing estimated
for bonding-antibonding pairs. The effects did not seem
so severe for unpaired bonding y values, an observation
which is probably misleading.

' D. Rimmer and J. Hubbard (unpublished), who use the
configuration interaction method of Eever et al. (Ref. 13).

Having failed to produce even fair agreement with
experiment, the question arises whether the same
theory, evaluated for the exact self-consistent Hamil-
tonian h, will or will not produce agreement with
experiment. We do not expect the current (free ion P
and rp) cluster model to yield good agreement (say to
20/o) for all the parameters considered in this paper.
Should such a failure prove to be the case, there will
again arise. the old question of the variation of atomic
orbital character away from the free ion behavior
assumed in the present LCAO approach. Such a varia-
tion can take several forms: first, there is the matter of
bulk expansion or contraction of the metal" 4' ion (or
ligands); secondly, there is the question of the extent
to which 3dp, and +3 orbitals differ radially4'; thirdly,
there can be variation in orbital behavior from one
rnultielectron state to the other; fourthly, one can allow
different bonding and antibonding P's to have different
radial parts for their p and 7t basis orbitals (involving us
almost inevitably with a UHF theory); lastly, we have
to consider the variation of orbitals centered on one
nucleus when in the immediate vicinity of another, a
matter important to orbital reduction and hyperfine
effects. A bulk expansion of the metal p orbitals may
be expected with the covalent increase of charge
occuring at the Xi site. This would improve numerical
agreement with some experiments but it remains to be
seen if this effect is fundamental to the current disagree-
ment with experiment. Other questions which arise,
include the role of correlation effects, one's ability to
adequately define V, & and the justification of the
cluster model itself.

Finally, it is imperative that a proper crystal field
cluster treatment, involving the exact Hamiltonian, be
done. In this way, a number of the questions of the
present paper would be resolved. We believe a calcula-
tion of this sort to currently be attainable with reason-
able accuracy.

Note added its proof. In a recent publication, E.
Simanek and Z. Sroubek LPhysica Status Solidi 4, 251
(1964)] have considered unpaired bonding effects for
the same system.
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