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for the effect of a nonvanishing value of f to be easily
seen.

When population pulsations are taking place there
will be a correlated time-dependent excitation of the
lower level by cascade. It is possible that more interest-
ing consequences than those obtained would result, and
it is hoped to explore this possibility in a later paper.

2],. OTHER SOURCES OF BROADENING

For some kinds of line broadening, especially in
certain solid-state optical masers, one could adopt the
recipe proposed in Sec. 17, and rejected for the case of
Doppler broadening. If the effect of environment could
be described by a distribution function for the atomic

resonance frequencies co, an averaged nonlinear suscepti-
bility could be used. This could also be done for the
case of isotopic mixtures of the active atoms in gaseous
masers.

Although y, and yq were introduced into our equa-
tions to describe spontaneous radiative decay of the
states a and b, it is plausible that such phenomeno-
logical decay constants might also describe certain kinds
of collision broadening. In that case, the y's would be
functions of the pressure. "A more detailed discussion
of collision broadening for a gaseous optical maser will

be given in another paper.

"Evidence for such a dependence has recently been obtained
by Javan and Szoke, Ref. 16.
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In a previous paper a set of coupled. equations was derived for the ground-state wave function and energy
of a 6nite system of interacting Fermioris. The equations are now modified so as to be more applicable to
systems in which the number of particles becomes large. The resulting equations are shown to be equivalent
to those obtained from many-body perturbation theory.

I. LINKED CLUSTERS

' 'N a previous paper, ' a set of coupled equations was
~ ~ derived for the ground-state wave function and

energy of a 6nite system of interacting Fermions. The
wave function was expanded in terms of multiple-

particle excitations on an uncorrelated zero-order state.
The total energy E of the system appeared in the result-

ing equations and it was pointed out that this restricts
the application of these equations to 6nite systems; in

general, the restriction is to systems of small X. In the

equations, the amplitudes for one-particle excitations
are coupled to those for two-particle and three-particle
excitations. The two-particle amplitudes are coupled to
those for one-particle, three-particle, and four-particle
excitations, and similarly for higher particle excitations.
It was mentioned in I that it might be reasonable to
approximate four-particle excitation terms, for example,
as products of independent two-particle excitations.

It is shown here that four-particle terms involving

two independently propagating pairs enter the equa-

tions in such a way as to eliminate the dependence of
the two-particle excitation equations on the total

~ Work supported in part by the U. S. Atomic Energy Com-
lIlisslOn.

' H. P. Kelly and A. M. Sessler, Phys. Rev. 132, 2091 (1963),
hereafter referred to as I.

energy E, and similarly for the other excitations. '
Explicit inclusion of products of independent excitations
yields the equations of the linked cluster expansion.
The resulting equations are shown to be the same as
those obtained from many-body perturbation theory as
formulated by Brueckner' and by Goldstone. '

In I, the ground-state wave function is expanded as

I4) = les)+Zf(k; ~)9"n- Ic'o)

+ p f(kk'; p)errtt~+' rtp+rtlrCtp)+ . . (1)

The unperturbed solution ICp) is a determinant com-

posed of the Ã single-particle states which are lowest
in energy.

Equations are then derived for f(k; o.) and f(kk'; trP)

by inserting Ill) from Eq. (1) into

~l~)=~I~), (2)

where H is written in the usual second-quantized form. '

I am indebted to Dr. A. M. Sessler for stressing the desirability
of including products of independent pair excitations in the four-
particle excitations, so as to make the resulting equations more
applicable to systems of large E.

'K. A. Brueckner, in The 3fany Body I'roblem, edited by
C. DeWitt (John Wiley tk Sons, Inc. , New York, 1958).

4 J. Goldstone, Proc. Roy. Soc. (I ondon) A239, 267 (1957).
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Pro. 1. (a) In perturbation theory
two independent pair excitations
factor when both time orderings are
considered. (b) Typical terms which
always link any two excited pairs.
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An approximate solution for f(kk; crP) is given in Eq.
(15) of I, in this paper referred to as Eq. (I.15),

f(kk'; aP) = (e.+ep ei. es— (—(nP)—.,~ti~rrP)

+E-E-.)((kk)..i i-W

If we neglect the term E—XIII, then this expression is
that which is obtained from Rayleigh-Schrodinger per-
turbation theory when we use a Hartree-Pock basis. and
include the first-order term and all higher order diagonal
hole-hole interaction terms. ' ' However, for large X the
term E—EII~ may become so large as to invalidate the
equations of I. Such difficulties have been described by
Brueckner in his comparison of Rayleigh-Schrodinger
and Brillouin-Wigner perturbation theories.

tA'e now show that the term E—E» may be removed
by considering the coupling of four-particle excita-
tions in Eq. (I.11) for f(kk'; o.P). In the equation for
f(kk', nP), coupling with four-particle excitations adds
the term

((y8). i
s ik

"k"')f(kk'k"k"', rrPyb) (4)
yak»k«I

to the left-hand side of Eq. (2) or Eq. (I.11). The
coefficients f(kk'k"k"'; nPyo) are composed of parts in
which two pairs propagate independently and of
remaining parts involving more complicated interac-
tions among the four particles.

The approximation of regarding f(kk'k"k"';o. Py5)
solely as a product of two pair excitations has been
discussed by Brenig and Sinanoglu. 7 A justification for
this decomposition is found in perturbation theory
where the lowest order four-particle excitation is given

by the product of two pair excitations when we consider
both possible time orderings as in Fig. 1(a). Those
parts of f(kk'k"k"', nPy5) in which two pairs of particles
propagate independently should be written as products
of f(kk';nP) It m. ay be noted that there are always
linked terms connecting any two excited pairs, however,
as shown in Fig. 1(b).

When product pairs such as f(kk";ny)f(k'k"';PS)
are inserted into Eq. (4) and used in the equation for
f(kk', nP), than linked terms result as shown in Fig. 2.

When we consider the products

f(kk', nP)g j(k"k"'; y5),

y/n, P k"Ak, k'

5/n, P k'"Wk, k',

these give us terms

f(kk'; nP)P(y8
~

v~ (k"k"')„)f(k"k"'; p8)

p/n, P k"Wk, k'

8 An, P k"'4 k,k'

on the left-hand side of Eq. (2).
In Eq. (I.S) it is shown that

E Err'= g (nP~—v~(kk') )f(kk;nP). (7)
a, P,k,kl

~ H. P. Kelly, Phys. Rev. 131 684 (1963).
'Hartree-Pock single-particle states are assumed, although

they are not essential for this discussion.
~ W. Brenig, Nucl. Phys. 4, 363 (19S7); O. Sinanoglu, J. Chem.

Phys. 36, 706 (1962).

FxG. 2. Diagram illustrating how H may couple two independent
pair excitations wig a single pair excitation. There is also a
diagram in which the time ordering of the 6rst two interactions
is reversed. This term enters the equation for f(kk'; p).
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l'ro. 3. (a) Diagram
factorization when the
two disconnected parts
have one or more par-
ticle or hole lines in
common. The two sub-
tracted diagrams are
really linked diagrams
as shown in (h).

Equation (6) is then rewritten

f(kk'; ep) fE EIIp —g&n—b
I

v
I
(k"k'"),.)(k"k"'; rr5)

Z &~pl I(k-k-)..u(k-k-;~p)

&yb I
v

I
(kk"'),.)f(kk'"; y8)

&7~ I
v

I
(k"k') -&f(k"k' v3)) (8)

k«p-'k; gee, p; 8/e, p

When the term of Eq. (8) is added to the left-hand side
of Eq. (I.11), f(kk', np)(E Eire) cancels on—both sides
of Eq. (I.11).

At this point we now have the linked cluster expan-
sion for two-particle excitations. Equation (I.11) is
also now nonlinear but in many cases this should not
cause any diKculty. ' The remaining terms are not
proportional to E like E—EIIp, they will be given a
simple physical interpretation. The denominators in
Eqs. (I.15) and (I.16) are now modified by replacing the
terms E EJrs by the summ—ations in Eq. (8) with
positive signs. For example, Eq. (I.15), an approximate
equation for f(kk'; nP), becomes

f(kk'; np)

=Ls.+sp " s' &(~—p).—*l v I~—p)

+ P &nb
I

v
I
(k"k"'),.&f(k"k'";rrb)

+ 2 &vP I
v

I
(k"k"')-)f(k"k'"; vP)

YACC~ QI I Ql I f

&yb I
v

I
(kk"'), )f(kk"', y8)

k«r; y&a, p; 5&n, p

&~S I
v

I
(k"k'),.)f(k"k', ~S)$-'

klr&k; y&cr, p; 8&rx, p

x&(kk')..I
.

I p& . (9)

The new terms appearing in the denominator of

Eq. (9) which reier to states ln) a,nd
I p) combine with

the single-particle energies e and ep and with the
diagonal hole-hole interaction term &(oP)„lvlnP&) to
give an effective two-body energy for lrrp). When the
denominator also includes the particle-particle and
exclusion principle violating (EPV) hole-particle terms
of Eq. (1.17), then the denominator becomes approxi-
mately the difference between the two-body energies of
the states Inp) and lkk'). However, the two-body
energy of

I
kk') is not given so accurately as that of

I
aP)

because the interaction of the excited particles with
unexcited particles is accounted for only in the Hartree-
Fock approximation. However, pair-correlation energy
terms of a ground-state particle with the other ground-
state particles are now included. The last two terms in
the denominator of Eq. (9) which refer to states Iy8&
account for the fact that correlation terms for ground-
state particles which involve excited states lk) or

I
k')

will be eliminated by the Pauli principle when there are
other particles excited into lk) or lk').

As a simple example of this result we consider the
beryllium atom and let n, p, y, b refer to the 2S+, 2s—,
is+, and 1s single-particle states, respectively. In
Ref. 5 it was shown that the is—2s interactions are
small compared to is—1s and 2s—2s interactions and
so f(kk'; is2s) is omitted in the denominators. Also the
excited single-particle states used in Ref. 5 were all in
the continuum and so the sums in Eq. (9) which do
not run over both continuum states vanish because, as
shown in Ref. 5, Z= (Rp/v') J'dk and continuum states
have normalization (2/Rp)'is. Equation (9) becomes

f(kk', ap)

= (p-+pe —&(rrP).*lvlrrP&+ 2 &n'Plvl (k"k"')-)

Xf(k"k"'; harp)
—

pI, —pp )-'X((kk') „Iv
I harp). (10)

In the denominator of Eq. (10) we have the effective
two-particle energy for the state

I np&. The term
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—((aP)„It) I o.P) corrects for the inclusion of the Coulomb
interaction of ln) and

I P) in both single-particle energies

e. and ep T. he term gs-s -&nP I
t)

I
(k k ),.)f(k k; nP)

accounts for second and higher order interactions
among the particles in states

I n) and I P). In the calcula-
tions of Ref. 5 it was found that omission of this term
would have resulted in approximately a 10% error in

the correlation energy among the two 2s electrons
%hen there are bound "excited" states in the complete
set of single-particle states then the energy denomina-

tors will also include terms from the last two summa-

tions in the denominator of Eq. (9). These correlation
terms which we have been considering may be related
to a type of "rearrangement diagram" considered by
Hrueckner and Goldman. '

The equation for one-particle excitations f(k; n) also

has the term E—E~~ removed when coupling with the
three-particle excitation term is considered. We write

f(kk'k"; P~) =f(k; ~) P f(k'k"; W)

+" (11)

The result is that we replace (E—Errr ) in Eq. (I.10) by

&ay I
t)

I
(k'k") „)f(k'k"; ny)

~,k~,k»

+ Z (Pv I
s

I
(kk")-)f(kk" Pv) '(12)

II. CONNECTION WITH PERTURBATION THEORY

The results which we have just obtained may also

be derived by a consideration of the perturbation
expansion. '4 We begin by examining the factorization
of unlinked diagrams as shown in Fig. 3(a). The two

apparently disconnected parts of each diagram are
assumed to have one or more hole or particle lines in

common and the two diagrams on the right of Fig. 3(a)
must not be considered as "unlinked. "They are really
"linked" as is shown in Fig. 3(b). The first term on the
right-hand side of Fig. 3(a) is eliminated by the usual

cancellation of unlinked clusters. '4 Similar factoriza-
tions were considered in Ref. 5 where the two diagrams
on the right of Fig. 3(a) were called third-class EPV
diagrams. These diagrams were summed in an approx-
imate way, although with sufhcient accuracy for the
numerical calculations of that paper. However, these
two diagrams on the right of Fig. 3(a) may be summed

exactly by noticing that both possible time orderings

appear' or by merely writing down the algebraic expres-
sions and adding. For example, in the first subtracted

K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
(1960).

9 H. A. Bethe, B.H. Srandovr, and A. G. Petschek, Phys. Rev.
129, 225 (1963).
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Fxo. 4. Factorization of an unlinked diagram. It is assumed that
all the disconnected parts have at least one hole or particle line
in common so that there are correction terms (c), (d), (e), and
(f) to the factorisation (b). Diagrams (c) and (d) must be factored
further.

diagram of Fig. 3 (a), shown in Fig. 3 (b), the product of
the energy denominators is (B(A+B)A) ', where B—is
the denominator of the closed part considered separately
and A is the denominator of the other part. The second
subtracted. diagram of Fig. 3(a) has the same matrix
elements and a contribution (A(A+B)A) ' from the
denominators. Tile sum of these expressions is (A B)
so the two subtracted expressions add to give a result
which is the 6rst correction term obtained in an
expansion of the linked part with a shifted denominator.
In other words, it is the second term obtained in an ex-
pansion of the denominator of the following expression:

(e(g+ es cia e—y~+&bc
I
t)

I
(—k k )gg) (eb+ e, ek« —es~»)—

X&k"k'"l sit c)) '((kk'). *Ill&) (13)

The higher order terms are obtained from a considera-
tion of the factorizations of diagrams of Fig. 4. Such
factorizations were shown in more detail in Ref. 5.
Correction terms resulting from the factorization of the
diagrams in Figs. 4(c) and 4(d) and from the diagrams
of 4(e) and 4(f) a.dd to give the second correction term
in an expansion of the denominator of Eq. (13) and
the first correction term which would result from using
the appropriately shifted denominator in the correction
term of the denominator of Eq. (13).The result of such
factorizations then gives the summation terms in the
denominator of Eq. (9) or, in a more simple case, it
produces the shift in energy denominators as shown in
Eq. (10).
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