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A theoretical model for the behavior of an optical maser is presented in which the electromagnetic field

is treated classically, and the active medium is made up of thermally moving atoms which acquire nonlinear
electric dipole moments under the action of the Geld according to the laws of quantum mechanics. The cor-
responding macroscopic electric polarization of the medium acts as a source for an electromagnetic Geld.

The self-consistency requirement that a quasistationary Geld should be sustained by the induced polariza-
tion leads to equations which determine the amplitudes and frequencies of multimode oscillation as functions
of the various parameters characterizing the maser. Among the results obtained are: threshold conditions,
single-mode output as a function of cavity tuning, frequency pulling and pushing, mode competition phe-
nomena including frequency locking, production of combination tones, and population pulsations. A more
approximate discussion of maser action using rate equations is also given in which the concept of "hole
burning" plays a role.

i. INTRODUCTION

'HIS paper gives a theoretical description of the
operation of multimode maser oscillators. The

type of approach is particularly suitable for gaseous
optical masers of the type suggested by Schawlow and
Townes, ' and first realized experimentally by Javan,
Bennett, and Herriott, ' but the equations should also
find use in the description of some features of solid-
state optical masers.

2. BASIS FOR CALCULATION

We consider a high-Q multimode cavity in which
there is a given classical electromagnetic field acting on
a material medium which consists Of a collection of
atoms described by the laws of quantum mechanics.
No attempt is made to consider noise due to spon-
taneous emission and thermal, density, or quantum
fluctuations. The high degree of spectral purity ob-
served by Javan and co-workers' suggests that these
should be good approximations.

The effect of the electromagnetic 6eM on the atoms
in the cavity is to produce a macroscopic electric
polarization P(r, t) of the medium. This acts as a source
for the electromagnetic 6eld in accordance with Max-
well's equations. The conditions for self-consistency
(that the field produced should be equal to the field
assumed) determine the amplitudes and frequencies of
the possible oscillations. The calculations will include
nonlinear effects, so that phenomena of frequency pull-
ing and pushing, mode competition, frequency locking,
etc. , can be described.

*This work was supported in part by the U. S.Air Force 0%ce of
ScientiGc Research. The main results of the paper were reported
at the Third International Conference on Quantum Electronics,
Paris, February, I963. Lectures on some of the material were
given at the 1963 Varenna Summer School.
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The thermal motion of an atom during its natural

decay time may carry it several wavelengths through

the standing wave pattern of the electromagnetic field.

As a result, the atom "sees" Doppler-shifted optical
frequencies which depend on its trajectory. This im-

portant circumstance considerably influences the be-

havior of the Javan-Bennett-Herriott maser. When,

however, thermal motion is neglected the equations of

the paper can be used in a model calculation for an

ideal solid-state optical maser.
We will assume that only two atomic states a and b

contribute to the maser action. As a related simplihca-

tion the vector character (polarization) of the electro-

magnetic held will be ignored. In order to ensure that
our analysis should apply, it would be desirable to
have the optical configuration favor one plane of

polarization, as with windows of the Brewster's angle

type. The more complicated problem of a general state
of polarization will be dealt with in another paper.

A cavity of the I'abry-Perot type used by Javan,
Bennett, and Herriott has, of course, a continuum of

modes because it is not enclosed by reflecting walls.

However, it follows from work of Fox and Li4 that
there are discrete sets of quasimodes for which the dif-

fractive leakage from the tube is small. The cavity
modes of highest Q are the even symmetric ones whose

circular frequencies are given by

f)„=s.mc/I. ,

where c is the velocity of light, L is the distance be-

tween the reflecting plates (I. 100 cm) and I is a large

integer, typically of order 2&(10. Fox and I i have

shown that the modes of next highest Q are those

possessing odd radial symmetry, which, for typical

geometry differ by about 1 Mc/sec from the former

modes. Our discussion. will be specifically, but not
inevitably, aimed at the modes of highest Q.

4A. G. I'ox and T. Li, Hell System Tech. J. 40, 61 {$96$).
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3. ELECTROMAGNETIC FIELD EQUATIONS

Ke write Maxwell's equations in mks units as

divD =0 curl E= f)—B/Bt
divB=O curlH= J+BD/N,

where
D= cpE+D B=ttpH J=&rE. (2a)

To an approximation whose validity will be dis-
cussed in another paper, the array of excited atoms may
be regarded as a medium with an electrical state de-
scribed by a macroscopic polarization P(r, t) (electric
dipole moment density). In order to avoid a complicated
boundary value problem, it is convenient to assume the
presence of a lossy medium with an Ohmic conductivity
0. adjusted to give the desired damping of a normal
mode. The electric field then obeys a wave equation

curl curiE+ttpactE/ctt+ttpepd'E/c)P= —ttpct'P/c)P. (3)

In the subsequent calculations the main effect of the
space dependence of E(x,y, s, t) comes from the motion
of the excited atoms through the field which leads to
amplitude modulation of the 6elds seen by the atoms.
The analysis of Fox and Li for the even symmetric
modes indicates that the electric field does not vary
rapidly across the tube diameter. Accordingly we take
only the axial variation of E into account. Then
curl curlE is replaced by —BsE/cts', where s is the axial
coordinate, and E is the transverse electric field. For
the nth normal mode (unnorma. lized), we have
eigenfunctions

U„(s)=sinE„s,

with wave number

derivative by —v'P„on the right side of Eq. (7). Ad-

justing the fictional conductivity r to give the desired
Q„of the ttth mode, we write

Then A„(t) obeys

0=&0& n ~

d'A„ f v )dA„(v'
+ I

—
I +n.'A. =

I

—P..
dP (Q») dt

(10)

In the typical gaseous optical maser, the separation
of the principal modes 6 150 Mc/sec is much larger
than the cavity mode band width v/Q 1 Mc/sec.
Hence we may hope to neglect time Fourier components
of A„(t) and P„(t) which are at frequencies far from the
cavity resonance frequency 0„, and write'

A„(t)=E„(t)cos(v„f+y (t)),
and

P„(t)=C„(t) cos(v.f+ p. (t))
+5„(t)sin(v„t+ pp„(t) ), (12)

where the amplitudes E„(t) and phases y„(t), as well

as the in-phase and quadrature coefficients C (f) and
S„(t) are slowly varying functions of f which, together
with the frequencies v„, are still to be determined. The
expressions (11) and (12) are put into Eq. (10) with

only the first time derivatives of E„(t) and 1v„(t) re-
tained. Equating the coeKcients of cos(v„t+&p„) and
sin(v„t+p ) separately to zero, and further neglecting
small terms involving v„E„/Q„, j „E„and v„j„E/Q,
and recognizing that v„+ j„ is very close to (I„, we find

the self-consistency equations

E'„=tt /I. , (5) (v„+ j„—n„)E„=—-', (v/ep)C. (13)

where e is a large integer.
In the presence of a given polarization P(s, t), quasi-

stationary forced oscillations of the electric field can be
expanded in normal mode eigenfunctions

E(s,t) =P.A. (t) t/„(s), (6)

where the amplitudes A „(t) obey a diBerential equation
of a forced, damped simple harnionic oscillator

(1)d P.(t)
+ —

I
+~.'~.=-l —I--

dP e, ) dt 4 ep) dP

in which P„(t) is the space Fourier component of
P (z,t)

~ Lt

P„(t)= — dsP(s, t) sinE„s.
0

Since P„(t) will be very nearly monochromatic at an
optical frequency' (o.f.) v, we replace its second time

'%'e adopt the convention that all symbols for frequencies
should denote circular frequencies. A numerical value, e.g., 150
Mc/sec, however, denotes an ordinary frequency. A decay con-
stant like y which denotes a reciprocal. ife time 1/~, often plays
the role of a circular frequency. Numerical values of p will be
given as ordinary frequencies.

E'-+ l (v/Q-)E. = —l (v/«)~-,

which serve to determine the amplitudes, frequencies
and phases of the o.f. radiation once the polarization
state of the medium is known in terms of the E„(t)

4. POLARIZATION OF THE MEDIUM

The inaser action arises from the establishment of a
negative temperature distribution for the two excited
states a and b of the atoms constituting the medium as
shown in Fig. 1. The ground state, far below a and b,

is not shown. Consider, what happens to an atom which

at time tp is excited by some process (electron bom-

bardment, collision of the second kind, absorption of
resonance radiation, decay from some higher excited

'The representation of an arbitrary function A„(t) in the
form (11) in terms of a variable amplitude E„(t) and phase vp„(t)
is not unique. Despite this, because of the use of the rotating
wave approximation it seems possible through Eqs. (13) and (14)
to determine both amplitude and phase. )The positive frequency
part of (11) is a complex function very closely equal to A„&+&(t)

=E„(t) ex —t'(v„t+v„(t)) which does have a unique amplitude
and phase.
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state, etc.) into the upper maser state a. Let the atom
be at position rp at tp, and have velocity v. For the
present, we neglect collisions, so that at time t & to the
atom will be at r=rp+v(t —to). If there is an o.f.
electric field E(r,t) in the cavity, the atom sees a time-
dependent field E(rp+vt vtp,—t) for t)tp. Associated
with this field is a time-dependent perturbation energy
whose matrix element is

t'tV(t) = —pE(ro+vt vtp, t)—, (15)

where p (assumed real) is the matrix element for the
electric dipole moment of the atom between states a
and b. The perturbation causes the atomic wave func-
tion to become a time-dependent linear combination
a(t)f +b(t)lt b. The quantum-mechanical average value
of the electric dipole operator for the atom is
(a*b+aba) tet.

To follow the time-dependent wave function (in the
subspace of f, and pb), we start from the equations of
time-dependent perturbation theory

ia= W.a+ V(t)b ',iy.a-,
-

ib= Wbb+ V(t)a ——,'ebb,
(16)

' AV. E. Lamb, Jr. and T. M. Sanders, Jr., Phys. Rev. 119,
1901 (1960), especially pp. 1902-1903; L. R. Wilcox and W. E.
Lamb, Jr., ibut 119, 1915 (1960), espec. ially p. 1928.' W. E. Lamb, Jr., Quautupu Mechauicat Amptifters, iu Lectures

1'heoretical Physics, edited by %. E. Brittin and B.W. Downs
(Interscience Publishers, Inc. , ¹wVork, 1960), Vol. II, espe-
cially pp. 472—476.

in which the radiative decay of states a and b is de-
scribed by phenomenological terms containing the de-
cay constants p and p& for the two states. Here AS",
and HVb are the unperturbed energies of states u and
b, and the matrix element of the perturbation V(t) is
given by Eq. (15).

If the motion of the atom were neglected, and if the
maser were working in a single cavity mode, U(t)
would be monochromatic, and the rotating wave ap-
proximation would allow the Eqs. (16) to be integrated
exactly. Even so, there are great algebraic simpli fica-
tions to be gained by going over to a density matrix
description' of an ensemble of atoms consisting of all
those of a given category which are produced during
all times to& t. A theory of maser action in this case
has already been given' which is valid when the signals
are strong enough to fully saturate the transition u ~ b.
For multimode operation, such an exact solution can no
longer be obtained. However, the simpler theory can
help with the interpretation of our rather complicated
equations, and it will be discussed in Secs. 16—20.

When atomic motion through the electromagnetic
field is taken into account an atom does not see a
monochromatic perturbation even in single-mode opera-
tion. The equations can only be solved in a perturbation
expansion of the solution in powers of the E„(t).It is
still advantageous to use the density matrix method,
considering first only those atoms characterized by

a, ro, to, v. The density matrix

t'/ a/' ab'. )
p(a, ro, tp, v, t) =

/

a*b fb[s

(n- ".
)4 Pbn Pbb

obeys an equation of motion

p= —iPe,p]—-', (I'p+pl'),

where I' is the diagonal matrix

pv. p

)&0

and the Hamiltonian matrix K is

W. V(t))
!3C=

V(t) Wb ) (20)

with V(t), as given by Eq. (15), having a complicated
time dependence because of atomic motion. A solution
of Eq. (18) which satisfies the initial conditions

1 0
p(a, ro, to, v, to) =-

0 0
(21)

is required. The average electric dipole moment corre-
sponding to this density matrix p is p(p, b+ pb, ).

To obtain the macroscopic polarization E(r,t) we
have to combine the contributions of all atoms which
arrive at r at time I, no matter when or where they were
excited to state u, and also a similar contribution from
atoms excited initially i:o state b. Let 'A (rp tp v) be the
number of atoms excited to state n = u, b per unit time
per unit volume. We have

P(r, t) = p P dto dro dvh„(ro, to, v)

X[ .p(ba, r ot ,o,v)t+p b(n, r t vo, tp)j

X5(r—r p v (t tp) ). (22)—
In practice, )i (rp to v) will be a slowly varying function

FIG. 1. Two excited energy levels a and b between which the
maser action takes place. The levels have a resonance transition
frequency co&0, and are given phenomenological decay constants

and yf The excitation of the states is described by the func-
tions b (rp tp o) which are introduced in Eq. (22).
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where E~„(t) and &p„(t) are slowly varying functions of
time. Ke make a rotating wave approximation by keep-
ing only exponential factors like expi(&o v—„)t' and neg-
lecting rapidly varying exponentials like expi(~+v„)t'.
Then p q&'&(a, r, v, t) =

jp -X.(r,v, t)- ~r
dt'L„(t')

p=l

X U„(r—v(t —t')) exp i(—v„t+ v „(t'))

Xexp[—y,~+i(v„—&o)](t—t') . (37)

We also assume that the amplitudes E„(t') and phases
v „(t') do not vary much in a time 1/p, &, so that they
can be evaluated at time I,. Kith a change of variable
of integration from t' to 7'= t—t', we And

p, q&" (u, r, v, t) =

p p g.(r, v-, t) »-
',ij ——-—p E„(t)exp —i(v„t+ y„(t))

kh

X dr'U„(r vr') exp——(y,g+i(~ —v„))r'. (38)

mechanisms for state b. This could be plausibly repre-
sented by replacing the excitation rate density Xb(s,s, t)
by Xb(s,v,t)+fy.p,.(s,v, t), where f is the branching
ratio (decay from u to b)/(total decay from u) and Xq

now describes only "external" excitation processes.
In order to reduce somewhat the complexity of the

subsequent equations we will now proceed as if f were
zero. The effects of cascade excitation c—+ b will be
discussed by an approximate method in Sec. 20. With
this simplification it turns out, as one would expect,
that for b excitation P(b, s,v, t) is exactly like (39)
except for an over-all sign change and interchange of u

and b. Hence, the total polarization P(s, v, t) =P(a, s,s,t)
+P(b,s,v, t) is proportional to a, quantity

&(s,t) = [(~.(s,t)/V. )—(~~(s,t)/v~)] (41)

which we will call the "excitation density. " This is
simply the excess density of active atoms in a steady
state in the absence of optical oscillations.

The first-order polarization

P&'~(s t) = p dnW(s)[p ~'&(u s ~ t)

+p,q~'~(b, s,v, t)+conj.] (42)

The corresponding contribution to the polarization is also proportional to &(s,t). For use in Eqs. (13), (14)
a spatial Fourier projection on the nth cavity mode is
next to be madef'"' (a, r, v, t)

= ——',i ( I'/b) P.(r, v, t)/y. ] P„&'~(t) = (2/L, ) dsP&»(s, t) U„(s). (43)

Xg E„(t) exp —i(v„t+ &p„) dr'U„(r vr')—
IJ 0

Xexp —(&,&+i(~ v„))r' +conj. (—39)

Let us first assume that the excitation rate density
has the form"

). (r, v, t)= W(v)A (r,t) u=u, b, (40)

where W(v) is the normalized velocity distribution
function and A (r, t) is the number of atoms excited to
state a per unit volume and time. Because we are
assuming a spatial dependence of the electric field only
on s, we may change over from a three- to a one-
dimensional description. Then the velocity distribution
W(s) refers to the s component v of v, and r is replaced
by s.

It will be noted that the quantity P(u, s,n, t) is pro-
portional to A (s,t)/y, . When we now consider the
contribution of atoms excited to the lower maser state
b there is a complication which we did not meet in the
case of a excitation. Spontaneous decay of atoms in the
upper mase'i level a Inay be one of the excitation

' It would be easy to modify the theory to allow the atoms
excited to state b to have a different velocity distribution from
those excited to state e.

The product U„(s)U„(s sr') which —occurs in (43)
may be written as

smK~s slllKv(s —'vr )
= —', cos{(K„K„)s+K„—sr')

——,
' cos((K„+K„)s IC„vr''t. —(44)

where the subscript p has been dropped in the last
factor since all of the modes considered have very
nearly the same wave number K=v/c.

We find

P„&'~(t)= ,'i(p'/b) —P-P„exp—i(v„t+ v „)lV. „

dvH'(i)[a(( --v„+K~) ]+conj., (45)

whea. e

&( )=1/(v. +i ) (46)

The last term will not contribute appreciably to the
s integration (43) because the excitation density X(s,t)
changes little in an o.f. wavelength. Since the velocity
distribution is normally an even function of e only
that part of the remainder of (44) which is even in v

will contribute to the polarization, i,e, ,

—',[cos(K„—K„)s] cosKsr',
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is a convenient abbreviation for a frequently occurring
denominator and where

L x'S

fear„„(t)= — dsN(s, t) cos (n —p)— (47)
Z 0 Z

is a spatial Fourier component of the excitation density
N(s, t). It should be noted that (45) has a very simple
interpretation in terms of Doppler shifts of the atomic
transition frequencies by Ev due to the atomic motion.
This simplicity will be lost when nonlinear eRects are
considered.

For the following detailed calculations a Max-
wellian distribution

W(v) = (uir't') ' exp —(v'/u') (48)

will be assumed. The speed parameter u is related to an
eRective temperature T by the equation

~mN'= &AT,

where m is the atomic mass and k~ is the Boltzmann
constant. If it should develop that a Maxwellian dis-
tribution is not realized in practice, some obvious
changes in the later work can be made.

With Eq. (48) the integration over v may profitably
be done on (39) before that over r', and we find

P„o (t) = ——,
' (p'/bEu)

X LQ L„(t) exp —i(v„t+ q „(I))

XN„„(t)Z(v„—co)+ conj.], (50)

part Z, and the imaginary part Z; of Z($+irt) are now
available.

E„&'1(t) is a linear function of the complex electric
fields E„(t) exp —iv„t—i&p„(t) of the cavity modes and,
apart from amp1itude modulation arising from a possible
slow time variation of the excitation density N(s, t) con-
tains the same frequencies as the cavity field.

To determine amplitude and frequency (or phase) of
the oscillations, we write out the contributions of 8„"'
to C„and S„ofEqs. (13), (14). These are

where

5 '"& = —(p'/AEu)NZ;(v pp)E„—

C„"&= —(p'/AKu)NZ, (v„—(o)E,
(56)

(57)

N=lV, (t) = (1/1.) der(st),

(59)

which will be called the "excitation, " is the average of
the excitation density over the cavity. We have now
reverted to the notation of Eq. (51) for the Z function,
but to shorten equations have dropped the parameters
y, p and Euwhich appe'ar as arguments in (51).

In this approximation, without nonlinear terms, we
can only hope to obtain the condition for starting of
oscillations and their frequency at threshold. Further-
more, if the conditions are such that several modes can
oscillate, they do so independently of each other and
hence can be considered separately. The amplitude
equation (14) gives

where Z(v —co) is an abbreviation for

Z(v —~, pop, Eu)

=iEu dr expLi(v —oi)r —y, pr ——E u'r ], (51)

or for a steady state, for which E„=O,

(p'/e pAEu)NZ, (v co) = 1/Q„. —

To first order in rt= y,p/Eu, we have

(60)

which is a complex function well known in the theory
of Doppler broadening. "The function Z is, in fact, a
function of a single complex variable t

Z(t, rt)~(1 —2irtg) —2 e*'dx+irr'" e P' 2irt. (61)—

Hence for pure Doppler line shape the condition (60)
for the onset of oscillations in the eth mode may be
written as

where

Z(t ) =2i dt exp —(ts+ P), 2s itsges/(4s. spy) $
X (p/e)sliN exp —(v„—po)'/(E'u)'= 1/Q„, (62)

i =$+irt,

$ = (v —~o)/Eu,

iI =y.p/Eu.

with (63)
(54)

is the 6ne structure constant, so the left-hand side of
(62) is the product of this and four other dimensionless
factors: c/u, 2s.", exp —(v„—co)'/(Eu)' and (p/e)'IiN
which is the net number of active atonls in a cylinder
of cross sectional area (p/e)' and length X. As the fre-

quency detuning s,„—~ increases, the excitation X re-
quired to initiate oscillations increases in proportion t,o

exp+(v —co)'/(Eu)-'. The frequency of oscillation is

and
(55)

It is fortunate that extensive tables'' -of the re;ll

11M. BOIIl, OPIik (IGllUS SPI'10gil'-V@I'lQg, BCiliII, I933), PP.
4i2-486.

1 H. D. Fried and S. D. Coilt. e, Ther/QSWQ Di SPefS1'ON Fu'tECISD'P'1

(llilbert Transform of the Goussean) (Academic Press, Inc. , New
York, 1961).

(53) where X=27r/E is the wavelength. In these units,

e'/(47rephc) = 1/137
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(v) fn

0„=—
I I I

dge".
E~'I' kQ.& p

(66)

If the integral (66) is expanded to first order in $„
= (v„pp)/KN—we obtain

(v„—0„)/(pp —v„)= (1/s't') (v/QKu) = 8,

which implies "linear pulling, " i.e., the detuning of v

from the cavity frequency 0„ is proportional to the
amount cv —v by which the oscillator frequency u„ is
removed from the atomic resonance frequency ~. The
right-hand side of (67) (8="stabilization factor'"') is
about 1/800 for typical values of the parameters used
in Sec. 2.

The more accurate expression. (65) indicates a "non-
linear pulling" such that the oscillator frequency is

determined by Eq. (13) in which we may set ft„=0
without loss of geri'erality. Using Eq. (57), we find

v„=Q„+(v/2) (p'g/epkKN)Z„(p„oi) —. (64)

It is convenient to use the threshold condition (60) to
express g in terms of Q . We find

v„fl„=—', (v/-Q„) [Z,(v pp)/—Z; (p„cp)—j (65)

or in the approximation y,p/Ke((1

7. THIRD-ORDER TERMS

We now carry out a similar calculation for the third-
order quantity P„"'(t) using Eqs. (8), (23), (30), (31)
and (32). The integration of li, (z,p, tp)p, p&'&(a,z, tp, p, t)
over times to of excitation involves integrals like

tel

d&0 dt' d&"

oo tp tp

dt"'F (t, t', t",t"') exp y,—(t'" tp—),

which by a repeated interchange of orders of integra-
tion can be reduced to

(1/y. ) dt' dt"
tie

dt"'F(t t' t" t'")

Again, we keep only exponential factors in the time
integration which are able to have resonance, and find
after changes of variables

&69)

and some algebraic manipulations

nearer to the atomic frequency than it would be for
linear pulling. To the next order in (0„—cp)/KN, but
still for y,g(&EN, we find

(p- —fl-)/(~ —v-)=L1+ s (~t.—~)'/(K&)'38 (68)

p„p&'~(z, v, t) = ,i p't't -'N(z, t-) Q P g E„F,F.. (exp —i(v„t+ip„)+i(v,t+pp, ) i(v, t+pp—.)]
IJt P

X dr' dr" dr"'U„(z pr') U, (z pr—' vr") U—,(z —sr' pr" —sr'")— —

X (exp $(y.p i v„+—iv p
i—v.+ioi) r'+—(y.+iv, iv.)r"+—(y.p+ipi iv,)r"') )—

+ )exp —i (v„t+ ip„) —i(v, t+ p,)+i (v,t+ y,)$

X dr' dr" dr"'U„(z pr') Up(z sr' —pr") U, (s—pr' —pr" sr'"—)——
0

X Lexp $(y,s iv„—i v,+—iv, +—io&) r'+ (y i v,+i v )r"+ (y,—p itp+iv, )r'"—]]

In calculation of the Fourier projection P„&"(t) integrals of the form

+same with a and b interchanged. (70)

2
dsN (st) U„(z) U„(s—vr') U, (z—vr' —pr") U. (s pr' pr" sr'—")——

I p

appear. The product of the four sine functions can be reduced to

xLcos(E»—E.+E„E„)zcosK'U(r r—)+cos(Kp —E„——E„+K~)s cosK'v(r +r )
+cos(E,+E, K„—E„)zcosKp(r'+2. —r"+r"') ]

'3 The term "stabilization factor" (=cavity band width/atom bandwidth) was Previously used in a theory oj the arfyrnonia beam
maser (Ref. 8, p. 460) where its numerical value was large compared to unity.
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S. SINGI,E FREQUENCY OPERATION

For this case, the triple summation over p, , p, and 0.

reduces to a single term

P„tb& (t) =—,'s iirr'sÃ[ p4/ (Asy.p bKib) $
Xy.b[X&(o&—v„)+ff)(0) jE„&b& exp i—(v„&+ q )

+complex conjugate. (77)

For use in Eqs. (13), (14) we need the in-phase and
quadrature components of this

C„&'&(f) =- -'m'"g[p'/(fi'y ybEib)]

Xy.b(o& —v„)Z(M —v„)E„' (78)

5„&'&(t) =-'m'lsE[P'/(&i'y. ybKib) $
X[1+y,bsZ (o&

—v )]L"„', (79)

where the Lorentzian function is denoted by

be taken zero) is

v„=Q ——,'(v/(epE. ))[C."&+C "&$.

Since the frequency of oscillation v will differ little
from the cavity resonance frequency 0„, the right side
of Eq. (88) may, to a sufficiently good approximation,
be evaluated for v„=0„.We may then write

v n =0n+ &n+ pnEa )

where

o'n = s v[p +/ (eoAKib) jZ, (0„—o&)

p„=+,';m'I'v-[-p'N/(eP'p. ybKib) j
Xy.b(0.—(o)Z(0 —

o&) (91)

or expressing these coef6cients in terms of the relative
excitation (84)

&(~—v) = [v.b'+ (~—v)'] '. (80)
and

o-„=-', (v/Q„) XZ„(0„—o&)/Z, (0)

=+ "'( /Q )&[I/(&i' . bZ'(0))j
Xy.b(0 o&)Z—(0„—o&) (93)E =or„E,„P„E„', — (81)

so that
where

The amplitude determining Eq. (13) is then of the
forIll

n = ——', (v/Q„)+-,'vN[p'/(ebSEib) jZ;(v„—o&), (82)

P„= (v/16) rr'"E[p'/ (ebfi'y. ybKN) j
X[1+~.'~( -—)j (83)

It is useful to employ the starting condition (60)
to express the coefficients a„,P„(and others which

appear later) in terms of a ratio

x=5/E, (84)

called the "relative excitation" where X~ is the excita-
tion required for threshold oscillations when the cavity
frequency 0„ is tuned to the peak or of the atomic
resonance curve. We find.

~-= s (v/Q-) {LZ'(v- —~)/Z'(0) j&—1) (85)

~.=—:.'&'(/Q-)[~p'/(f'~. v~;(0))j
X[1+~.'~(.—)j. (86)

A stable steady state occurs for an intensity of
oscillations

(87)

which is easily related to the relative excitation with
the help of Eqs. (85) and (86).

The frequency determining equation (again p„may

'4 It is easy to see that the coef6cient 0,„is simply related to the
gain (negative absorption) coefficient of the medium at frequency
v„ for small signals. However, the gain coefBcient for a strong
signal cannot be safely inferred from Eq. (81), since standing
rather than traveling waves were assumed in its derivation. A
theory of a traveling wave maser along the lines of this paper will
be given later.

an increase of excitation should move the frequency in

the direction from ~ toward 0„.For small detuning the
right side of (95) is approximately srir'I'&, bKN.

The dependence of power level on excitation and
detuning is given by Eq. (87). Using the value of

Z;($„,&l) for K=O, this equation may be written ap-
proximately as

(pP-.)'/(f'V. Vb)

(0„—o&)'-

(Eib)'
1[+y.b'Z (0„—o&)].

(96)

This expression agrees with the linear approximation
(62) in predicting threshold for relative excitation

X=g/¹= exp(0 —o&)'/(Eu)'

when there is detuning. Because of its derivation from
a third order perturbation theory, Eq. (96) should not
be trusted unless it predicts a value of the "saturation

f.P--'=f -~-/0
= l ( /Q-) fLZ'(0- —)/Z'(0)l& —I)v. (0-—)/

[2y.bi+ (0„—o&)'$. (94)

The frequency now depends on the relative excitation
(and hence on the power level) as well as on the detun-

ing, i.e., there is frequency "pushing" as well as
"pulling. "

Equations (89), (92), and (94) indicate that for

(0„—o&)'+2y. bs (—y,b(0„—o&)Z (0 —o&)/

Z, (0„—o&) (95)
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TABLE I, This shows tIIc twenty-seven possible vahics of the
summation indices p, p, 0 which appear in Eq. (76) for "three"-
mode oscillation. The fourth column gives the corresponding fre-
quencies P„—P,+P,. The last column contains numerical values
for the amount by which these frequencies exceed v1. We have
taken vz —van=150 Mc/sec and vz —vs=151 Mc/sec in order to
simulate (but greatly to exaggerate) nonlinear pulling etfects.

V& V&+V
Typical bv

(Mc/sec)

I'IG. 2. Relative intensity of oscillation as a function of de-
tuning. The solid curve, drawn for parameters %=2' and Ezs
=4y, z represents Eq. (96) . The dotted curve indicates the Doppler
gain profile of the numerator of (96).

parameter'"'

much less than unity.
The numerator in Eq. (96) has a peak for resonant

tuning Q„=co, but the denominator, which comes from
the nonlinear term involving the coeKcient P„also has
a peak when Q„=co. Under certain conditions, the
over-all curve of E„'=n /P„versus detuning 0 —~
should have a flattened peak at resonance, or even a
dip between two maxima. The condition for the appear-
ance of two maxima is

(y.s/Kzz)'& ', f 1 ex-p —$(Q„*—~)'/(Ezz)' j}, (99)

where 0„*—co is the detuning required to stop oscilla-
tions at the given level of excitation. The double peak"
(see Fig. 2) should thus be seen somewhat above
threshold, i.e., for relative excitation

Dt & 1/L1 —2 (y.s/ (Eu) )'j . (100)

so that the neglect of higher orders of perturbation
theory should not be too serious, provided, as we

assume, that y.b((Eu.

"The signi6cance of this quantity is shown more clearly in
Sec. 18.

' This dip has recently been observed. R. A. McFarlane, %.
R. Bennett, and W. E. Lamb, Appl. Phys. Letters 2, 189 (1963);
A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963).

Under this degree of relative excitation, the electric
field at central tuning is given by

I„=—,
' (pE„)'/(Iz'y. ys) =4(7.s/(Eu) )'-((1 (101)

V1

P2

P3

2V1—V2

P1

Vl+ V3 —P2

2P1—P3

P1+P2 —P3

P]
V2

2V2 —P1

P2+P3 —P1

PI

P3

V1+P2 —V3

2P2 V3

P2

V3

V2+ V3 P1

2V3 —P1

Py+P3 —P2

P3

2V3 P2

P1

V2

P3

0
150
301—150

0
151—301—151

0
150
300
451

0
150
301—151—1
150
301
451
602
151
301
452

0
150
301

The physical interpretation of the dip is discussed
in Secs. 17 and 18 from several points of view.

"B.van der Pol, Phil. Mag. 43, 700 (1922) and a review article
Proc. Inst. Radio Engrs. 22, 1051 (1934).

9. MULTIPLE MODE OPERATION

As the excitation is increased beyond that required
for threshold of single frequency oscillation, other fre-
quencies appear in the output of an optical maser oscil-
lator. We wish to use the expression (76) for the non-

linear polarization in the electromagnetic field equa-
tions (13), (14) in order to account for the observed
phenomena.

The first theory of an oscillator capable of multi-
frequency operation was given by van der Pol' in
1921-22. The necessary nonlinear features were pro-
vided by cubic terms in the current-voltage character-
istic of a triode vacuum tube. The tank had two E-I.-C
circuits with resonance frequencies 0& and 02. Van der
Pol found that steady oscillations could occur only at
frequencies near Qj or 02, but that simultaneous steady
operation at the two frequencies was impossible. There
were hysteresis phenomena, i.e., the choice of steady
state of oscillation depended on the past history of the
circuit parameters.

Multicavity magnetrons provide very impor tant
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TAnr. E II. This table gives various quantities needed for the evaluation of Kq. (76) for
three-frequency oscillation as described in the text.

Vp Vy Ce—-P +-V —P ——
V ——V +V1 & 1 1

2 p~2 p tr 2 p 2 ~~ p P& P p+P p —0.+p,—n 0 —p+p, —n

0
0
0

2D

0

0
0

0—2A

0
0

C0 —V1

C0 —V12

CO VQ

N —V1

CO
—V1

CO
—P12

Ct) P2

C0 V2

Co —V12

GD V23

CO V2

G0 P23
G0 —V12

C0 V3

Gl V3

Cd V3

C0 —V2

Gl V23

CO V23

0
1Q
2

1g
2

1
2.
1
2lg
1Q
2
cc0)7

c(0)P

0

1
2

1
2

V1

Vl

V1

V1

2P2 V3

P2

V2

V2

P2

V2

V1+P8 V2

Vs+ V3 —V2

V3

V3

P3

P3

P3

2PQ V1

0—2
0
0
2—2
2

0
4—2
0
0—2

examples of oscillators capable of multifrequency opera-
tion, and here again the normal pattern is that an
oscillation existing at one frequency tends to suppress
one at another frequency.

There is, of course, a very close connection between
van der Pol's work and ours. Where he dealt with a
nonlinear triode characteristic for a vacuum tube, we
are concerned with the nonlinear response of an as-
sembly of atomic systems which obey the laws of
quantum mechanics. A one-to-one correspondence can
be set up between the two problems. The Fabry-Perot
cavity modes correspond to the resonant constituents
of van der Pol's plate circuit. As we will see, however,
the effective tube characteristics of the optical medium
differ qualitatively from that assumed by van der Pol,
and hence the optical maser behaves in a very different
fashion with respect to multifrequency operation than
the oscillator in van der Pol's original model.

Rather than deal next with the case of two-frequency
operation, it will perhaps save space to consider first the
more general case of three-frequency operation. Prob-
ably most of the interesting phenomena for optical
gaseous masers can be understood without dealing ex-
plicitly with more than three frequencies. After the
more general equations have been obtained, we can
easily drop terms and discuss two frequency oscillation
as a special and simpler case.

We consider the expression (76) for the third-order
polarization, in which the indices p, , p, a-, and e can each
take on values 1, 2, and 3. It is useful to have the
ingredients of the summands in tabular form. The
entries in the fourth column of Table I give the fre-
quencies of the various summands in P„&'& identified
by the p, p, and cT values in the first three columns. It
will be noted that besides the three frequencies v&, v&,

and v3 assumed in the cavity excitation, there are nine

additional frequencies present in the polarization of the
medium. Hence there must be fields in the cavity at
these new frequencies, and the desired self-consistency
for three-frequency operation is in jeopardy. However,
under certain conditions which will be determined later,
the fields at the new frequencies do not produce appreci-
able effects, even though the frequencies lie close to
cavity resonance, so that the calculation can be made
as planned.

As is already apparent from the single-frequency case,
the oscillation frequencies v are typically very close
to the cavity frequencies 0„, which are equally spaced
and separated by

6= 150 Mc/sec. (102)

vis s (vl+v2) etc. (103)

The entries in the last two columns of Table II are the

Hence three of the new frequencies: 2vs —vs, vt+vs —vs,

and 2v2 —v~ are very close to the three main frequencies
v&, v2, and v3, respectively, and the corresponding terms
are carried along in the calculations. The remaining fre-
quencies can be ignored as long as the oscillator is appre-
ciably below threshold for four-frequency operation.

Any pulling of v from 0„ is typically measured in
kc/sec and hence the v are not detuned from Q„by an
appreciable fraction either of the cavity bandwidths
v/Q„which are about 1 Mc/sec, or of the radiative
decay constants y„y&, or y s which may be 10 Mc/sec
or more. The entries in columns 5, 6, and 7 of Table II
occur in the frequency denominators in Eq. (76) and
are there to be combined with imaginary numbers —ip„—iyb, or —iy ~. We have neglected the small terms
arising from frequency pulling. Thus v2 —v& is freely
replaced by 6 of Eq. (102), etc. A symbol like v» de-
notes a frequency halfway between v& and v2, etc. ,



integers characterizing the spatial Fourier components
(O'I) of the excitation density which are needed for the
evaluation of the contribution to (76) arising from the
indices p, p, 0., and n.

The combinations (u,p, 0) which contribute third
order polarizations at frequency vl are (1,1,1), (1,2,2),
(1,3,3), (2,2,1), and (3,3,1) while (2,3,2) gives a con-

tribution near v~. Each summand has a product of two-
resonance denominators. The dominant terms are
(1,1,1), (1,2,2), and (1,3,3) since they do not necessarily
contain inverse powers of h. The other terms have at
least one power of 6 in the denominator. All terms will

ultimately be expanded to order 1/d3.
We hand

~i"'(~)= 303~'"Lp'/»'Ku)]L{Ei'N(v. b/(v. vb))(&(~ —»)+ &(0))
+EiE3'N(V.bl(V.Vb))(&(~ vi—l)+ &(~/2))+ElE3'N(V. b/(V. 7b))(&(~—»)+&(~))
+E33EiL-,'Nbx)(&o —vi)+3Nn(h/2)]($. (d)+ nb(h)]+E3'Elf'3N3$(~0 —vl)+3'Nn(4)]
XLX)a(2&)+ Sb(2&)]}exp —3(Pit+ 0 l)+-', E3'E3LN3n(0~ —vi3)+NX)(h)]Lna(&)+ Sb(&)]

Xexp —i((2P3—v, )t—(2003—y3))]+complex conjugate. (104)
The in-phase coeKcient Cj &'& is then

Ci&' = 3~' 'p-p'/(&'Ku)])Ei'N(gab/(yayb)) (00 vi)Z—(00—vi)+ElE3'N(Vab/(Yap b))L(oi —vl3)~(~ —vl3)+(2/~)]
+E1E3N (V /ab(7 va)bL (30 P2) ~ (iO P3)+ (1/~)]+E3 E1N37ab(00 vi+ ~)oC (C0 Vl)/~

+3E3 ElN47ab(00 vi+2+)@(ol vl)/+ +E3 E34 '{N3'rab(ol —vi3++)aC((0 vl3) cosf
+LN3(y, b3—(00—vlo)h)Z(0l —vi3) —N] sinip}], (105)

where the "relative phase angle" P is defined as

f= (2v3—vi —vo)&+ (2003—00,—003) . (106)

There are similar expressions for the other coefflcients which appear in the self-consistent. field equations (13)
and (14).

The generalization of Eq. (81) takes the form

Ei &1E1 PlEl 812E1E2 813E1E3 (f23 cosf+ bb sing)E3 E3

E2 oi3E3 p2E2 821E3E1 833ESE3 (613 COSlJf+ $33 Sing)E1E3E3 )

E3 &3E3 P3E3 831E3Ei 832E3E2 ('f21 Coslp+ 521 sing)E3 Ei ~

(108)

The coefficients n„and P„were already calculated in the single-frequency case, and are given by Eqs. (82) and
(83). The other coefflcients are given by

812 3 olr v( p /(&ok Ku)) {Nabab'(rayb) 'fZ (co—vl3)+46—']—2ND —'+N26
.8 ab (00 Pl)5]@(M Pl) }) (109)

813 i olr v( p /(&0 Ku)) {N'yab (papb) EZ (ol v3)+6 ] 3NA +3N36 Pyab 2(co vi)A—]Z (ol——vl) }, (110)

g33
———,',n-'~'V( p' /( 050' Kurt) ){N3Lyab' —(oi—Vio) h]Z (oi—Vio) —N}, (111)

$33= ifll P p (COA Kuk ) NA'ab(00 P13+6)Z(R P13) ) (112)

83i ,'Olr'~'V p——'—( A0K0u) {Nabab (papb) I eC (CO Pi)o+64]+N36 fpab + ((0 P3)A]Z(M V2) —2ND '}, (113)

833 i'os' 'v p'(ook——3Ku) '{Nabab'(yayb)
—'pZ (&o P»)+—4h ']+—N36 'pyab' (~—V3)

—A]g (&0
——

P3)—2N—A
—'}, (114)

301I P p (00A Kulak) N3'rabp(00 P33 A)z(00 P33)+ (00 P12++)@(00 P12)] )1 (115)

'glo iolr v p (&0@ Ku+ ) {N3E'rab + (4 P23)~]@(ol V33)+N3LVab (ol P12)6]&(io—vl3)+2N}, (116)

831 lola v p (ooh Ku) {Np 3 ( r,'rb) '(Z(&o —v3)+6 ]+&N46 3L'r b +2(ol—V3)LQZ(a) —vb) —3NA }, (117)

833 m'~ v P (ooh Ku) —{Nr b (ra| b) LZ (00—v33)+46 ]+N36 grab + (00—V3)rgb (ol —v3) —2ND }, (118)

921 iblr P p (Ook Kuk ) {N2$+ab + (N P23)6]Z(00 P23) (119)

$21 ibid V p (&0~ Ku~ ) N27ab(ol V23 ~)~(& V23) (120)

The quadrature coeKcient S&"& is given by
Si&3'= sin''3fp4/(h3Ku)]{E33Npy, b3Z(ol —vi)+1]/(y.yb)+EiE33N(y. b3Z(ol )v+334'.b

—&33]/(y.vb)

+EiE33Nfy, boa(00 V3)+y,bod—3]/(y yb)+E33Eih 3$N3(y, b3—(00 —vl)h)z(ol —vi) —2N]
+3E3 Eid, 't N4(rab' —2 (ol—vi)h)Z(~ v, ) 2N]+E3—E36—'LLN3(gab' —(ol —P13)6)+(00 vl2) N] coslp

N37 b(oi »3+~—)&(ol—»3)»nf]} (1o7)



TH EOR Y OF OPT I CAL MASER

The frequency and phase determining qinin e uations are of the form

(121)+ + ER+TRRER'+TlsER'+ER'ERE1 '(ass»nf —
Rs eo1'1+ 4'1=IIRW4rlmpl 1 Tl 2

- sin —
Rs eo

(12'2)vs+ 4s'2 IIR+4r2 PR 2 T21 1 TR 2

(123)—0 + + E +T E +TRRERR+ER ERER ('Qsl sllllp 21 cos

w ere e coe
' „ iven b Kqs. (90) and (91), and the p's and $'s by Kqs. (where the coefficients o„and p„are already given by Eqs. an

116 119), and (120). The remaining coefficients are

'].-', .„... „'( eh'EN) —'(E(y.yb)
—'fy. s(ol —vis) Z (ru —1 12

—2y s

— ) '3.-',.(. „").(. „&,= ——' lr"'1 ~'(e O'EN) '(N(y ys) 'Py.—s(ol ass)—Z(4u v —2V s

1 1/2 4( issltN) —1P7(~ ~ )
—

1L~ (~ p )g(4e&32— yg& & P &0

(130)

where the coeKcients n, p„, 812, an 821n 0 are now given
by Kqs. (82), (83), (109), and (113).

introducing the squared amplitudes

I=Ei' and I"=E2', (131)

10. TWO-FREQUENCY OPERATION

We may here drop all terms referring to the third
no "combination tones" in

'th 0 and 02. The amplitudes Ei annear resonance wit i an
E2 are determined by the differential equations

El nlE1 plE1 812E1E2 )

@2 nRER 821ERE1 pRE2

e uations it is seen a eth t ach curve has a vertical ta,n-
th first of the straight lines (133),

and a horizontal tangent when it crosses the secon
'

ht line. This principle facilitates a very simple, if
qualitative, graphical integration o the i
equations (132) for the paths of the phase points in the
cases discussed below.

The various possibilities are depicted' in igs.
where it is assumed that both O.i and 0.2 are positive,

t.oI"

Kqs. (126) become

X=2X(nl —plX —812Y),
F= 2Y(ns 821X —pRY) .— (132)

Y

The con i ionh d't for a steady state of osci ation is
X=O, Y=O and may represent graphically in an
pane y e pl b th oint of intersection of the two straight
lines

05"

I 1 plX+812Y nl p

LR. 821X+pRY=ns,
(133)

if there is one in the 6rst quadrant, tog ether with the
single-frequency solutions

X=n /Pl F=0 and X=0, Y=ns/PR. (134)+1 lp

0—
0 0.5

l

I.O

The diBerential equations (132) allow us to follow the
temporal behavior of the state X, I' of oscillation in the

hase plane X Y. Through any point in this plane (ex-
cept stationa. ry poin s, . ' in i-

he ath followed by the representative porncates t e pa o ow
oscilla, tion. The(X Y) on its way to a stable state of osci a

parame rictric equations of the curves are
t e differentialwith the time t as parameter. From the i

win the transient behavior of two-FIG. 3. Phase curves sho mg
rai ht lines L,1 and 2 o q.

is zero when it crosses line I- and in-
line 1.1. Although both modes are above6nite when it crosses ine 1. oug

threshold, the favored X oscillation is a e o
oscillation.

hs of Fi s. 2—4 were kindly integrated on an
m . . '

of the Engineering Science
thc author is very indebted.

m uter b Dr. B. Wise o e
Laboratory, Oxford, to w om c au
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l.o

0.5

0
0 0.5 I.O

FIG. 4. Diagram similar to Fig. 3, except that the gain pa-
rameter for the second mode has been raised to n2 ——1. Simul-
taneous oscillations at both frequencies occur at the single stable
steady state. Both Figs. 3 and 4 correspond to "weak" coupling,

so that the two modes are individually above threshold.
The coeKcients P„are necessarily positive if the optical
medium is an active one, and while the mode competi-
tion coefficients 8 could conceivably have the opposite
sign, they have been assumed positive (and equal to
each other) in drawing the figures.

Figure 3 applies when mode 1 is well above threshold,
but mode 2 is only a little above its threshold, either
because the cavity resonance frequency 02 is detuned
from the atomic transition frequency co or possibly be-
cause Qs(Q, . It is clear that the point (est/Pi, 0) repre-
sents a stable state of oscillation, while (O,ns/Ps)
corresponds to an unstable steady state. Hence there is
a range of operation above threshold of modes 1 and 2
where oscillations in the favored mode 1 are able to
inhibit oscillations at the second frequency. One might
say that the effective gain for the second mode

cts' ——ns —8X=ns —8nt/Pt

intersection of the two straight lines gives stable
steady-state operation, while the single-frequency oper-
ating points are unstable. The optical maser oscillates
simultaneously at two frequencies under these condi-
tions. For strong coupling, on the other hand, the point
of intersection of the two straight lines represents an
unstable steady state and would not be realized in
practice. All other points in the state diagram evolve
into one or the other of the single-frequency operation
points. Which of the two is reached depends on the past
history of the state of oscillation. In other words, there
is hysteresis.

In the Doppler broadened gaseous optical maser
Eqs. (83), (109), and (113) indicate that the case of
weak coupling is naturally favored, since PPs tends to
be greater than 8~282~. Hence, with possible exceptions
such as the one discussed in the next section, double
frequency operation is preferred. However, when van
der Pol's theory of a double resonance feed back triode
oscillator is transcribed into our notation, one finds
that in his case 8= 2P. This results from his assumption
of a term (Ei cosvit+Escosvst)' in the triode output
current. After discarding terms which have frequencies
far from v~ and v2, this becomes

s (El +2E1E2 ) cosvlf 14 (E2 +2E2E1 ) cosv2$ )

which leads to the stated relation 8=2P. The van der
Pol oscillator prefers operation at a single frequency and
exhibits hysteresis phenomena, as in the case of strong
coupling. Evidently the atomic medium of an optical

l.o

0.5

is being made negative by the presence of oscillations
at vi. From Eqs. (109) and (113) it is seen that the in-
hibiting eGect is enhanced when v~2=co, or when the
two cavity modes are on opposite sides of the atomic
transition frequency, and approximately equally far
from it. The physical interpretation of this effect which
clearly involves o.f. saturation will be brought out more
clearly in Sec. 18.

As the excitation increases, n2' will eventually become
positive, arid the relevant diagrams are Figs. 4 and 5.
The former applies when Ptas&8' (weak coupling) and
the latter when Ptas(8' (strong coupling).

The two cases of weak and strong coupling give very
different behaviors. I'or weak. coupling the point of

0
0 0.5

X
I.O

FIG. 5. Phase curves showing the transient behavior of two-
mode oscillation when the straight lines Li and ls of Eq. (133)
are taken to have the coefficients nI =n2= 1, pI =pg= j., 62=~2& = 2
(strong coupling). There are two possible stable steady states,
each corresponding to single-frequency operation. The particular
state reached depends on the initial conditions. Hysteresis phe-
nomena would occur if the parameters characterizing the oscil-
lator were slowly changed.
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maser divers from van der Pol's triode oscillator be-
cause the nonlinear response of the atoms to frequencies
v~ and v2 has a resonant character not assumed of the
triode. It will become clearer from the discussion of
Sec. 18 that two groups of atoms with different velocity
are driving the two oscillations with only a limited
degree of interference. One could easily make a com-
parable model of the van der Pol type with two triodes
each with its own tank circuit. A small amount of
coupling between the two oscillators would produce
intermode e6ects described by the 8 coefficients iri the
weak-coupling case.

There is also a further case in which the two straight
lines coincide, i.e., when nl/n2 ——Pl/8= 8/P2. In that case,
there is a neutral steady state for the representative
point lying anywhere on the line within the first quad-
rant. In practice, the state of operation when this
condition is nearly satisfied should be very sensitive to
microphonic disturbances.

Pl Ql+0 1+pl+I +TlsE2

V2 Q2+K2+P2E2 +T21E1
(136)

where the right-hand sides are to be evaluated for
P„=Q„,and the E„2 are as given in (135).

These equations are fairly complicated, and probably
can be used in full generality only for a numerical
analysis" of very detailed data on optical maser opera-
tion. Such a study would be simplified if the values of
the E's could be inferred experimentally, since that
would effectively reduce the dependence of Eqs. (136)
on cavity tuning. For the present we will merely work
out the frequencies for the important case of "rnid-
tuning" where v12 ———,'(vl+v2) =u&, cv

—vl ———,& and v2 —cu

= ~4. If we regard 6 as being much greater than the
p's, we then may approximate the coefficients appearing
in Eqs. (135)—(136) as follows:

pl p2 812 821 —,'32r' 'p'N(33k'E23y. yb) '=p, (13&)

P2= PI=27 bA P=P~

~2j.= P

(138)

(139)

Such an analysis is being made by Dr. R. L. Fork and Dr.
M. A. Pollack. The author is very grateful to them for helpful
fliscussions on this and other parts of the manuscript.

11. INTENSITIES AND FREQUENCIES IN
TWO-MODE OPERATION

The two-mode steady-state solution of (130) is
given by

+1 (p2nl 812n2)/(plp2 812821) y

(135)
+2 (pln2 821nl)/(plp2 812821) y

where, as explained before, the right-hand sides may be
evaluated for v~=0~ and v2=02 without appreciable
error. The frequencies are obtained by dropping in-
applicable terms from Eqs. (121)—(123). We may set
j&= q» without loss of generality, and And

v 1=Q 1+a 1 pn/—P,
P2=Q2+0'2+Pn/p q

(141)

so that the beat frequency is

P2 Pl—~+ (&2 01)+47abn/~. (142)

It will be seen that in the approximations of Eq.
(137) we have plp2= 812821, and hence in order to decide
whether the coupling is "weak" or "strong" it is neces-
sary to evaluate the coefficients P and 8 more exactly.
In case of exact midtuning, one finds that P' —8' has
the same sign as N+N2. Ordinarily this would be
positive since N must be positive for oscillations to
occur. However, it is possible in principle to arrange to
have N)0 and N2( Nby h—aving N(s))0 in the
middle two quarters of the tube length, and N(s)(0
in the end quarters. In practice the last requirement
could be met by adjusting the gas discharge conditions
near the ends so that the lower maser atomic level is
more populated than the upper one. In He-Ne masers
an increase of tube diameter near the ends might be
helpful in this respect. Diffusion of Ne metastables to
the walls is thereby reduced, and electron excitation of
the lower maser level is increased.

12. NORMAL THREE-FREQUENCY OPERATION

Equations (108) and (121)—(123) are fairly compli-
cated, but can be readily used to discuss a number of
special cases, as indicated in the following three sections.

In general, unless care is taken to adjust the cavity
tuning very accurately, the three frequencies v&, v2, and
v3 will be such that the relative phase angle p of Eq.
(106) is a linear function of the tilne. Then the last
terms in Eqs. (108), (121)—(123) are periodic functions
of time, and in some approximation their effects average
out. If we neglect these terms, we can get a steady-state
solution for the intensities E~', E~', E3' from the system
of inhomogeneous linear equations

nl pAI +812~2 +818~8 y

n2 p2+2 +821+1 +823+8

n8 p3E8 +881+1 +832+2

(143)

and for the frequencies vi, v2, v3 from

Pl= Ql+0 I+Pl@I +T12E2 +T13+8

P2= Q2+&2+P2+2 +T21+I +T2888 'y

P8=Q3+08+P8E3 +T31+1+T82'F2

again taking j»= j~= j3=0. Since the coeKcients in
Eqs. (143) and (144) are slowly varying functions of
frequency, it will suffice first to determine the E„' from

Rnd assuming Ql=Q2=Q, 'tile gRlI1 palaIIletels becoIIle

nl=n2 —',vQ„—I(XLZ, (2A)/Z, (0)j—1)=n. (140)

The intensities are 812=822= 2n/P, and the frequencies
are
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(143) and then to calculate the v„'s from (144). The
equations are a fairly obvious generalization of those
for the two frequency case. It will be noted that opera-
tion with El'/0, E2'&0 can inhibit normal oscillation
at v3 until, with increasing excitation,

O.3'= e3—83lEl' —832E2' (145)

becomes positive.
Further discussion of pulling, pushing, and mode

competition for this case will be left to readers requiring
a numerical analysis of their data.

~p= —l (~/Qp)/Gp (149)

13. COMBINATION TONES

As mentioned in Secs. 7, 9, the third-order polariza-
tion 8„&"(t) of the active medium has constituents
which oscillate at all possible frequencies of the form
v„—v,+v,. Even for "two"-frequency oscillation, there
are additional frequencies 2v2 —vl—=v3' and 2vl —v2—=vo'

in the polarization which are very close to resonance
with the principal cavity modes just above and below
the two 0& and 02 of main interest. As a consequence of
Maxwell's equations, fields at frequencies v3' and vo'

necessarily exist in the cavity and can appear in the
output. Well below the threshold for normal three-
frequency oscillation, Ap (and also Ep) will be much
smaller than El and E2. We also assume y ~&&h&&EN

and v2~co so that

gpss~ ——,'p7r'~'v p'(ppfi'KNA') 'LN+2Npj, (146)

(u—0

For a steady state, the third Eq. (108) then gives

Ep gp~EpPL'~Lnp —Hp~EP —eppEI'j ' cosP. (147)

The relative phase angle f is determined by Eq. (123)
to have sing 0, whence

~
cosg j

—1, and

E = 'n'~'v p'—(pp—k'Kuh')

g p(X3 epJEp gp2Ep ) ~
N+2N2

~
EpEJ ~ (148)

This expression is intended to be used under excitation
conditions for which the denominator is negative. When
the excitation increases, and the factor involving n3

turns positive, the neglected nonlinear terms in E3
would have to be taken into account in order to de-
scribe the previously discussed normal three-frequency
operation.

In order to obtain the combination tone (2vp —v~)

experimentally, one should adjust the cavity tuning so
02 is slightly above the atomic transition frequency co,

thereby making Ql a little nearer resonance than 03.
The excitation should be increased until "two"-fre-
quency operation is obtained, but not yet genuine
three-frequency operation.

Under these conditions, the 8's in Eq. (148) contain
a. factor 6 --' and to simplify the discussion they will

now be neglected. Equation (148) then has a factor in
i f;s denominator

14. FREQUENCY LOCKING PHENOMENA

It has been obscured by Javan" and by Fork" that
when the cavity tuning is gradually changed in normal
three-frequency operation so that the separation of the
beat notes v2—vl and v3—v2 approaches a small value
(typically of order 1 kc/sec), a frequency jump occurs.
This phenomenon can be easily understood by refer-
ence to Eqs. (121)—(123). For simplicity, we neglect
the small frequency pushing associated with the terms
involving p and 7-„, since the nonlinear pulling
terms 0-„already give sufhcient generality to the fre-
quency relationships. By subtracting the sum of Eqs.
(121)—(123) from twice Eq. (122), we lnd a differential
equation for the relative phase angle g of Eq. (106) in
the form

where

P=o.+A sinP+B cos|f,

0 = 202—(Fl—f73,

(153)

(154)

and 3 and 8 are slowly varying quantities which de-

pend on the E„,$„„,and q„.We evaluate the $„and
with the usual approximations y ~&&8&&EN. Then

Y/pp~gpy~ ~~7l' ~ vp (ppk KNZP) '(N+2Np},
-'m' 'v p'(p O'JteLV)(N ~Ã.} (155)

f; p Pp~ b-p—0—--—'

Because of the lleailj' Nj, iiliActi'ical t.ililitlg of, vl Kiwis &;,

~A. Javan, private coIon&ulUcatjoas fox svbjcb f;he auf. hor is
vega grateful.

where the gain factor 63 is given approximately by

Gp = L1—(N/Np) (Z;(d,)/Z;(0) )j ', (150)

if one is not too near to threshold for normal three-
frequency operation. Equations (148)-(150), within
their domain of validity, indicate that E3 is smaller
than El by a factor

Ep/E, = pm'i'p'Ep'(ppPKNiV) 'QpGpiN+2Npi . (151)

Using Eq. (62) for n=3, this can be expressed in a
convenient form

&p/&~=-'r. p (P&p)'/(&'v. vp) j((v.v p)/~'jGp

X
~
1+(2N&/N)

~
exp(A/Kn)', (152)

which shows how the amplitude of the combination
tone depends on G3, and on the saturation parameter
as given by Eq. (96) for x= 2. It should be noted that
Eq. (152) could vanish if the spatial distribution of the
excitation density is such that 2Xp+N=O. (If the ex-
citation is confined to the central region of the Fabry-
Perot tube, N& and N, by Eqs. (47), (58) have opposite
signs. ) An experimental study of the above phenomena
might facilitate determination of some of the quantities
which enter into our equations but for which direct
experimental values are not yet available.
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lt =0+A sinlt+B cosf

has an implicit solution

(157)

t(f) = dx/(a+A sinx+8 cosx),. (158)

where ltp is the value of p at t=0. The character of
the function lt (t) depends critically on whether

(A2+B2)1/2(
l
~

l
or (Ap+B2)1/Q+

In the first case, the integrand of (158) has no singu-
larities in the range of integration, and one finds that
as f approaches infinity so does t. Asymptotically,
apart from pulsations, one has lt—at+const. On inser-
tion of this value in Eqs. (121)—(123) one finds that the
frequencies are given by

Va Qa+0 a

apart from pushing effects and pulsations of phase q,
in agreement with the results of Sec. 6 with the approxi-
mations made here.

In the second case, (A'+B'))~', the integral di-

verges, i.e., t~~ when lt reaches the value —sin '
X(o/(A'+B')'/'. In other words, P(t) approaches this
value asymptotically. The disappearance from lt of
any linear dependence on t forces v3—v2=v2 —v~ and
frequency locking ensues, with a definite relative phase
angle 2+2—

qadi
—p3.

Let us suppose that the maser is in normal three-
frequency operation with two distinct beat notes v3 —v2

and vp —vi near to 6=150 Mc/sec, i.e., 0=(vp —v2)—(vp —vi) is somewhat greater than (A'+B')'/ As the
middle cavity frequency 02 is tuned closer to the atomic
resonance frequency or, the separation of beat note fre-
quencies lo l

decreases. There should be some pulsa-
tions in phase which would increase in amplitude as
symmetrical tuning is approached. When lo l

reaches
(A'+B')'/', a quick transition to the locked state
should be made, and only one beat note should be
observed. Under the additional simplifying assumption
E&)E~=E3, and with use of the starting condition
(60) for single-frequency oscillation, the separation of
the two beat notes which could be attained just before
locking occurs shouM be given by

I ~I =kC(&+2&p)/&~3(eEp/»)"/0 (160)

which is conveniently expressed as a small fraction of
the cavity bandwidth.

It might be pointed out that the above phenomenon

& =
p
rv'/pv p'(epA'Euh')-'

X f (N+21Vp)EpP+2(E —2tl/p)EiP) (156)
8=0.
The differential equation

is very closely related to one discussed by van der PoP'
!n 1924-27. He considered a self-sustained triode oscilla-

tor, capable of oscillation at frequency v~. If an external
signal at v is injected into the tank circuit, it may be
possible to detect a beat note at

l
v—vi l

using a square-
law detector. If, however, v is tuned gradually towards

v~, a very sudden jump occurs, after which oscillations
occur only at v and the beat note disappears. The width

of the "quiet" frequency range depends approximately
linearly on the amplitude of the injected signal, when

this is small. In the case of the optical maser, we can
think that an oscillator at v& is being perturbed by an
"external" signal at the combination tone frequency
v= 2v2 —v3 which arises from the third-order polarization
I't&" (t) induced in the nonlinear active medium.

p-(s, t) = dv . dtp dzp5(s —sp —vt+vtp)

X P h (so, to,v)p, (n, sp, tp, v, t). (161)
a=a, b

It will suffice merely to give the result. One finds, with

obvious approximations

p-(s t) = C~ (s t)/'Y. j+{CA.(s t)/7. 3 CA&(s t)/»3

X—(p /Ku) P P (E„F n, (v„—v )iZ(cp v)—
Xexp~C("—")t+(p.—v")j+c c )

XcosC(u„—uv)vs/I. ] (162)

apart from terms with rapid spatial oscillations.
For single-frequency operation, one 6nds

(s,t) =
I A.(s,t)/v. l
—(C~.(s,t)/~. l—CA (s,t)/~ 3)

X4r (pEt)'(y, Eu) 'Z;(~ —vt), (163)

which contains the lowest order effects of o.f. saturation.
In some cases, the density could be monitored by ob-
servation of the decay radiation emitted from state a
(or t/) in transition to some lower level. (Of course, if

trapping of resonance radiation were involved, the
interpretation would be somewhat complicated. ) The
change produced by o.f. radiation in p (z,t) might
serve to aid in the determination of parameters like

~' H. van der Pol, Phil. Mag. 3, 65 (192'/) and the review article
cited in Ref. 17.

15. POPULATION CHANGES AND PULSATIONS

In the absence of o.f. oscillations, the density of
atoms in one of the two maser states, say a, can be
determined by suitable integrations from p, tP& (a,sp, tp, v, t)
as given by Eq. (24). When oscillations set in, there are
contributions of second order which can be calculated
from p„&p&(n,sptpv, t) using Eq. (31) for rr=a and a
similar equation for e= b. One has
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Y„E~', etc., which enter into all our equations, but
which might not otherwise be known.

For two-frequency operation of the optical maser,
p, has a pulsating constituent at a frequency near 6
besides a dc part. If we assume y, ~ y,))A((E&

p„(s,t)
=LA.(s «)/7 j—{LA.(s t)/&.3—EA (s t)/7 3)

X-,'~'«'y'(Euy. )-'ttErs exp —(o —v,)'/(Eu)'
+Ess exp —(co—vs)'/(Eu)'$+ ( LA./y. j—

LAb/pbbs)

X-,'s'" p'(Euh) 'EtEsLexp —(te —vt)'/(Itu)'
+exp —(co—vs)'/(Eu)') c o(sar /sI. ) sin(v, —v,)t.

(164)

I'"rom this expression one sees that the amplitude of the
pulsations at frequency near 6, relative to the dc
change in population due to o.f. oscillation, should be

2E E (E,'+E ') '(7 /6) cos( s/I. ),
if, for simplicity, we neglect the Gaussian exponentials.
Here again, it might be useful to use this phenomenon
as a diagnostic tool while undertaking a systematic
study of two-frequency operation.

16. CONNECTIONS WITH PREVIOUS CALCULATIONS

The basic paper in this field is, of course, that of
Schawlow and Townes' who give expressions for thresh-
old equivalent to (62). Townes" has also given an equa-
tion for linear pulling, as has Javan" for nonlinear
pulling.

Oscillations of an optical maser involve the propaga-
tion of radiation in a nonlinear medium. Several papers
have recently appeared which deal with this subject.
For various reasons, these do not apply very closely to
our particular problem. Thus, Bloembergen et al.24 and
Franken and Ward" treated harmonic generation which

plays a relatively minor role for us. Teng and Statz26

discussed low-order nonlinearities in a gaseous medium,
but, as will be discussed below, their treatment of
Doppler broadening is not adequate for our purposes.
Also our model for radiation damping is more realistic
than theirs which involves just one relaxation time T,
while our equations contain two decay constants 7
and Vb To be sur. e, the combination y, b=-,'(y +yb)
enters most equations, and this might be identified
with r—'.

Among other publications which deal with maser
theory are those of Wagner and Birnbaum'~ and of

"C. H. To@mes, Admnces irI, QNaetlm E/ectrorIics, edited by
J. Singer (Columbia University Press, New York, 1961),pp. 3—11.

"A. Javan, E. A. Ballik, and W. L. Bond, J. Opt. Soc. Am. 52,
96 (1962).

'4 J. A. Armstrong, ¹ Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962)."P. A. Franken and J.F.Ward, Rev. Mod. Phys. 35, 23 (1963).

"C.L. Tang and H. Stats, Phys. Rev. 128& 1013 (1962).
27W. G. Wagner and G. Birnbaum, J. Appl. Phys. 32, 1185

(1961).

McCumber. ' These papers consider to some extent
the quantum nature of the electromagnetic Geld. They
diGer greatly in spirit and content from ours, and we
will not attempt to make a comparison here. The work
of Haken and Sauermann" and of Davis" seems much
closer to ours, but there are significant differences in the
models used, and in the appearance of our equations.

As mentioned in Sec. 4 an earlier calculation8 appli-
cable to an optical gaseous maser neglected complica-
tions arising from the atomic motions and multimode
oscillation. It was then possib1e to work with a density
matrix p(r, t) characterizing an ensemble' of atoms at
position r at time t which were excited at any time to (t.
This obeyed

ip = PC,pg —(i/2) (I'p+ pI')+i A. , (165)

which differs from (18) by the term containing a source
matrix A describing the (slowly varying) rate densities
of excitations A, and A~

«A, 0 )
(166)

(In most applications A will be a diagonal matrix. )
It is possible to carry the calculation to higher order

in the E„ for multimode oscillation without atomic
motion by an iterative procedure in which we begin by
neglecting any time dependence in the population dif-
ference p„—p». In the rotating wave approximation,
one of Eqs. (25) then gives a quasisteady-state solution
for p.b(s, t)

Paa yaPaa+E(Pbb Paa)+Aa &

pbb= Vbpbb+—&(paa pbb)+A—b &

where

E= a(V/«)'2 Z»E.U~(s)(I. (s)

(168)

XLS(o&—v„)(expi(vq —v„)«+i(q b
—&p„))+c.c.].(169)

The "rate constant" R has pulsations for cases of multi-
frequency operation, and through Eq. (168) these would

lead to pulsations in the populations p, and p» at all
beat frequencies vz —v„. If it were deemed necessary to
continue the iteration procedure the pulsating popula-
tion difference p„—p» could be approximately evalu-

'8 D. E. McCumber, Phys. Rev. 130, 675 (1963).
» H. Haken and H. Sauermann, Z. Physik 173, 261 (1963);

176, 47 (1963).
aa L. W. Davis, Proc. Inst. Elec. Engrs. 51, 76 (1963).

X (p, pbb) ex—p i (v„t+ &p—„). (167)

Inserting this in another one of Eqs. (25) and again
making a rotating wave approximation we find rate
equations
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ated from Eq. (168) and put in Eqs. (25) to obtain an
improved Eq. (167).

If we neglect the pulsations in R, we obtain

&= 2 (p/&)'v. b 2 &'LU. (z)7&(~—v,), (17o)

varying function of position, and we 6nd

S„=—p'h —'V.~Z((u —v„)f(w)E„,
where

w= L(p&-)'/(&'V. Vb)PV. b'~(~ —v-)

(176)

which is a plausible generalization of the rate of transi-
tions previously obtained. In a steady state, the popula-
tion difference implied by (168), (170) is

/- / b—b= L(~./v. ) (~—blvb) j
X&1+(2v.b~/(v. vb))j ', (171)

~(z, l) = P(/. b+/. b*) (172)

and the coefficients S„and C„which enter the amplitude
and frequency determining Eqs. (13) and (14) are

2
5,„=——( P'/A) v.bz (~—v.)E.

I.
(173)

dzLU-(z) 0'&(z, ~) L1+(2V-b~(z) )/V. Vb)j '

which shows clearly the effect of o.f. saturation.
Since the rate constant (170) depends on position z

through normal modes U (z), the population difference

(171) also depends on position, and may be said to
have "holes" burned in it. Consequences of this for
mode competition can be discussed along the lines fol-
lowed in Sec. 10. Under most conditions the behavior
will correspond to the weak-coupling case, although if
the excitation density were such that —E2 were larger
than g the strong coupling case might be realized.

Combining Eqs. (165), (167), (171), and (41) we

obtain a polarization

f(w) = (2/w)L1 —(1+w)—'I'j. (1 /8)

If Eq. (175) for S„ is expanded to third order in 8„,
we obtain a result in agreement with that given by Eqs.
(56), (72) for the single-frequency case with no atomic
motion. It should be noted that whether (175) is ex-
panded or not, the amplitude of oscillation has a maxi-
mum for resonant tuning and falls oG monotonically
with detuning. There is no indication here that the
double maximum of Sec. 8 might be a spurious one which
arises from the neglect of 6fth or higher order terms.

17. DISCUSSION OF DOPPLER BROADENING

The effect of atomic motion upon our equations is
rather curious and warrants discussion which, for sim-
plicity, will be given for single-frequency operation. As
we have seen in Sec. 16, the optical properties of the
medium may be described by a nonlinear susceptibility

x(a)—v„, 8„)=P„/(ppE„) . (1'/9)

It would perhaps be plausible to hope that the following
simple recipe would take atomic motion into account.
Because an atom moving with velocity e sees a Doppler
shifted frequency, in the laboratory frame of reference
it effectively has its resonance frequency shifted by
cuv/c. The effective susceptibility ought then to be

dvW(v)x(~ —a)(v/c) —v„, E„), (180)

and

c„=L( —„)/v. ~s„.

which can easily be expressed in terms of the Z(i)
function which is disf- . . d in Sec. 6. The effective

damping constant becomes

v.bL1+ (pL-)'/(&'v. vb) j"'
These expressions depend nonlinearly on the mode
amplitudes E because of saturation. However, since
we have already neglected the beat frequency pulsa-
tions of p,—

pbbs which lead to terms with d in the
denominator, it might not be consistent to keep any
terms in R which are off-resonance by more than about

f
co—v„f (v bA)'lb.

We will now consider only single-frequency operation,
for which our Eqs. (173)—(174) are essentially exact.
Then a single summand @=econtributes to R and we

6nd

instead of 7,b, and when this is much smaller than the
Doppler parameter Ku, the lirie shape should be
Gaussian with a normal Doppler width.

The above prescription is incorrect except to the
first order in E„if standing waves rather than running
waves are involved in any way. This follows from a
study of Eq. (70) contributing to the third-order polari-
zation which involves a threefold integration over times
~', v.", and v-"'. For single-frequency oscillation, the
integrand contains

U (z vr') U (z vr' —vr") U (z —vr' —vr" vr"')— — —
Xexp[ i (co v)—r'5 ex—p$~i(co v„)r"'$. —

Each of the V„'s is a standing wave which can be ex-
pressed as the sum of two running waves like
exp&i(Ez vr ), etc. The p—hysical interpretation is
that in order to contribute to P„"& at time t an atom

+v.b'(pE-)'LU-(z) j'/P'v. vb)3 ' (175)

The integral may be easily calculated if E(z) is a slowly

2 L

5'„=——p'&-~V.,E„«PU.(z) j'&(z)LV.b'+ (~ ..)'—
I. 0
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has to interact three times with the o.f. field: first at
t"'= t—7.'—r"—r"', then at f"=I,—7' —v", and fina11y
at t'= t—r'. At each of these interactions the atom has
a "choice" of interacting with one or the other of the
two running waves. The 7 dependence of a typical term
of the integrand of (71) is then

exp y, t—,(r'+ r"') y.r—"expi (v (u)—(r'a r"')+iI' vr'

+tIt v(r'+ r")+i Kv(r'+ r"+r"') .

The physical consequence of the appearance of terms
involving &En in the exponent is that each interaction
involves a Doppler shift. Since we are interested in the
case of a 1arge Doppler width Eu, such a shift can take
a given interaction very far from resonance even if
co= v„. This is expressed by the destructive interference
of contributions to the integral at various value of 7.',
7.", and r"'. The interference will be least when the
accumulated Doppler phase angle

+Kvr'aKv (r'+ r")+ Kv (r'+ r"+r"')

is zero. In order to obtain a nonvanishing spatial Fourier
projection (8) for I'„ta&, the choices + can not be all
alike. The six remaining possibilities for the phase
angle are

+ Kv/r'+ (r'+ r") (r'+ r"+—r"')7 = + tv (r' r"'), —
~Ever' —(r'+ r")+ (r'+ r"y r'")7= ~Kv(r'+. "'),

As seen in Sec. 7, only the first two possibilities are
able to lead to vanishing interference, and then only
when 7'= r"'.

Physically, one may say that a dominant type of
process involves three interactions: first, one with a
right (left) running wave at P', then one with a left
(right) running wave at t", and 6nally one with a left
(right) running wave at t', with the time intervals
obeying t—)'= 3"—t'" so that the accumulated Doppler
phase angle

aI I~v(t —t')+tv(t —f') —I~v(t —&"')7

cancels out at time t.
The above cancellation of Doppler interference would

not occur if waves running in only one direction were
present. The nonlinear terms are much less broadened
and weakened by Doppler eGect for a standing wave
maser oscillator than wouM be inferred from a study of
nonlinear propagation alone. The double peak in the
porn'er as a function of tuning met in Sec. 8 can occur
only because P„(saturation) is not as much Doppler
broadened as „tt(li neragain pro61e).

18. HOLE BURNING

In his discussion of maser action Bennett" has made
use of the notion of "hole burning. " Since it aids the
physical understanding of the rather complicated equa-
tions, we will now show how this phenomenon is de-
scribed in the present work. As Bennett's treatment
does not bring in the population pulsations of Sec. I5,
we will base our discussion on the simplified theory of
Sec. 16 in which pulsations of population were neglected.

In Sec. 16 the atoms had zero velocity, It is possible
to generalize the discussion for the case of atoms having
a velocity distribution W(v) at the cost of further fairly
plausible assumptions which are no worse than approxi-
mations already made. We deal first with those atoms
which have a definite velocity v and which were excited
at zo at time to. The perturbation experienced by such
an atom is

~'(t) = —(IP/~~) Z ~.II.(so+ v(t —lo)) «s(v.l+ tv, ) (181)

so that instead of seeing fields at frequencies v„ the
moving atom sees fields at twice as many frequencies,
i.e., v„&Em. The rate concept approach of Sec. 16 can
not be used since the atoms characterized by different
values of zo and to experience different perturbations,
i.e., the phases are not the same for the various members
of the ensemble of atoms arriving at z at time t. It is
plausible, however, to estimate the effect of saturation
on the population difference p„(v,t) —p»(v, t) by using
an equation like (171) with a perturbation V(t) given
by (181) but with the terms involving se and te omitted.
The replacement for the velocity-dependent rate con-
stant E(v) is then plausibly

&(v) = „'-y.g(p/It)' P I'.„'PZ(v„~+Kv)

+ I*.(v„(o Ev)7 . (1—82)—

If v=0, this reduces to the space average of Eq. (170).
The corresponding population difference for atoms hav-
ing velocity v is then

p. (v, t) —pt, t, (v, t)
=&&( )L(~./ .)—(~ / .)7

&L1+2v..~&(v)/(v-v. )7 ' (183)

A plot of (183) against v would show the assumed ve-
locity distribution with "holes" burned into it due to
o.f. saturation eGects. These holes wou1d be appreciable
whenever R(v) became comparable to y,y,/(y. +yt)
which could occur near Kv=&(v„—M), so that ttvo

holes could be burned for each cavity mode in oscilla-
tion. At a resonance, where v„=or, the two holes for
the eth mode would merge and reinforce one another.
The holes in the velocity distribution would have been

" W. R. Bennett, Jr. , Appl. Opt. Snppl. 1, 24-61 (19&2),
especially pp. 58-59. It should be noted that the holes are in first
instance burned in the curve of population difference versus ve-
locity, and only indirectly in a curve of gain versus frequency.
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seen in Sec. 15 if the integration over velocities had not
been carried out so soon.

With the above approximate expression for P„(w)—Pbb(v) we may use Eqs. (25) to calculate a pseudo-
first-order value of p,b(zp, t) and P(z,s,t) in the manner
of Sec. 16. The result will be the same as before, but
with a velocity dependent reduction factor

L1+2V.bR(&)/(V. V b)j '

to express the effect of saturation, where R(v) is given
by (182). There are similar reductions in the related
functions S„(s) and C„(e). The coeKcients S„and C
which enter the equations of self-consistency L (13),(14)j
result from integration of these quantities over velocity.
Thus

S„=—P'ii—'gy„bf~'.„dv tV(v) 2 (b~ —v,+Ei)

XL1+2v. &( )/h. v )]-'. (»4)

For single-mode operation, the rate R(v) in the de-
nominator of (184) contains the two terms given by
Eq. (182). If an expansion is made to first order in
R(z) the integration over v can be done easily for a
Maxwellian velocity distribution in the limit of large
Doppler width Kn, and one gets results equivalent to
those of Sec. 8. The possible dip in output power as a
function of cavity tuning in single-mode operation can
be interpreted as a consequence of the merging of the
two holes at Ev= & (v„—~) b 0.

For multimode operation a similar calculation can
be made with the complete expression (183) for R(z).
This will give the dominant terms of the equations of
Sec. 9 for a Maxwellian velocity distribution and large
Doppler width. However, the frequency locking terms
involving f will be missing.

For two-mode oscillation, (184) leads to especially
strong mode competition attributable to hole burning
when Em=& 2

—co=~—vj, i.e., the traveling wave along
+z for mode 2 and the traveling wave along —z for
mode 1 are both in approximate resonance with the
atomic transition frequency for an atom having ve-
locity e. This effect can be correlated with the peak in
8 for ~= v~2 mentioned in Sec. 10.

19. APPROXIMATE HIGHER ORDER THEORY
FOR SINGLE MODE OPERATION

It would be possible, but quite tedious, to extend the
calculations of the text to fifth and higher order for the
single-frequency case. The simpler approximate pro-
cedure outlined below may serve in the absence of such
calculations. It was mentioned above that an expansion
of (184) to first order in R(u) reproduces the equations
of single-mode operation correct to third order in E .
If this expansion is not made one may hope to have
equations which are valid for stronger signals. The ~

integration is complicated, and we will content our-
selves here with two special cases (a) EN»

~

v —ba
~
&&y.b

20. EXCITATION OF LOWER MASER LEVEL BY
SPONTANEOUS DECAY OF UPPER

MASER STATE

It was mentioned in Sec. 6 that the lower maser level
could, at least in part, be excited by spontaneous emis-
sion from the upper. For the present this complication
will be treated only in an approximation in which the
rate concept is valid. For simplicity we ignore atomic
motion, although the work of Secs. 16 and 19 suggests
hoer this could be allowed for approximately. We write
rate equations like (168)

Paa VaPaa+R(Pbb Paa)++a q

P b b
= 'Y bpbb+ R (Pa a pbb) +~b+f ra paa q

(187)

where the extra source term fop„de crisbes the effects
of radiative cascade excitation of b from a assuming
that a fraction f of the decays from a are to b. The A' s
describe the uncorrelated excitation of the two levels.
In a steady state one finds a population density
difference

p p»= L(i1./v. ) (1—f(v./vb) )—(~b/'rb)7

X 5&+R{ya(1 f)+Vb)/(y. yb)—j ' (188)

which should be compared to Eq. (171).It will be seen
that the effect of a nonvanishing branching ratio f is
merely to change the unsaturated population difference
(obtained for R= 0), and also to modify the value of R
for which a given degree of saturation would be ob-
tained. The saturation parameter of Sec. 8 will be
modified in an obvious fashion. Thus if f=0, a value
of rate R=2yayb/gab would cause 50% saturation,
while if f= 1 the value would be R=7 . It should be
recalled that the dominant part of the third-order
terms 5 "' and C ")are direct manifestations of satura-
tion phenomena. At the present state of maser art, the
decay constants p and pb are not well enough known

and (b) i „=co,Eu)&y, b. In the former case, one finds
approximately

S„=—~~~2 @2',„,~

(&EN)L1+4 (tP&-)'/(&'V. Vb)j'", (185)

while at resonance, when v„=co,

S„= 7r'~' —p'EE /
(AEN)$1+is (PEa)'/(ib2y yb) j'~2 (186)

and the merging of the two holes shows up in a simple
manner through the doubling of the term expressing
the effects of saturation. It will be remembered that a
similar doubling of the coeKcient P„ took place in
Sec. 8 and was responsible for the possible dip in maser
output versus cavity tuning. Although the more general
behavior of output versus tuning implied by Eqs.
(185)—(186) should be qualitatively correct, it must be
remembered that rather uncontrolled approximations
have been made in their derivation.
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for the effect of a nonvanishing value of f to be easily
seen.

When population pulsations are taking place there
will be a correlated time-dependent excitation of the
lower level by cascade. It is possible that more interest-
ing consequences than those obtained would result, and
it is hoped to explore this possibility in a later paper.

2],. OTHER SOURCES OF BROADENING

For some kinds of line broadening, especially in
certain solid-state optical masers, one could adopt the
recipe proposed in Sec. 17, and rejected for the case of
Doppler broadening. If the effect of environment could
be described by a distribution function for the atomic

resonance frequencies co, an averaged nonlinear suscepti-
bility could be used. This could also be done for the
case of isotopic mixtures of the active atoms in gaseous
masers.

Although y, and yq were introduced into our equa-
tions to describe spontaneous radiative decay of the
states a and b, it is plausible that such phenomeno-
logical decay constants might also describe certain kinds
of collision broadening. In that case, the y's would be
functions of the pressure. "A more detailed discussion
of collision broadening for a gaseous optical maser will

be given in another paper.

"Evidence for such a dependence has recently been obtained
by Javan and Szoke, Ref. 16.
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In a previous paper a set of coupled. equations was derived for the ground-state wave function and energy
of a 6nite system of interacting Fermioris. The equations are now modified so as to be more applicable to
systems in which the number of particles becomes large. The resulting equations are shown to be equivalent
to those obtained from many-body perturbation theory.

I. LINKED CLUSTERS

' 'N a previous paper, ' a set of coupled equations was
~ ~ derived for the ground-state wave function and

energy of a 6nite system of interacting Fermions. The
wave function was expanded in terms of multiple-

particle excitations on an uncorrelated zero-order state.
The total energy E of the system appeared in the result-

ing equations and it was pointed out that this restricts
the application of these equations to 6nite systems; in

general, the restriction is to systems of small X. In the

equations, the amplitudes for one-particle excitations
are coupled to those for two-particle and three-particle
excitations. The two-particle amplitudes are coupled to
those for one-particle, three-particle, and four-particle
excitations, and similarly for higher particle excitations.
It was mentioned in I that it might be reasonable to
approximate four-particle excitation terms, for example,
as products of independent two-particle excitations.

It is shown here that four-particle terms involving

two independently propagating pairs enter the equa-

tions in such a way as to eliminate the dependence of
the two-particle excitation equations on the total

~ Work supported in part by the U. S. Atomic Energy Com-
lIlisslOn.

' H. P. Kelly and A. M. Sessler, Phys. Rev. 132, 2091 (1963),
hereafter referred to as I.

energy E, and similarly for the other excitations. '
Explicit inclusion of products of independent excitations
yields the equations of the linked cluster expansion.
The resulting equations are shown to be the same as
those obtained from many-body perturbation theory as
formulated by Brueckner' and by Goldstone. '

In I, the ground-state wave function is expanded as

I4) = les)+Zf(k; ~)9"n- Ic'o)

+ p f(kk'; p)errtt~+' rtp+rtlrCtp)+ . . (1)

The unperturbed solution ICp) is a determinant com-

posed of the Ã single-particle states which are lowest
in energy.

Equations are then derived for f(k; o.) and f(kk'; trP)

by inserting Ill) from Eq. (1) into

~l~)=~I~), (2)

where H is written in the usual second-quantized form. '

I am indebted to Dr. A. M. Sessler for stressing the desirability
of including products of independent pair excitations in the four-
particle excitations, so as to make the resulting equations more
applicable to systems of large E.

'K. A. Brueckner, in The 3fany Body I'roblem, edited by
C. DeWitt (John Wiley tk Sons, Inc. , New York, 1958).

4 J. Goldstone, Proc. Roy. Soc. (I ondon) A239, 267 (1957).


