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A set of reversible equations for F1, the first distribution function and g, the correlation function, are
derived for the weak force case. The "forward motion, " i.e., development in time from uncorrelated initial
conditions, and the corresponding reverse motion are examined. In the "forward motion" the equation for
FI evolves into the Fokker-Planck equation while in the corresponding reverse motion F1 is described by an
anti-Fokker-Planck equation.

I. INTRODUCTION

HE problem of irreversibility has existed since the
time of Boltzrnann, The problem may be stated

as: How can one derive an irreversible equation (e.g. ,
the Boltzmann equation, the Fokker-Planck equation)
on the basis of reversible mechanics? In recent years a
number of derivations of irreversible equations have
been accomplished based on a variety of assumptions.
However, these methods have not completely illumi-
nated the transition from the reversible to the irre-
versible equations. Most of these methods start from
the Bogoliubov-Born-Green-Kirkwood- Yvon (BBKGY)
equations, ' which for an infinite system are

BF,(x,, x„t)
+BC.F, (xt, x„t)

1
Cx,„rP tt;, ,+tF,+r (xt, x,„t, t) (1)
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where x,—={q,,p,); q;, y, being the position and mo-
mentum of the ith particle,

Ops 8 Bpij 8
0"—= +

8|Ii Dpi Bg~ Bp~.

and q;;(~ q;—q, ~) is the intermolecular potential. X, is
given by

yi pl s

X,(xr, x,)—=g — —g 8,;,
i=1 ~ gQ- i(7

and v is the volume per particle. F, is defined through
D&(xt, x&,t) the probability distribution in F space
for the entire system by

Liouville equation

(BDsr/dt)+X~D~ 0—— (3)

over the coordinates x,+1, ,x„.
In particular, the method of Bogoliubov' is to assume

that all F, (r ~&2) are functionals of Fr, and the form of
the functionals are determined by an assumed boundary
condition on the functionals. On this basis, the first
BBKGY equation LEq. (1), s=1] becomes the Boltz-
mann equation (or the Fokker-Planck equation depend-
ing on whether the expansion parameter for the dis-
tribution function is e or the strength of the inter-
action). The assumptions of Bogoliubov obscure the
transition from the set of reversible equations (1) to
the irreversible equations. In fact Cohen and Berlin'
have shown that, on the basis of an equally plausible
boundary condition on the functionals, the collision
term will be the negative of the Boltzmann collision
term (an anti-Boltzmann equation). On the other hand,
(~reen and Piccirelli4 have shown that, on the basis of a
product type condition on F, (s~& 2) at the initial time,
the higher distribution functions do, in the course of
time, become the functionals of F1 predicted by
Bogoliubov. From this point of view it is no longer im-
portant that the Boltzmann equation is time irreversible
since the Boltzmann equation evolves from the erst
BBKGY equation only after some period of time pro-
viding the initial F, (r &~ 2) fall within the assumed class
of initial conditions. The reverse motion is presumably
accomplished, since the BBKGY equations are re-
versible, by another special class of initial F, (s&~2);
this motion is probably describable by a single equation
for Ft (such as the anti-Boltzmann equation). ' ' It
is to these points that this paper is devoted.

F,(xt, x„t)

The sth equation of (1) is obtained by integrating the

~ Supported by the U.S. Of5ce of Naval Research.
' G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Me--

chowtcs (American Mathematical Society, Providence, Rhode
Island, 1963).

'N. N. Bogoliubov, ProMerrls of a Dynamica/ Theory in Sta-
tistical Physics, translation by E. K. Gora, Studies in Statistical
Mechanics (North-Holland Publishing Company, Amsterdam,
1962).

= p'& ~ . . D&(xt. . .x& t)dx t. . .dx& (2) ~E. G. D. Cohen and T. H. Berlin, Physica 26, 717 (1960).
M. S. Green and R. A. Piccirelli, Phys. Rev. 152, 1388 (1963).' There remains the question of how one can justify the use of

the Boltzmann equation when other types of developments are
possible with other types of initial conditions. The answer must
be in the following: If we consider a system in which all that is
known initially is F1, then there exists a large class of initial Dq s
that give the same FI but diBerent F,(s &~ 2). In the spirit of sta-
tistical mechanics we can assign a probability to these D~ s and
obtain a probability distribution for F, and ask for the most.
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g'(xl, xs, tp) =h'(xl, xs,xs, tp) = 0. The zeroth- and first-order equations are then (dropping the e notation)

g" (xl,xs, t) -0,
g('&(x„x,, t) =S « t»(x„xs)g "&(xl)xsttp)+

I—tp

dt S t'(xl)X2)812(xlx2)I 1(pit t t )I 1(P2t t t ) t (10)

etc.

To this order, the equation for Fl LEq. (6a)] is

Mi', (y„t) 1
(tx2012g (xi) X21 t) ~

'V

In Appendix A we prove that the set of Eqs. (10) a,nd

(11) are still reversible; the e expansion has not de-

stroyed the reversibility. This point is taken up again
in Sec. IV.

(b) Consider ~ql —qs )R.
Suppose yl and y2 are such that. at no earlier tinie

have the twopointsinteracted, i.e., ~S t(xl, xs)(ql —qs) ~)R for 0 ~& t ~& pt&; then g('& (xl,xs, t) =0 for all time.
If yl and P2 are such that at an earlier time rp(xl, xs)

the points are just starting to interact, i.e.,

then Eq. (10) is

III. RELAXATION OF THE CORRELATION FUNCTION g(l&(xS])$2~/g

We now consider a special case, namely (taking tp 0), ——
g "& (xl,x2,0) =0.

(a) Consider first that
~
ql —qs~ (R, where R is the

range of the force. If we assume there exists a time T,
the "time of a, collision, " such that for essentially all
relevant momenta

&t 1 (I qi —qsl)S,(x,,x2)

0, t~& TO,
.

~ 'Tp

t&re+a

(tt S, (x,x2)t&, ,F,(p„ t t )Fl(ps)—t t ), —
0

re&~t&~'pp+ r (15)
TP+ T

(tt S t'812f 1(ply —t t )Fl (P2& t t ) &

(Pi —P2)
~ +12 gl 'Q2 T Bq1

m

then Eq. (10) reduces, for t~& r to

gt'& (xl,xs, t)

T

dt S v (xltx2)012F 1(ply t t )Fl(pst t t ),
for t& r, (12)

and, from (11) we have

Fl(p, , t—t') =F1(p,,t)+0(r/V') for 0~& t'~& r, (13)

where V' is the mean time between collisions.
To lowest order,

gFP('& (xl,xs, t)

T

8 S t'(xl)X2)812Fl( lq p) tlF( 2)—P)qt

for t &~r. (14)

Therefore, to this order, the functional form proposed
by Bogoliubov develops, for

~
ql —q2~ &R, in a time r

from the initial time. The subscript F-P on g( ) indicates
tha. t. this is the form of g(" that together with Eq. (11)
is the Fokker-Planck equation (or, as Bogoliubov calls
it., the Landau equation). The Fokker-Planck equatiori
is irreversible in the sense that it obeys an II theorein. '

1 A. Lenar(t, Ann Phys. (N. Y.) 10, 390 (1960).

The asymptotic form for g(" is reached only after
t&~ rp+r which can be (for given pl and p2) arbitrarily
large for points q1 and q2 sufficiently far apart. It is
interesting to notice that the previous history of the
system, in terms of Ii 1, is stored in the correlation func-
tion of distant points; for, at any time t, there are
pairs of points (ql, qs) such that the corresponding g"'
depends on the value of Fl at any given time between
zero and t.

The asymptotic form of (15) can be writt;en as

g ( ) x)lt)x=2J(t—rp) I„,, t&&rp+r,

J(t) = — F,(p, ,t)F, (y, ,t),
(&pl r&p2 (16)

TQ+ 7

dt S, (xl, xs)
Bql

where we have again used Eq. (13) and, from the
spherical symmetry of the force law and the fact that
the collision is completed, I„, is in the direction of the
distance of closest approach ro. Therefore, g") is non-
zero if J has a component in the ro direction. In equi-
librium, J is in the direction of the relative momentum
P = p2-- pl which is normal to ro so that g")—--0. WVe see
t.hen, in the nonequHibrium state„ the range of g") can
be a,rbitrarily large, but the range of (pl, ps) which

gives a nonzero value to g
"i goes down with increasing

~
ql —q2~. In Appendix B we show that the long range
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of g(" does not cause the next approximation g(") to pressing qi, q2) we llave

become unbounded with time.
&,
"' 0 P» P» t

IV. THE REVERSE MOTION

In Sec. IIIa we considered the evolution of a system
that at zero time was uncorrelated. In this section we
shall describe the corresponding reverse motion. For
this purpose we consider the evolution of a second sys-
tem constructed at an arbitrary time tp&0 that is
identical to the first system but with all momenta
reversed. This second system is initially correlated in a
special way and it is this initial correlation which
causes the reverse motion to be accomplished.

Consider again the initial condition g(") (xi,x2,0) =0.
We have, from Eq. (10) with to 0——
g") (0

I
xl, xp, t)

dt' s, (xi,x2)012Fi(OI yi, t—t')

&(F1(0
I y„ t—t'), (l7)

dt' S, (—yi, —P2)812(—pi, —P2)
0

XFl(OI —pi, t—t')Fi(OI —P2, t—t'). (18)

At tinle $p start another system o6 with initial
conditions

Fi(tol pi t) I
t=to=Fi(OI —Pi to) (19a)

g"'(tolp p t) I
=o=g"'(OI —p —y to) (»b)

For t ~&to we have from Eq. (10)

a") (tol yi, yo, t)

=S (t t(&)(pl, p2)g" (tol Pl&po, tp)

ttt S—1'(pl P2)~12(pl P2)

XI' (« I p, t—t')I' (tol p, t—t') (20)
where the zero preceding the vertical bar in g(" and Ii ~

indicate the initial time was zero. In particular (sup- Using (19b) and (18) in (20) we have

g"'(to
I yi, Po, t) =S-«-t 0) (pi, P2) dt S 1'( Pl —P2)012( pl& p2)Fl(OI pl& tp t )Fi(OI P2& tp t )

t—tp

dt'S 1 (pi&P2)812(pl&p2)Fl(tol yi, t t')Fi(tpl P2,—t—t'). (21)

In the first term in Eq. (21) we can combine the S operators

S—(t—tp) (pl&p2)S t' (—p»——P2) S—(t—tp—V) (pl&P2) S—(t'+tp-t) (—pl& P2) ~

Splitting the range of integration in the first integral in (21) into

(0, t—to) and (t—to, tp) for to&t&2tp,
the first integral is

t—tp

dt, 'S (t „,)(pi, y,)+

Changing time variables, Eq. (21) becomes

t—t0

dt S—(t'+tp —t) ( pl& P2) t 12F1F1~

—to

a") (to I y i, Po, t) = dt S «(Pl, P2)ei2( —pi, —p2)1&i(OI —pi, 2to+t' —t)I~, (OI —P2, 2to+t' t)—
2tp—t

dt S 1 (—pl, —P2)012(—pl, —p2)Fi(OI —
pi& 2t(&—t' —t)I 1(OI —p, &

2tp —t' —t)

t—t0

dt S—1 (pl p2)812(pl p2)Fl(to I pl t t )Fl(to
I p2, t—t'), for to& t& 2to. (23)

From the general reversibility argument (Appendix A) we would expect

Fl("oI P, ,t) =F1(OI —Pi, 2to —t),

g
'

(tol Pi P»")=g"'(ol —y„—p2 2tp t), for tp&t&2to,

(24a)

(24b)



which satisfy the initial conditions (19a) and (19b)~ To show that this is the case, suppose (24a) is the solution of
(23) and (11), then the first term in (23) cancels the last term and the remaining term is, by (18), g&" (Ol —pl,—yp, 2to —t) thus establishing (24b); and (24b) jn (11) leads to (24a), i.e., Eq. (11) is

aF!(tp I P4t) 1 c» (y, y )g!"(t
I p, p, t).

Bt
The right-hand side of (25) is

c»a»(y!, Pp)a"'(01 —p!, —
Pp, 2tp —t) = —— c»a»( —p!, —Pp)e"'(0I —p!, —Pp, 2« —t) (25a)

and the right side of (25a) is, by Eq. (11), aF!(Ol —p!, 2tp —t)/at; we have for tp&t&2tp, aF!(tpl p!,t)/at
=aF!(0

f p! 2to t)/at or F!(to f p! t) —F!(to
f p!,to)=F!(0f p!, 2to —t)—F!(0f—p!, tp) and, with initial condition

(19a), this is (24a).
Over the time interval «& t& 2tp, the equation for F!(tol p!,t) can be obtained from (25) and (23). Equation (23)

can be written, using (24a) and (13), as

g"'(to
1 P!,Pp, t) =

2t0—t

ct'5 ~. (—pl) —p2)812( Pl) P2)F 1(0
I P!) 2tp t' —t)F!(0

I

——po) 2to —t' —t)

2tp —t

dt & ) (p!)P2) 12(pl)P2) 1(tol pit)I'!(tpl pp)t) ~

Equation (26), together with (25), is the anti-Fokker-Planck equation, i.e., the collision term is the negative of
the Fokker-Planck collision term. H we call q~

—g2 = r we have

ap)(l r I)
aF, (to I p, ,t)/at = —— dppdr

(p!—Po),
dt'a p !'+ t' ar

~P2 P ns

Changing r ~ —r

aF!(tof y! t)
dg2dl'

'0

a o)(I rl ) 2tp —t

ct'a )t)I r-
P2 P

F!(tol p))t)Fy(tol p2)t)
~Ps ~P2

(y) —P2)
ar

F!(tol p~, t)F!(tol p2, t) (2&)
OPS C7P2

which is the anti-Fokker-Planck equation for tp ~~ (
~& 2tp —V- ~

At time t= 2tp, from (24a) and (24b) we obtain

where

g
"' (2to

I 1» Pp 2«) =o

F!(2tol p!,t) I)=o)o=F!(Ol —y!, 0),
(29c)

g"'(tol p!,P2, to) =o, (28a)

aF!(2tp
I p!,t) 1

d»a) og (2to
I P))yo)t) ) (29a)

a "' (2 to I p!,y& t)

t—2tp

dt ~-~ (P!)Pp)a»(p!)Po)

XF)(2tol p!,t)F!(2tol pp, t), (29b)

F!(to
I y!,2tp) =F) (0

I

—y), o) (28b)

The equation describing the motion for t ~& 2tp is then,
from (11) and (10)

and, therefore, after t&~2to+r the equation for F! is
again the Fokker-Planck equation and the system is
again approaching equilibrium.

V. SUMMARY

From the BBK.M~ set of equations, we have derived
an approximate set of equations for the weak force
case, Eqs. (10) and (11); these have been shown to be
reversible in Appendix A. In the special case that the
initial g

("=0, the equation for F~ evolves into the
"irreversible" Fokker-Planck equation after a time
(on the order of a time of a collision) and the system
approaches equilibrium.
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Suppose, on the other hand, the system is allowed to
run for an arbitrary length of time to., then in order to
describe the reverse motion, we consider a second sys-
tem identical to the 6rst at time to, but with all mo-
menta reversed. The initial conditions on Ii~ and g"'
for this second system are constructed from the Ii&

and g(') of the 6rst system at to. The second system
during the time interval (t3,2ts) now performs exactly
the reverse motion that the original system performed
during the time (O, ts). The equation for Fl for the
second system during the time interval (t3, 2ts —r) is the
anti-Fokker-Planck equation and after the time 2ts+r
is the Fokker-Planck equation.

For the second system the dependence of g"' on its
initial value causes the reverse motion to be accom-
plished: "built into" the initial value of g") at pairs
of points outside the range of the force is the earlier
behavior of P& for the 6rst system. The dependence of
g( & on its initial value would be missing if the rno-

mentum reversal were applied to the Fokker-Planck
equation.

The 6nal question of what to use in describing a
given system is answered in the spirit of statistical
mechanics by the argument that if all that is known
initially about a system is Ii &, then the most likely g")
is zero and Fj will most likely evolve according to the
Fokker-Planck equation. '

F1(yl, t) =~(—» —t),
g

' (yl, y2, t) = g(—yl, —P2, t) . —(AS)

Therefore, the approximation used to obtain Eqs. (A1)
and (A2) have not destroyed the reversibility.

APPENDIX B

We show here that the long range of g"' (see Sec.
IIIb) does not cause the next approximation g&" to
become unbounded with increasing time. g&'& will con-
tain a term

g"'(—yl, —P2, —t)

=S l(y»P2)go'( —pl, —P2, 0)

83212 (8 8 )+ «'S-3 (»,P2)
0 ciql Ec)yl l9P2~

XF1(—pl, —t+t')Fl( —p2, t+—t') . (A4)

Comparing Eqs. (A3) and (A4) with (A1) and (A2) we
see that if we take as initial conditions in (A3) and (A4)

Pl( —Pl —t)
I
1=3=~(P1,0),

g"'(—yl, —P2: —t) I
i=3= B(p»P2, 0),

then the solutions of (A3) a,nd (A4) are

Fl ( p» t) P(pl t)

g"'(—Pl, —P2, —t)= B(yl P2,t),

t c) 3213 CIF1(p» t t )
dt' dq, dy, (I q,

' —q, !).
o 8Qq Ops

Xgi'&(x, ', x„ t—t'), (I)1)

c)P, (p»t) 1 83212 ( 8 8 )
dqzdy2

I

— !go'(pl, ps, t), (A1)
Bt aq, hap, &P2&

where

APPENDIX A t

dt S t'(X»X2) dX3813F1(p» t t )g (X2) X3—) t t )
Equations (10) and (11), with ts 0, sup——pressing

spatial coordinates in g('& and 5, are

g
' (Pl, y2, t)

=S-t(yl, P2)g"'(Pl, P2, 0)

r)P12 (8 8 )+ dt' S-3 (»,P2)
Bql (Byl BP2~

x, =S 1 (xl,x2)x, ; z=1, 2.

Figure 1 shows a configuration at time I,
' where the

integrand in (B1) is nonzero.

qua

XF,(p„ t—t')P, (p„ t—t'). (A2)

Consider F(pl, t) and g(yl, ys, t) to be the solutions of
(A1) and (A2) with initial conditions F(P1,0) and

g(yl, p2,0). In Eqs. (A1) and (A2) change p;~ —p;
and t —+ t; then using t—he fact that S 3(yl, p2)
=S,(—pl, —p,) we have

8&1(—pl, —t) 1 8(pl2 ( r) 8 )=- dqsdp2
'V aq, kap, ap2&

I'io. 1. An inter-
acting con6guration.
(a) q;*=q; —p;t/za;
i= T, 2. {b) q& is
within range of force
of ql' and (c) p3 is
such that at an y&
earlier time (but be-
fore particle 2 is at
q2*) particles 2 and 3
interact since g(') &0
at that time.

Q~

zp(

xgo'( —Pl, —
P2, —t) (A3)
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In terms of the relative momentum Pss, Pes must be
within a solid angle sr2P/

I
rss(t')

I

' in the direction rss (t'),
which at large distances can be replaced by sr''/

I
rrs(t') I', whe~e rrs(t') =rrs —Psst'/m and r&s

——q&
—

ti&,

P12= pl —p2.
In (31) changing the momentum integration to Pss

we have
t

dt' dQI „o.,

1 8($13 8I'1
cy= —— d ggdP32P32 . g( ) .

0 t9 $1 i9 P1

To obtain the magnitude of (82) we neglect the varia-
tion of 0. with time and treat it as constant with respect
to the angles when it is nonzero. We then have

gran'
dt'

I
r»(t') I'

n+R' Prst/mf rs co—s8
tan '

r&s(P»/m) (1—cos'8)'t' (1—cos'8)'t'

—cos8—tan -' (83)
(1—cos'8)'"

where 8 is the angle between rrs and Prs. Equation (83)
approaches a limit as t —+~, according to

—cos8
——tan '

r&s(P&s/m) (1—cos'8)'" 2 (1—cos'8)'"

(1—cos'8) 't'

Pgst/mr„
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Possibility of Synthesizing an Organic Superconductor*
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Departntent of Pttysies, Stanford University, Stanford, California
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I.pndon s idea that superconductivity might occur in organic macromolecules is examined in the light
of the 3( S theory of superconductivity. It is shown that the criterion for the occurrance of such a state
can be met in certain organic polymers. A particular example is considered in detail. From a realistic estima-
tion of the matrix elements and density of states in this polymer it is concluded that superconductivity should
occur even at temperatures well above room temperature. The physical reason for this remarkable high
transition temperature is discussed. It is shown further that the superconducting state of these polymers
should be distinguished by certain unique chemical properties which could have considerable biological
signi6cance.

I. INTRODUCTION

" N the forward to Vol. j. of his monographs on
- ~ superQuids, F. London' questions whether a
superQuid-like state might occur in certain macro-
molecules which play an important role in biochemical
reactions. If this should be the case, an entirely new and
important consideration would be added to the problem
of understanding living systems. In view of the signifi-

cance of such an effect, it appears appropriate a,t this
time, when a theory of superconductivity, the Bardeen-
Cooper-Schrieffer (BCS) theory' has been so remark-

ably successful in explaining much of the behavior of
superconductors, to examine in the light of this whether
or not a superconducting state might occur in certain
macromolecules. In view of the extreme complexity of
biological systems, it would be folly for a physicist to
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attempt to experiment in such an environment. Instead
of attempting this, we shall tackle the problem on our
own grounds. The BCS theory, while by no means
complete and exact, has succeeded in providing a model
with most of the essential features of a superconductor.
In particular, it prescribes certain criteria for a system
which, if satisfied, should lead to the superconducting
state. Our approach is to consider how these criteria
might be applied to the design of a particular organic
molecule which, if its synthesis is possible, should show
some of the essential features of a superconductor and,
as we shall show, some remarkable chemical properties
as well. One of the interesting features about the
particular class of molecules we investigate in detail is
that the molecules should be superconducting at room
temperature and, indeed, to temperatures well above
room temperatures. We can show on simple physical
grounds why this is so and perhaps, with hindsight, why
this was to be expected.

The idea of superconductivity in organic systems is
not a new idea& however, there is a considerable amount


