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low temperatures, holes tend to congregate in these
directions.

If this conjecture is correct, the change in modulus for
the heavy-hole surface should follow that for germa-
nium, as given by Eq. (12), while that for the light-hole
surface should follow Eq. (8) with kT replaced by (10),
for the low temperatures, giving

(31)

If we take an average value of 15 eV for the shear defor-
mation potential d, the indicated change in modulus
from Eq. (12)—using m*= 0.49ms and X=0.SSEe, i.e.,
2.12X10"heavy holes —is 26.5X10' dyn/cm', which is
not out of line with the values of Fig. 8(b) extrapolated
to lower temperatures. I'or higher doping levels this
effect disappears since the momentum differences for
the various positions become smaller.

Another piece of evidence that the light holes congre-
gate along (100) positions at low temperatures is
furnished by the nearly constant relaxation time of

Fig. 11 for longitudinal waves propagated along the
(100) direction. The data of Fig. 12 show that p-silicon
with boron becomes degenerate for a doping of 3&10"
atoms per cc. This is taken to mean that the impurities
are near enough together to prevent any excited state
orbits around the boron atoms. The smallest orbits will
be executed by the heavy holes and hence they will
reach degeneracy at a higher doping level than the light
hole surface. With a mass ratio of 0.49 to 0.16 or 3.06,
the radius will be this factor larger for the light-hole
surface. Hence, this surface should become degenerate
for a doping of

3X10"/(3.06)'='10" boron atoms per cc. (32)

Therefore, the constant relaxation time of 4.2/ 10 "sec
for a sample doped with 2.5X10"boron atoms per cc is
a confirmation that, at low temperatures, a longitudinal
stress along the (100) axis actuates mostly light holes.

If the relaxation time is due to scattering of light
holes by impurities, calculations indicate that the
scattering radius is about 5&(10 'cm, in good agreement
with the value obtained for the degenerate heavy-hole
surface.
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Distribution functions for the number of distinct sites S(a) visited by a point defect executing a symmetric
random walk of n jumps on two- and three-dimensional lattices were computed using the Monte Carlo
method. The square planar, simple cubic, bcc, and fcc lattices were treated. In three dimensions, the normal
distribution appears to describe S(a) for a&104 jumps and at 104 jumps the derivative dS(a)/de of the
average number, 8(a), of distinct sites is within 0.5% of the value given by Vineyard s exact asymptotic
solution. The defect annealing rate was computed using the S(a) distribution in a simple example and this
result compared with an analog Monte Carlo solution. The comparison indicated that Buctuations in the
initial defect concentration must be considered in computing the initial annealing rate and the mobile defect
concentration as a function of time. After 500 jumps the annealing rate, but not the concentration, can be
closely approximated without accounting for fluctuations in the initial concentration.

1. INTRODUCTION

'N a monatomic crystal, the migration of a defect,.- such as a vacancy or an interstitial atom, proceeds
as a symmetric random walk' on the crystal lattice. The
rate at which mobile defects are annihilated or trapped
at point sinks is proportional to the rate at which they

*Work supported by the U. S. Atomic Energy Commission.
' In this discussion a symmetric random walk is one wherein

the jump probabilities for each possible jump direction are equal
and constant, The vacancy random walk in an alloy is in general
asymmetric because of its ordering energy, i.e., the jump proba-
bilities for each possible direction are not equal and also depend
upon the position of the vacancy.

encounter fresh sites which have not been visited pre-
viously. Damask and Dienes' will treat the physical
side of this process in a forthcoming book. On the basis
of a Monte Carlo study, Heeler and Delaneys concluded
that the average number of distinct sites, 8(e), visited
by a point defect in either a symmetric or an asym-
metric random walk of e jumps was of the form,

8(n) =Ax'

'A. C. Damask and G. J. Dienes, "Point Defects in Metals"
(to be published).

3 J. R. Heeler, Jr., and J. A. Delaney, Phys. Rev. 130, 962
(1963); J. R. Heeler, Jr. , U.S.A.F. Report ASD-TDR 63-215
(unpublished).



DISTRIBUTION FUN CTIONS FOR N U M 8 E R OF D I ST I N C T S I TES A1397

lim 8(n) =Cn. (3)

The Monte Carlo results of Heeler and Delaney for
d8(n)/dn= C on the interval 10'&n& 104, in the case of
zero ordering energy, agree closely with the exact
asymptotic results given by Vineyard's analysis, the
Monte Carlo results being about 1% larger than the
exact asymptotic values. Vineyard also showed that

8(n) = (Sn)'t'/ sr (4)
in one dimension.

In this communication we describe the distribution
function F(S; n) for 5(n), as given by Monte Carlo
calculations, for the square planar (sp), simple cubic
(sc), bcc and fcc lattices. F(S; n) is the probability that
a defect visits S or less distinct lattice sites in n jumps.
Direct application of these distributions to defect
annealing calculations is illustrated in a simple, yet
physically significant numerical example wherein atten-
tion is called to the eGect of Quctuations in the initial
defect concentration upon the initial defect annealing
rate. This eBect 6rst came to our attention in a com-
parison of the annealing rate predicted by F(5; n), on
the basis of the macroscopic (average) defect concentra-
tion, with that obtained directly in a separate analog
Monte Carlo annealing calculation wherein Quctuation
eBects were automatically accounted for. The presence
of Quctuations signi6cantly increased the initial
annealing rate relative to that obtained on the basis of
the macroscopic concentration.

On the interval 1000&n&5000, F(5; n) appears to
start an approach to the normal distribution. A x'
analysis indicated that F(S;n) is very probably normal
for e&104 in~~three-dimensional lattices, but gives no
information on the convergence to a normal distribution
in two dimensions. Up to m=104 the density function
f(5; n) =dF(S; n)/dS is definitely skewed to the right.
This feature enhances the increased initial annealing
rate contribution arising from concentration Quctua-
tions. The indicated increase is possibly large enough
to be detectable in high-temperature quenching experi-
ments and should exert a dominant inQuence during
the initial stage of defect annihilation and clustering in
irradiated specimens.

~ G. H. Vineyard, I. Math. Phys. 4, 1191 (1963}.

for a two-dimensional lattice, and of the form

8(n) =8+Cn (2)

for a three-dimensional lattice, where 3, 8, C, and k are
constants for a given lattice structure. Their computa-
tions pertained to vacancy migration in a binary alloy
and describe the relation between 8(n) and the rate of
ordering (disordering) for n&10' jumps. Migration on
the square planar simple cubic, bcc, and fcc lattices was
investigated. Vineyard4 subsequently proved that the
asymptotic form of 8(n) for a three-dimensional
symmetric random walk is

3. DISTRIBUTION FUNCTION RESULTS

Selected plots of F(S; n) for n= 10, 20, 50, 100, 1000,
and 10 000 jumps are given in Figs. 1—4 in terms of the
ratio S(n)/n. This mode of presentation makes it
easier to see how F(5; n) changes as n increases, than if
the curves were plotted versus 5(n). Let Si(n) be the
largest 5 value such that F(S;n)=0 and Ss(n) the
smallest S wave such that F(S;n)=1. The range of
the distribution is defined as 65(n) =Ss(n) —Si(n). In
all instances 65(n)/n, 8(n)/n, 5 (n)/n, and 5*(n)/n
decrease monotonically as n increases. Si(n)/n remains
more or less constant in the two-dimensional case, the
diminution in 65/n arising essentially from a mono-
tonic decrease in Ss(n)/n. In the three-dimensional
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FIG. 1. Distribution function for square planar lattice.

' D. R. Evans, The Atomic Nttcleas (McGraw-Hill Book
Company, Inc. , New York, 1955); see pp. 774-777.

e H. Cramer, hlathematical Methods of Statistics (Princeton
University Press, Princeton, New Jersey, 1954); see p. 183.

2. COMPUTATIONAL METHOD

Distribution functions F(5; n) and density functions
f(S; n) for each lattice were estimated by running 1000
independent random walk histories of 104 jumps each
using an IBM-7090 computer. The mean (8), mode
(Se), median (S ) and standard deviation (o) were
computed at 10-jump intervals up to 100 jumps,
100-jump intervals up to 10' jumps, and 1.000-jump
intervals up to 10' jumps. In each instance an expected
tendency toward the normal distribution was monitored
by performing an p' test for 21 deg of freedom' and
computing the coeKcients of skewness (yi) and excess
(ys).s 8(n) and o were computed using the first 500
histories, the second 500 histories and all 1000 histories.
The differences between the results given by each
sample set were found to be negligible and on this basis
we decided that the 1000-history sample size was
suQiciently large to form a basis for annealing calcula-
tions. In this regard, it is interesting to note that the
difference between the presentS results, based on a least-
squares 6t to data from 1000 histories, and the original
calculations of Beeler and Delaney, based on a least-
squares 6t to the data from only 10 histories, is less
than 0.5%.
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FIG. 2. Distribution function for simple cubic lattice. Vertical

tick in Figs. 2—4 indicates Vineyard's asymptotic solution for
S(e)/e. Fxo. 4. Distribution function for fcc lattice.

lattices, however, both Si(e)/I and Ss(ti)/I change
as I increases, St(e)/e tending toward S(ts)/I from
below and S2(e)/I approaching it from above. The
vertical tick defines the lower limit of 8(ri)/e given by
Vineyard's calculations for e —+ ~. For all practical
purposes, one can consider this asymptotic behavior to
be attained at m=104 jumps. Table I compares the
1000-history Monte Carlo results for d8/de at v= 10'
with Vineyard's evaluations for the asymptotic case.

All distributions were skewed negatively for m&10'
as shown by the coeKcient of skewness listed in
Table II. This skewness is evident from inspection of
the curves in Figs. 1—4 for m&50. By definition, '
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where p is the eth moment of the distribution about
the mean. A negative y~ means that the tail of the
distribution for S(8 is longer than the forward tail
for 5&8. If y~)0 the opposite is true and y~

——0 for
the normal distribution. A measure of how the shape of
the density function f(S; n), in the vicinity of the mode,

Vs= p4/o (6)

listed in Table III. If ys(0, f(S; I) is more flat in the
vicinity of the mode than the normal density function
and more peaked if y2&0. In this regard y2&0 for the
sp and sc lattices but y2 &0 for bcc and fcc lattices. This
suggests that y~ is independent of the lattice coordina-
tion number z but that y2&0 for z&z0 where 6&zO&8.

A x' test was used to judge the over-all 6t of a normal
distribution to the Monte Carlo data. The averages of
the x' values obtained using 21 deg of freedom (23
intervals) are given in Table IV over 500-900 jumps,
1000—5000 jumps, and 5000-10000 jumps for each
lattice. A composite average for the bcc and fcc distribu-
tions appears in the last column. According to Evans, '
for example, given 21 deg of freedom, x' in the range
13&y'&30 indicates that the data at hand is very
probably described by the assumed distribution, i.e.,
the normal distribution in this case. On the other hand,
either x'&10 or x'& 36 indicates that it is very unlikely
that the data represents a randomly drawn set of values
from the assumed distribution. Excepting the sp
lattice, y' decreased with increasing I for e&500. All
x' values were in the plausible 6t range 10&x'&36 for
e')1000. Both the distribution for the sc lattice and
that for the bcc lattice exhibited y' values within the

TABLE I.Valnes oi C in $(a) =8+Cs given b1 (a) 1000-lllstor11
Monte Carlo (MC) calculations at m=10' and (b) Vineyard's
exact solution for I~ 00.

sc
bcc
fcc

(a)
Monte Carlo

(a =10')

0.6641
0.7216
0.7472

(b)
Vineyard
(~~ ~)
0.6595
0.7178
0.7437

(a)/(b)

1.005
1.005
1,005

differs from that for the normal density function is
given by the coeKcient of excess'
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TABLE II. Coefficient of skewness (y1) for
Monte Carlo distributions P(S; I)

TAzLz IV. Average y2 values over An ranges indicated.
X(;2 is the average of columns three and four.

SPL
Skewness

SCL BCC FCC

10
50

100
500

1000
2000
3000
4000
5000
6000
7000
8000
9000

10 000

—0.054
+0.07
+0.003—0.130—0.159—0.230—0.440—0.400—0.320—0.320—0.300—0.310—0.370—0.382

—0.386—0.286—0.333—0.270—0.238—0.350—0.330—0.310—0.320—0.350—0.280—0.230—0.200—0.169

—0.558—0.320—0.364—0.540—0.418—0.40—0.28—0.26—0.19—0.20—0.19—0.21—0.20—0, j.9

—0.663—0.550—0.444—0.300—0.293—0.330—0.320—0.300—0.340—0.340—0.300—0.260—0.220—0.205

4. EFFECT OF FLUCTUATIONS ON THE
INITIAL ANNEALING RATE

The distributions described in the previous section
were computed to supplement a separate analog Monte

Tsnz, E III. Coefficient of excess (ys) for
Monte Carlo distributions t(S; e)

SPL
Excess

SCL BCC FCC

very probable range for m) 6000 jumps. Because p& and
y2 for the bcc and fcc distribution behave similarly
above x=1000 we feel that a composite average of y'
for these two lattices may be meaningful. This com-
posite average is listed in the right-hand column. The
x' test indicates: (1) F($; e) is not well approximated
by the normal distribution for e & 1000; (2) the normal
distribution is a good approximation to F($; e) for
10'&e&104; (3) F($; e) is very probably normal for
n & 104 in the three-dimensional case.

A least-squares analysis gives the following results
for 8(e) and o (e) on the interval 10'&e& 104:

8(e) =a+Ce, (7)

o-(e) =de". (8)

Values for the constants A, 8, C, and k appear in
Table V.

500-900
1000-5000
6000—10 000

27.6
34.8
33.0

sc

39.8
34.4
22.1

bcc

47.5
26.8
24.7

fcc

38.8
32 ~ 2
32.2

X2

42.0
31.1
26.3

Carlo study on defect annealing in cubic crystallites
containing up to 2)&10' lattice sites. In order to obtain
even approximate agreement between the initial
annealing rate given by the analog Monte Carlo'
calculations and that computed using F($; e), it was

necessary to consider the eBect of Quctuations in the
initial defect concentration within the crystallite. In
this section the number of mobile defects remaining
after an average of e jumps per defect is computed
analytically in two ways. In the 6rst instance the defect
encounter probability is computed using F(S;e) and
the average concentration over the crystallite; in the
second, it is computed using F($; e) and the average
concentrations in each of E, noninteracting crystallite
subvolumes populated according to the random distri-
bution law for Mo defects in E, boxes of equal volume.
The two expressions are then applied in a numerical
example for %0=100 initially mobile defects in a fcc
crystallite containing 5)(10' sites and the results
compared with those obtained in the Monte Carlo
solution for this system.

A. Average Concentration Approach

I et there exist Mo mobile defects randomly distri-
buted on Z lattice sites and M, defects contained in
randomly distributed stable, immobile defect clusters
at time t=0. Assume that the sole mobile defect
removal process is association with other defects at
contact. A pair of defects will be taken as stable and
immobile in this example. Further, assume that the
association probability t. at contact is the same when
one member of the contact pair is a cluster member as
when both defects were mobile just before contact. M„
will denote the number of mobile defects remaining
after e jumps per defect. Let a.= 1/Z. The probability

10
50

100
P00
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 000

—0.455—0.270—0.158—0.170—0,048—0.030
+0.028
+0,22
+0.35
+0.17—0.05—0,001—0.05—0.059

Less

—0.355
+0.120
+0.103
+0.210—0.094—0.01—0.10—0.08
+0.006—0.10—0.13—0.20—0.20—0.12

slim

—0.301—0.14
+0.339
+0.56
+0.388
+0.76
+0.40
+0.16
+0.13
+0.04
+0.07
+0.11
+0.13
+0.13

More

—0.055
+0.12
+0.216
+0.150
+0.043
+0.29
+0.16
+0.21
+0.11
+0.27
+0.34
+0.39
+0.11
+0.12

slim

Tsnz, z V. 8(N) and a (e) given by a least-squares analysis
of the Monte Carlo data.

8(n) =8+CN
8 C

sp'
SC

bcc
fcc

~ ~ ~

16.27
16.90
15.84

~ ~ ~

0.6642
0.7217
0.7473

0.194
0,414
0.385
0.308

0.799
0.608
0.604
0.635

a S(n) = O.V648e0 iI935.

7 N. R. Baumgardt and J. R. Beeler, Jr., Bull. Am. Phys. Soc,
9, 294 (1964).
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that a mobile defect will encounter a cluster member on
the mth jump is

Tsnrz VI. Probability g(k) to Gnd k defects in a subvolume of
5000 sites when the macroscopic defect concentration is
C=2X10 4 defects per site. Cy, is the associated cell average
concentration.

where p (S;e—1) is the conditional probability for a
defect visiting (S+1) distinct sites on the (I+1)th
jump provided it had visited exactly 5 distinct sites in
e jumps. The probability that a mobile defect will
contact another mobile defect is

g(k)

0.366032
0.369730
0.184865
0.0609992
0.01494|7
0.00289778
0.0046345

CJ,X104

0
2

6
8

10
12

Contact with a cluster leads to the removal of one
mobile defect but contact between two mobile defect
leads to a depletion of two mobile defects; hence, the
difference equation for 3f„is

M.=M„, ne'er, —+Mo M—
S S2(n-I)

X P $3f. ,f(s; n 1)jp*(s; tt——1)
S~S1(n—1)

2ctePI„—i 1$—
S S2(n-1)

X g $M if(S; e 1)p*(s; st —1—)i. (11)
S=SI (n—1)

By the definition of f(s; e) the summation reduces to
M„ i(p*(ts—1)).Equation (11)leads to the differential
approximation

dM/dts rreM(P*(t—s))ttM+ (M,+Mp —2)j. (12)

Integration gives

in'/(M+M, +Mp —2) jp"

= —ne(M, +Mp —2) (P*(N))dts. (13)

M(n) =Q Mp(ts). (17)

The quantity M„(k) is obtained by substituting
Mop=kg(k)E, for Mp, and np= 1/g(k)Z for n, in
Eq. (14). The result is

M p(ts) =M op(Mo p
—2)/(2 (Mop —1)
&&e x/pa p(e3I pp 2)I'„] M—pp) . (1—8)

M(N) was evaluated for the particular case
a=2)(10 3fo=lV, =100 and &=1, using

g(k) =M, !(tV,—1)~o-'/k! (Mo —k)!1V.~'. (19)

defects per site. The effect of fluctuations in the initial
defect concentration upon the annealing rate can be
estimated by introducing the density function g(k) for
finding exactly k mobile defects (k=1,2, ,Mo) in a
given subvolume of a collection of 37, equal subvolumes
with atomic-scale linear dimensions. Let M(N) be the
number of mobile defects remaining after e jumps,
computed on the basis of (g(k)) rather than (,, and
set M, =O. M(N) then is

Mo

Values of g (k) for k& 6 are given in Table VI along with
the associated subvolume concentrations. The average
value (k)=1 corresponds to an average concentration
of 2X10 4 defects per site over the entire crystallite,
the concentration used in computing M(n).

Collecting terms, one obtains

M(e) =3IoLM +3Io 23/f L2(Mo —1)+M j
&&expgcte(M +Mp 2)P $ Mp), (14)

where I'„=J'(p*(ts))dts. Because (P*(tt)) is closely
approximated by dS(e)//dn, we will use C. Comparison with Monte Carlo Solution

In Fig. 5, M(ts), M(e) and Monte Carlo solution,
M, (ts), are compared for n=2&&10, 3Ip E,= 100, ——
and ~=1 for m&1000. We will assume that M, is a
physically more realistic solution than either M or M
because one would expect that it better describes the
association of initially closely spaced defects. It will be
used as the reference in all discussion. The curves
become nearly parallel at m=500, and although it is
not shown in the figure, they remained nearly parallel
up to n= 2000, the point at which the Monte Carlo runs
were terminated. It appears, therefore, that dM/dn is

EdS/degdl =S(tp) .

M(n) was evaluated for the particular case n=2&&1 0
Mo ——100, 3f,=0, and &=1. The results are discussed
in Sec. 4C.

B. Consideration of Fluctuations

In the estimation of M(ts) outlined above one con-
sidered (M,+3Ip) defects in a cell of Z sites and
computed the contact probability from the avera e
concentration

(;= (M.+Mo)/Z

g
SW. Feller, An Introdlction to Probability Theory and Its

APPtpcatposss (John Wiley tk Sons, Inc., New York, 1957), 2nd ed. ,16 p. 34.
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a good approximation to the true annealing rate for
e &500 even though M itself is too large. Rapid associa-
tion of defects, initially closely spaced, accounts for the
more rapid falloff in M, for n(500 relative to that
exhibited by M and M. The Monte Carlo method
enables one to easily describe the removal of these
initially close defects during the early annealing stage,
a process only crudely described by M. It would seem
that a rigorous analytical description of Quctuation
effects in the association of randomly walking defects
on a lattice would be somewhat complicated.

If one accepts M, as being more realistic than either
M or M, our results indicate that the use of M in
interpreting defect removal data would cause one to
overestimate the number of jumps per defect required
to attain a given removal fraction. ' Table VII lists the
number of jumps n(M) and n(M, ) given by M and
M „respectively, required to remove a given fraction
of mobile defects. Extrapolation of the straight line
log-log plot of n(M)/n(M, ) versus the removal frac-
tion, gave a limiting value of 1.1 for this ratio. In a
strict sense, the ratios listed in Table VII should be
regarded as lower bounds, especially when they are
associated with n&1000. Although each defect was
initially contained within a cube of 5)&10' sites, in the
Monte Carlo calculations, some defects migrated out
of the cube into a defect-free environment during the
annealing process. These escaping defects served to
increase Z a maximum of 2.4%%uz at n=1000, i.e., a
maximum of 1.2)(10' sites outside the 5X10' site cube
were visited. This caused dM .jdn to be slightly smaller

100

Pu 80
Ll.
LLJ
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40

O

20—
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M GIVEN BY EQ. (17)
M, IS MONTE CARLO SOLUTION

M, ~100AND n ~2x10
FCC LATTICE

I I I

200 400 600 800

JUMPS PER EXTANT MOBILE DEFECT
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FxG. S. Comparison of extant number of mobile defects after I
jumps as given by 3f, 3E, and M, for a fcc lattice.

9 After completion of this article, experimental evidence sup-
porting this conclusion was found in a paper by F. Dworschak,
K. Herschbach, and J. S. Koehler, Phys, Rev. 133, A293 (1964).

TABLE VII. Comparison of the number of jumps n(M) and
N(M, ) per extant mobile defect, given by M and M „respec-
tively, required to remove a given fraction of mobile defects when
3f0=100 and a=2&&10 6.

Fraction
removed

0.1
0.2
0.3
0.4
0.5
1.0

n(M)

340
770

1350
2300
3300

~ ~ ~

I (Mx~g)

60
200
520

1070
2000

n(M)/a(M, )

5.7
3.8
7.6
2.2
1.6

than it would have been had all defects remained inside
the 5&(10' site cell. At m=2000K was increased a
maximum of 3.5% by escaping defects.

Twenty-five Monte Carlo runs of 2000 jumps per
extant mobile defect were made to obtain M, . Five
independent runs were made for each of 6ve inde-
pendent, randomly sampled initial defect distributions
in a cube of 5&10' sites. A y' analysis of the 6ve initial
distributions showed that they were consistent with the
density function g(k) of Eq. (19).
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5. SUMMARY

The calculations described above indicate:

(1) F(S;n) is not well approximated by the normal
distribution for n (5000 jumps. However, F(S;n)
appears to approach the normal distribution on the
interval 5000&m&10 000 and to be normal for e&104
in three-dimensional lattices.

(2) Our results give no conclusive evidence that
F(S;n) either does or does not approach the normal
distribution in two-dimensional lattices.

(3) The use of Vineyard's asymptotic result for S(n),
and the assumption that F(S;n) is normal Lusing
Table V for o (n) J should give a very good approxima-
tion to the distribution of S(n) for n) 10'.

(4) A computation of the mobile defect concentration
and the initial annealing rate must account for the
effect of Quctuations in the initial defect concentration. '
Apparently, however, the annealing rate after the
initial annealing stage can be well approximated by
considering only the average defect concentration.


