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The migration energies and atomic configurations for mono- and di-interstitials and mono- and di-
vacancies in n iron have been calculated using a classical model. About 530 atoms surrounding the defect
were treated as individual particles, each with three degrees of freedom, while the remainder of the crystal
was treated as an elastic continuum with atoms imbedded in it. A two-body central force was devised which
matched the elastic moduli, was sharply repulsive at close separation, and which went to zero midway be-
tween the second and third neighboring atoms. Configurations were found by choosing a starting configura-
tion roughly approximating the situation under consideration and successively adjusting the value of each
variable occurring in the energy equation so that the magnitude of the generalized force associated with it
was zero until equilibrium was reached. The energy calculations include changes in bond energy in the dis-
crete region, energy in the elastic field, and work done against cohesive forces, but neglect changes due to the
redistribution of electrons. Calculated activation energies for motion of mono- and di-interstitials and
mono- and di-vacancies were 0.33, 0.18, 0.68, and 0.66 eV, respectively, and binding energies of di-interstitials
and di-vacancies were 1.08 and 0.20 eV, respectively. The stable interstitial was a "split" con6guration in
which two atoms were symmetrically split in a (110) direction about a vacant normal lattice site, and the
stable di-interstitial consisted of two parallel split interstitials at nearest-neighbor lattice sites with their
axes perpendicular to the line joining their centers. In the vacancy configuration an atom was missing from
a normal lattice site, and the divacancy consisted of two vacancies at second-nearest-neighbor lattice sites.

INTRODUCTION

+)ETAILED and extensive lattice calculations for
copper have been carried out for the dynamics of

radiation damage events near the threshold energy for
damage, ' and for the atomic configuration' ' and the
energy of motion' ' of point defects. These studies have
used a similar approach to lattice calculations: The
forces between atoms within a crystallite of anywhere
from 50 to 1000 atoms are treated explicitly, and
boundary conditions are applied to the crystallite to
simulate the remainder of the lattice. The development
of this method of calculation may be traced to
Huntington' and Tewordt, ' and a number of less ex-
tensive calculations using similar models have been
performed. ' Copper was chosen for investigation
primarily because there were sufficient experimental
data available, because it was felt that an appropriate
and more reliable potential was available for copper
than for other metals, and because the face-centered
cubic structure is amenable to calculation.

The dynamic calculations' have recently been ex-
tended to n iron, ' and the present research was under-
taken in conjunction with that investigation. Iron was
selected as the metal of greatest interest with a body-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' J.B.Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard,
Phys. Rev. 120, 1229 (1960}.' R. A. Johnson and E. Brown, Phys. Rev. 127, 446 (1962).

3 A. Seeger, E. Mann, and R. v. Jan, Phys. Chem. Solids 23,
639 (1962).

4 H. B.Huntington, Phys. Rev. 91, 1092 (1953).
~ L. Tewordt, Phys. Rev. 109, 61 (1958).
6 See, for example: L. A. Girifalco and V. G. Weizer, Phys.

Chem. Solids 12, 260 (1960).K. H. Bennemann, Phys. Rev. 124,
669 (1961).P. Hoekstra and D. R. Behrendt, Phys. Rev. 128, 560
(1962).' C. Krginsoy, G. H. Vineyard, and A. Englert, Phys. Rev. 133,
A595 (1964).

centered cubic structure. Pertinent experimental data
are lacking for all body-centered cubic metals, but the
threshold energy for radiation damage for 0. iron is
known. '

Since the present calculation is similar to that
previously used for copper by Johnson and Brown, '
the rationale for this method will not be repeated here.
In the present calculation the atoms near the defect
are treated as classical particles interacting by means of
a potential which applies between the 6rst and second
neighboring atoms in the lattice and which is matched
to the elastic moduli.

Atomic configurations are found by choosing a
starting configuration roughly approximating the situ-
ation under consideration, and then successively ad-
justing the value of each variable occurring in the
equation for energy such that the magnitude of the
generalized force associated with it is zero, and iterating
this process many times. The energy in the lattice
above that for a perfect lattice normally converges in
the above process. Convergence is not ensured, but no
difhculties have been encountered in this respect. The
numerical calculations have been performed by using
an IBM /094 computer.

Iron interstitial atoms, di-interstitial pairs, vacancies,
and divacancies have been studied, and the activation
energy for motion as well as the atomic mechanisms of
migration, as predicted by this model, have been deter-
mined for these defects. By the application of appro-
priate boundary conditions, the associated activation
volumes for motion have also been found. Some pre-
liminary results have been reported previously. '

Calculations are also being carried out for interstitial

s P. G. Lucasson and R. M. Walker, Phys. Rev. 127, 485 (1962).
9 R. A. Johnson and A. C, Damask, Acta Met. 12, 443 (1964).
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impurities in n iron and these results will be reported
elsewhere.

THEORY

Model

In the present calculation each atom within a
spherical crystallite containing 531 atoms was treated
as an independent particle. In the perfect lattice an
atom was located at the center of the crystallite and
the surrounding 530 atoms comprised 25 shells of sym-
metrically equivalent atoms.

The atoms outside the crystallite were treated as
though they were imbedded in an elastic continuum.
The displacement field u used in the present calculation
for the elastic continuum is given by

u= —CV (1/r) =C(r/r'),

where C is the so-called "strength" of the displacement
field. The displacement for a given atom i is given by

u'= Ct:ro'/(«')'3,

E—Eo, where Eo is the perfect lattice energy;

Eo=o Q g qo"+Z. p qo'".
7 k

The derivation of the coefhcients a and b will be given
after the discussion of the potential.

The force on an atom i due to an atom j is given by

(3)

where r'& = r''r' —(the vector from 2 to j). The total
force on an atomi is then

F'= —(BB/Br')
i'j iJ

7 k

where the summation indices have the same meaning
as in Eq. (2). The generalized force on the crystallite
arising for the elastic variable C is given by

F'= —(BE/BC)

= —Q Q F'2 (Br"/BC) a 2bC.——

where the subscript means that the term is to be
evaluated at the perfect lattice position. Thus, C was
used as the variable determining the displacement of
all atoms outside the crystallite. Equation (1) gives
rise to a spherically symmetric displacement field, for
which the originwas taken as the center of the crystallite.
The choice of the displacement field given by Eq. (1)
is discussed in detail by Johnson and Brown. ' This
particular u is just one of an infinite number of solutions
of the static, isotropic, elastic equation, but activation
energies and atomic configurations near defects were
found to be insensitive to other solutions. The effect of
the displacement field given by Eq. (1) on the energies
and configurations is relatively minor and this term
could be eliminated from the calculation (i.e., the atoms
outside the crystallite frozen at their perfect lattice
positions) without introducing any serious changes in
the results, but it was retained because it can be used
to 6nd activation volumes.

The energy of the crystallite is given by

The process for finding energy minima and saddle
points was as follows: Initial vector positions of each
atom within the crystallite were chosen to approximate
the configuration of interest. Each coordinate of each
atom within the crystallite was varied in turn until
the corresponding force component became zero, and
then the value of C was adjusted so that F' was zero.
Vsually 10 to 20 such iterations were required for the
energy and the configuration to converge sufficiently.
The force on a given atom and the generalized elastic
force are very nearly linear with displacement for small
displacements. Thus, it was possible to find the force
for a given variable at two values of the variable and
use linear extrapolation to the value where the force is
zero.

The volume expansion associated with a lattice con-
figuration is easily calculated and is found to be linear
with C, the elastic variable. Let hV' be the volume
expansion of a hypothetical sphere around the defect.

1 P P ~ii+Q Q ~ik1aC+bC2
i j i Io

(2) u dS

where q'~' is the interaction potential between atoms
i and j, the i summation is over all atoms within the
crystallite, the j summation is over all atoms within
the crystallite which interact with the ith atom, and
the k sumlnation is over all atoms outside the crystallite
which interact with the ith atom. The term aC accounts
for the work done against the forces required to hold
the perfect lattice in equilibrium, and the term bC'
accounts for the energy stored within the elastic field.
The energy for a particular configuration is given by

(6)

AV' is seen to be independent of the radius of the
sphere. For a finite lattice, Eshelby' has shown that
the boundary condition of zero stress at the surface
of the lattice gives rise to an additional term in the
volume expansion (the so-called "image force" cor-
rection). This correction may be written as

hV=A V'{1+(4C44'/(3C12o+2C44')$), (7)

'4 J. D. Eshelby, J. Appl. Phys. 25, 255 (1954).
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where the superscript indicates that the effective
isotropic elastic constants, as given by Leibfried, " are
to be used.

Crs' ——-', (Crr+4Crs —2C44)

C44 s (C11 C12+3C44)

Applying these to Eq. (7) leads to

( 4 (Cr r
—Crs)+12C44'I

!AV=DV'( 1+
15m

where 8, the bulk modulus, is given by s(Ctr+2Cts).

Potential

Experimental elastic-constant data were used as a
basis for obtaining an interatomic potential for the
present calculation. The elastic constants of a metal
may be thought of as arising primarily from two con-
tributions: long-range electronic interactions and short
range ionic interactions. The short-range interactions
predominate for transition metals, but corrections were
included for the long-range terms. Analytic expressions
for the electronic contribution to the elastic constants
of body-centered cubic metals have been derived by
Fuchs" using the free-electron model. Since the long-
range contributions are small and since the free-electron
model is expected to be a rough approximation, the
calculated values were used only as a guide. The elastic
moduli of iron" and the long- and short-range contri-
butions used in the present calculation, in units of
ev/A', are listed in Table I.

The simplest type of potential that can be used in a
lattice calculation is one which gives rise to central
forces between pairs of atoms. The ranges of the
potential must not be so large as to give rise to an
interaction between distant pairs or the calculation
becomes too time consuming. For the body-centered
cubic lattice, it is natural to cut off the potential
between the second and third nearest neighbors, since
the ratio of distances to the nearest, second nearest, and
third nearest neighbors is v3: 2: 2v2, respectively.
Thus, the first and second nearest neighbor distances
are comparable, while the third nearest neighbors are
considerably more distant. The body-centered cubic

structure is not stable with just a nearest-neighbor
central force interacting between the lattice atoms, so
the potential cannot be cut o6 between the nearest
and second nearest neighbors. Since the potential is
meant to describe the short-range ionic interactions,
the inclusion of only nearest and second nearest-
neighbor interactions is consistent with the division of
the elastic-constant data into long-range and short-
range contributions.

The conditions which a spherically symmetric
potential y(r) extending through second neighbors
must fulfill to match the short-range elastic moduli are

2 6 3
(Crt Crs)ar= pt +—3v's + 'Ps (9a)

(9b)

2 tt' 2 2
0'r +vs ' ——A' ~, (9c)

r,

0.8—
I I I I I I I I I I I I

0.4—

where the primes indicate differentiation with respect
to r and the subscripts 1 or 2 mean that the term is to
be evaluated at the nearest or second nearest-neighbor
distance, respectively. There are three equations with
four unknowns. Figure 1 indicates a family of possible
curves of q'(r) which fit the conditions in Eq. (9) and
which are zero midway between the second and third
neighbor distances. The value and slope of p'(r) are
determined at r~ and r~, and the value is determined at
the cut off distance r„while the lines indicate how
smooth curves might be fitted to these conditions.
Curve II, which is roughly parabolic, is the "smoothest"
of the family of curves, and no reason is seen to prefer
any other to it. Indeed, it would be difficult to ra-
tionalize the choice of any of the other curves in
preference to the parabolic one. Equation (9) contains

TAnLE l. Elastic moduli of iron (units of eV/A ). 0.0

Electronic contribution
Tonic contribution
Experimental values'

a See Ref. 13.

C11—C12

0.057
0.600
0.657

C44 8
0.162 0.281
0.600 0.800
0.762 1.081

-04—

-0.8—

2.5 3.0
r(A)

I

3.5

'r G. Leibfried, Z. Phys. 135, 23 (1953).
's K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936).» J. A. Rayne and B.S. Chandrasekhar, Phys. Rev. 122, 1714

(1961).

FIG. 1. A family of possible curves of the derivative of the
potential, p'(r}, which 6t the short-range elastic constant con-
ditions and which are zero midway between the second and third
nearest neighbor distances.
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TABLE II. Iron potential.

Range (A)

1.9—2.4
2.4-3.0
3.0—3.44

Potential (eV)

—2.195976(r—3.097910)'+2.704060r —7.436448—0.639230(r—3.115829)3+0.477871r—1.58j.570—1.115035(r—3.066403)'+0.466892r—1.547967

O.I—

0.0
f(r)

'

(eV)

-O.I—

-0.2-

I I I I I I I I I I I I I I

2.5 o 3.0 3.5
I' (A)

I'ro. 2. The iron-iron interaction potential, s (r), which was
used in the present calculation.

three conditions and a parabola has three coefficients,
so there is one parabola which 6ts the elastic moduli
exactly. This parabola does not have a zero value
midway between the second and third nearest-neighbor
distances and so, another parabola was joined to it
just past the second neighbor distance with matching
value and slope, and zero value midway between the
second and third neighbors. These parabolas represent
Ie'(r), the derivative of the potential, and the actual
potential was found by integration. The constant of
integration was determined by the condition that the
value of the potential be zero at the cutoG distance r, .

Gibson et al.' and Erginsoy eI, a/. ' have shown that
the threshold energy for radiation damage is determined
primarily by the form of the potential at separations
considerably less than the nearest-neighbor distance;
distances which do not enter into the present calcu-
lation. It was felt, however, that the potential used
here should be matched to the radiation damage
potential for iron, ~ and thus, a cubic equation was
joined with matching value and slope to the potential
derived above at a distance just less than the nearest-
neighbor distance, and was joined with matching value
and slope to the dynamically determined potential at a
distance less than any equilibrium distances expected
from the calculation. Thus, the potential was a com-
posite of the three cubic equations given in Table II
and is shown in Fig. 2. All distances are given in A, the
iron lattice constant was taken as 2.86 A, and energies
are given in eV.

The coeIIicients a and b occurring in Eq. (2) may
now be easily evaluated. From elastic theory, the

pressure required to hold the crystallite in the perfect
lattice configuration is"

I'= -', (Crs —C44).,
=-,'L(II)„.—(C )., —-,'(C —C ),,j.

For the elastic constants given in Table I for iron,
I'=0 and thus, a=O. The value of a may also be found
by an explicit bond calculation in which Eq. (5) is
evaluated for the perfect lattice with the requirement
that Ii '=0, i.e., that the perfect lattice is in equilibrium.
Using the iron potential given in Table II, this calcu-
lation yields

a=0.0134 eV/A',

which value was used in the calculations. The dis-
crepancy between this value of a and the value derived
from elastic theory is negligible when compared with
the magnitude of the elastic moduli. It arises because
there is not an exact ratio of 4:3 of nearest to second
nearest-neighbor bonds crossing the boundary between
the crystallite and the elastic region.

The coeKcient b was calculated from elastic theory'4

by setting the energy due to a displacement field u
stored in the elastic field outside the crystallite equal
to bC'. This leads to

b= (644r'/5', ')L(C44)„+'s (Crr —C,s)„j, (11)

where S is the number of atoms in the crystallite. The
pressure term aC plays a somewhat more important
role than the elastic term bC', but for iron both terms
could have been eliminated from the calculations with
no serious effect upon the results.

RESULTS

Interstitials

There are six interstitial configurations which must
be equilibrium configurations because of synnnetry,
but only one of which is stable. These six con6gurations
are denoted by the symbols I&, I2 I6, and are de-
scribed as follows: It $(100) split interstitial, Fig. 3(a)$,
two atoms are symmetrically split in a (100) direction
about a vacant normal lattice site; Is L(110) split
interstitial, Fig. 3(b)j, two atoms are symmetrically
split in a (110) direction about a vacant normal lattice
site; Is L(111)split interstitial, or crowdion, Fig. 3(c)$,
two atoms are symmetrically split in a (111)direction
about a vacant normal lattice site; I4 Lactivated
crowdion, Fig. 3(d)$, an atom is located at the rnid-

point between two normal nearest-neighbor lattice
sites; Is )octahedral interstitial, Fig. 3(e)7, an atom is
located at the midpoint between two normal second
nearest-neighbor lattice sites; and Is Ltetrahedral
interstitial, Fig. 3(f)j, an atom is located at the mid-
point between two nearest octahedral interstitial sites.

' H. B. Huntington, in Solid State Physics, edited by F. Seitz
and D. Turnhull (Academic Press inc. , New York, 1958), Vol. 7.
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In the three "split" cases the pairs of atoms are ap-
proximately 1.5 us apart (as= half-lattice constant).

Configuration Is, the (110) split interstitial, is the
minimum energy con6guration and is, therefore, stable,
in agreement with the results of Erginsoy et al. ,~ while
Is, the (111) split interstitial, is just barely a local
minimum, i.e., metastable. The energy and volume
expansion for the various interstitial configurations are
given in Table III. I~ is the saddle-point configuration
for motion of the interstitial, and is somewhat awkward
to describe because it does not have much symmetry.
If the initial configuration is a $110$ split interstitial
centered at (0,0,0), the next equilibrium configuration
after one jump might be a L101$ split interstitial
centered at (1,1,1) es. The saddle point for this step is
at (0.50, 0.69, 0.31) as. The migration sequence Is~
I& —+ I2 is shown in Fig. 4., and the activation energy
for this process was found to be 0.33 eV. The calcu-
lation also gave an activation volume for motion of 0.1
atomic volume.

FIG. 3. Six iron interstitial configurations: (a) I& or (100) split
interstitial; (b) Is or (110) spht interstitials; (c) Is, (111) split
interstitial or crowdion; (d) I4 or activated crowdion; (e) Iq or
octahedral interstitial; and (f) Is or tetrahedral interstitial.

The crowdion configuration I3 is metastable, but by
less than 0.01 eV, and the crowdion migr'ation sequence
Il —+I4 —+Is has an activation energy for motion of
0.04 eV. The activation energy for rotation of a split
interstitial, holding the center fixed, was found to be
0.33 eV, the same as the motion energy.

In order to make a complete study of interstitials it
was necessary to check for the possible existence of other
equilibrium configurations. In a manner similar to that
used for copper2 it was found to be possible to define a
configuration by three coordinates. The iron calculations
show that no two atoms ever approach each other
closer than 1.5 ao, and that there is always one atom
within a radius of 0.75 ao from each normal lattice site.
Thus, there is always one atom outside a bcc lattice of
spheres of radius 0.75 uo, which atom is defined as the
interstitial. If the remaining atoms are at equilibrium
positions consistent with the interstitial position, the

Tanzz III. Interstitial configurations (0=atomic volume).

Configuration Energy above Iz(eV) BV(Q)

II
I2
Ig
I4
I6
I6
I7

1.29
~ ~ ~

0.32
0.36
1.12
0.85
0.33

1.7
1.6
1.7
1.7
1.4
1.5
1,7

Di-Interstitials

There are many possible di-interstitial configurations
and the calculations showed that many of them are
metastable. Di-interstitial configurations consist of two
split-single interstitials in reasonably close proximity
to each other: No cases were found which resulted in
more complex configurations. The most stable di-
interstitial is shown in Fig. 5(a), and has two split
interstitials parallel to each other at nearest-neighbor
lattice sites, with their axes perpendicular to the line

FIG. 4. The iron interstitial migration process. Configurations
(a) and (c) are both Is configurations, and (b) is Iq, the saddle
point configuration.

crystal energy may be considered as a function of just
the interstitial coordinates. If two atoms are on opposite
ends of a sphere diameter, each is considered half in
and half out of the sphere. These are the "split" con-
figurations, and if one atom of a split pair enters the
sphere, the other moves away from the sphere and
becomes the interstitial. The volume available to the
interstitial that must be studied is greatly reduced by
symmetry. The volume in which the interstitial co-
ordinates have no symmetrically equivalent position is
1/48 atomic volume, and only about half of this volume
is outside the spheres, so, in effect, only about 0.01
atomic volumes must be investigated.

No further equilibrium configurations of interest
were found. The general pattern of the interstitial
energy contours was as follows: low energy pockets at
I2 sites; a plateau region containing Is, I4, and Iq, and
high energies elsewhere. The plateau region is roughly
an oblate spheroid with its axis along the line joining
two nearest neighbors. It is centered at an I4 site, has
two I3 sites on its surface where the axis pierces the
surface and has six I& sites on its outer rim. Not only
are the configurations within this region at about the
same energy, but there are no steep contours between
them.
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Pro. 5. The iron di-interstitial migration process. Con6gurations
(a) and (c) are both stable di-interstitial con6gurations, and (b)
is the intermediate step between (a) and (c).

joining their centers. The binding energy for this con-
6guration relative to two separated interstitials was
1.08 eV and the associated volume relaxation was 0.3
atomic volumes.

The migration of di-interstitials is by a stepping
process in which the two split interstitials partially
dissociate. If the irIitial di-interstitial configuration is
an interstitial split in the L110j direction at (0,0,0) Gp

and an interstitial split in the L110j direction at
(1,1,1) ae, the intermediate configuration might be an
interstitial split in the

I 110j direction at (0,0,0) as
and an interstitial split in the L011j direction at
(2,0,2) ae, and the final configuration would then be
an interstitial split in the

I 011j direction at (1,1,1) as
and an interstitial split in the L011$ direction at
(2,0,2) ae. This two step process is shown in Fig. 5,
and it should be noted that the interstitial moving in
each step follows a single interstitial migration path.
The di-interstitial motion energy was 0.18 eV and the
activation volume for motion was 0.3 atomic volumes.

The separation distance at which two split inter-
stitials are bound as a di-interstitial did not have a
well defined cutoff, but was calculated to be about
4.4 ao. This is an average since the value depends upon
the direction between the interstitials as well as their
individual orientations. This range corresponds to a
region of roughly 88 atomic volumes in which split
interstitials have positive binding energy.

saddle point but a local minimum. A single migration
jump, therefore, had two saddle points as is shown in
Fig. 6, where the energy of the configuration is plotted
as a function of the position of the migrating atom.
The existence of this metastable configuration should
have little physical significance, however, since it is
metastable by only about 0.04 eV.

A di-vacancy consists of two single vacancies in close
proximity to each other. The most stable di-vacancy
was that in which two vacancies were at second nearest-
neighboring lattice sites, and the binding energy was
0.20 eV. The binding volume, or volume decrease of
the lattice upon formation of a di-vacancy, was 0.1
atomic volumes. Vacancies at nearest neighboring sites
were bound by 0.13 eV and vacancies at fourth nearest-
neighboring sites were bound by 0.05 eV. No other pairs
ha, d an appreciable binding energy.

Di-vacancy migration was by a stepping process, in
each step of which one of the vacancies of a di-vacancy
pair moved as a single vacancy, Two possible migration
processes were important; where the configuration
changes from second nearest neighbor to nearest
neighbor and back to second nearest neighbor, and from
second to third and back to second nearest neighbor.
The energy barrier for half of each of these migration
paths is shown in Fig. 7, where the solid line is the
energy barrier for migration via the third nearest-
neighbor configuration and the dashed line is the energy
barrier for migration via the nearest-neighbor con-
figuration. The motion energies are 0.66 and 0.78 eV,
respectively, and the activation volumes are negligible.
These curves are seen to bear a strong resemblance to
the curve in Fig. 6, so that a divacancy step may be
thought of as a perturbed single vacancy step.

Motion by the third nearest neighbor mechanism
always leaves the orientation of the divacancy un-

I I I

Vacancies and Di-Vacancies

The vacancy problem was straightforward compared
to the interstitial calculations. The stable vacancy was
the configuration in which an atom was missing from
a normal lattice site, and the migration process con-
sisted of a nearest-neighbor atom to the vacancy
jumping from its normal lattice site to the vacancy
site, thus filling in the vacancy and leaving a new
vacancy behind. This process may also be thought of
as the vacancy migrating by jumping to a nearest-
neighboring lattice site. The migration energy was
found to be 0.68 eV and the activation volume for
motion was negligible.

The potential barrier for vacancy motion had a slight
depression at the midpoint, i.e., the symmetric con-
figuration at the midpoint of the process was not the

0.6—

—0.4
C9
LL
Lal
R
Uj

0.2—

O.O—
I I I I I I

(——-)I I I

2.2 2

COORDINATES OF THE JUMPING ATOM (a o )

I I I I

( O,OQ)

F&G. 6. The vacancy migration energy barrier. She energy of
the configuration is shown as a function of the position of the
jumping atom, as the vacancy migrates from (0,0,0) at the left
to (1,1,1) at the right. The curve does not extend to (1,1,1) and
(0,0,0) because. the atom relaxes towards the vacancy.
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altered, while the orientation may be changed by a
nearest neighbor process. The nearest-neighbor con-
Gguration also may act as a trap, since 0.71 eV are
required for the nearest neighbor to second nearest-
neighbor divacancy transition.

A summary of these results is given in Table IV.
Interstitial motion is not by the same mechanism as
interstitial reorientation, although the energy and
volume are the same. The corresponding di-interstitial
processes are the same. Vacancies have the symmetry
of the lattice and therefore do not have any reorien-
tation process associated with them.

Motion
energy

Motion
volume

Binding
energy

Binding
volume

Interstitial
Crowdion
Di-interstitial
Vacancy
Di-interstitial
Interstitial
Di-interstitial
Divacancy

0.33
0.04
0.18
0.68
0.66
0.33
0.18
0.78

0.1
0.0
0.3
0.0
0.0
0.1
0.3
0.0

1.08

0.20

0.3

0.1

Reorientation

TABLE IV. Summary of results (energy in eV,
volume in atomic volumes).

DISCUSSION

Results

Very little experimental data are available per-
taining to the results reported in the present paper,
but some comparisons may be made for interstitial
migration. Lucasson and Walker' have obtained
isochronal resistivity annealing curves for iron and
copper after irradiation with electrons at energies
slightly above threshold. They also found that the
stage I iron and copper annealing curves can be super-
posed if the iron temperature scale is reduced by a
factor of 2.5" Corbett, Smith, and Walker" have
found an energy value of 0.12 eV for annealing of stages
Id, and I, in copper and have ascribed this annealing to
interstitial migration. Assuming that the corresponding
annealing stages in iron are also due to interstitial

0.8—
I I I

0.6—
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"P. G. Lucasson and R. M. Walker, Phys. Rev. 127, 1130
(1962).

'6 J. W. Corbett, R. B. Smith, and R. M. Walker, Phys. Rev.
114, 1460 (1959).

FxG. 7. The divacancy migration energy barrier. The energy
of the coniguration is plotted as a function of a conGguration
coordinate (similar to the coordinate of the jumping atom) as
the divacancy transforms from a second nearest neighbor' con-
6guration on the left to a third nearest neighbor con6guration
along the solid line and a erst nearest-neighbor configuration
along the dashed line. Both curves have a mirror image repeat
to the right of the drawn curves by which the migration process
is completed.

migration, and assuming that the pre-exponential
factor associated with the migration processes of the
iron and copper interstitials are roughly the same, then
the iron interstitial migration energy is 0.30 eV. The
calculated value was 0.33 eV, in very good agreement.

In an internal fraction experiment by Wagenblast
and Damask, " which searched for a relaxation asso-
ciated with the interstitial in irradiated iron, the
irradiation was performed at 140'K and the relaxation
was looked for at higher temperatures, with negative
results. Using the interpretation that interstitials
anneal in stage I, the work of Lucasson and Walker
just discussed shows that the iron interstitial anneals
out of iron in ten minutes at 120'K. Thus, this inter-
pretation is consistent with the Wagenblast and
Damask indings.

Another interpretation of annealing in copper is that
crowdions migrate in stages I~ and I, and interstitials
migrate in stage III." The present calculations of
crowdion stability and motion energy do no) support
this interpretation for iron. The Wagenblast and
Damask experiment also does not support this inter-
pretation since they found no indication of an oriented
defect over a wide temperature range (140' to 385'K)
in iron.

No direct experimental evidence is available for the
motion energy of vacancies in iron. The activation
energy for self-diffusion in o. iron is 2.6 eV,"which is
the sum of formation and motion energies. Theoretical
estimates by Brooks" and by Mehl, Swanson, and
Pound" indicate that the vacancy formation energy is
considerably larger than the vacancy motion energy
for bcc crystals, so that the motion energy of 0.68 eV
reported in the present paper is not unreasonable com-
pared to the self-diffusion energy. However, Damask

"H. Wagenblast and A. C. Damask, Acta Met. 10, 333 (1962).
C. J. Meechan, A. Sosin, and J. A. Brinkman, Phys. Rev.

120, 411 (1960). A. Seeger, in Proceedings of the Symposium on
Radiation Daznage in Solids (International Atomic Energy Agency,
Vienna, 1962), Vol. 1, p. 101.' F. S. BuKngton, I. D. Bakalar, and M. Cohen, J. Metals 4,
859 (1952).I H. Brooks, in Inzpzzrzties and Imperfections (American Society
for Metals, Cleveland, 1955), p. 1.

~'R. F. Mehl, M. Swanson, and G. M. Pound, Acta Met. 9,
256 {1961).
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et al. ," in an extensive study. of carbon in n iron did
not find a vacancy annealing stage at temperatures
which would correspond to a motion energy of 0.68 eV,
and the model which they proposed to explain their
results assumes that vacancies move at a temperature
corresponding to a motion energy of greater than about
1.0 eV.

The present results indicate that none of the defects
studied are amenable to internal friction studies.
Vacancies have the symmetry of the lattice and are,
therefore, eliminated from considerat, ion. The energy
to reorient di-vacancies is greater than their motion
energy, and so they mill anneal before being able to
reorient. Both interstitials and di-interstitials require
the same energy to migrate as to reorient (migration
and reorientation are the same process for di-inter-
stitials), and thus, internal friction experiments would
be very dificult to perform as the concentration of
defects would be decreasing at a temperature where
internal friction would be large. This does not take into
account the possibility that the relaxation strength
associated with these defects might be suKciently
small so that internal friction could not be measured
at experimentally obtainable concentrations. A detailed
calculation of this effect was made for copper" for an
oriented intersLitial with the result that even if the
defect were present in heavy concentrations, it would
be very difficult to detect by internal friction.

Model

The results of the present calculations are considered
to accurately represent the model: Increasing the size
of the region in which the atoms are allowed full
freedom to relax, using greater precision within the
calculation, using a different relaxation scheme, etc.,

"H. Wagenblast and A. C. Damask, Phys. Chem. Solids 23,
22 (1962). F. E. Fujita and A. C. Damask, Acta Met. 12, 331
(1964). R. A. Amdt and A. C. Damask, Acta Met. 12, 341
(1964). H. Wagenblast, F. E. Fujita, and A. C. Damask, Acta
Met. 12, 34/ (1964).

+H. B. Huntington and R. A. Johnson, Acta Met. 10, 281
(1962).

would not sensibly affect the results. The important
question is whether or not the model satisfactorily
represents the real crystal so that the results are
meaningful.

This model completely neglects any contribution
from the so-called electron redistribution energy, i.e.,
it does not account for the drastic alteration of the
electron wave functions near the defect. The author
knows of no method currently available to obtain any
sensible estimat. e of how this term enters into the
differences in energy between various configurations.
It is felt, however, that in all probability the calculated
vacancy migration energy would be increased. It is
also felt that the configurations are determined pri-
marily by the close repulsions, so that the elect.ron
redistribution would have very little affect upon the
configurations.

The energy in this model is not a sensitive function
of the volume, and thus, the volume changes for the
various configurations should only be considered as a
rough approximation.

The choice of a potential is a critical part of any
calculation, and it is felt that the potential used in the
present calculation is as good an approximation as may
be made. It matches the experimental elastic moduli
and is fitted to a number of other not unreasonable
criteria. A major objection might be that it is cut off
after the second nearest neighbor. Aside from the fact
that increasing the range of the potential would greatly
increase the complexity of the calculation, it is desirable
to test the simplest reasonable model first and only
incorporate more complex features where necessary.
The assumption in using a short range potential is that
longer range effects average out to give rise to the
volume-depe~ dea. t binding.
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