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RoBERT C. MILLER

BelL Telephone Laboratories, MNrray Hill, Pew Jersey
(Received 21 January 1964)

Second-harmonic generation (SHG) oi the Nd-doped CaWO4 optical maser beam in ferroelectric BaTiOs
has been investigated. Each of the three nonlinear coefficients which determine the magnitude of the SHG
have been measured from room temperature to near the Curie temperature. It is found that all three co-
efhcients have the same temperature dependence as the spontaneous ferroelectric polarization. The sym-
metry of the nonlinear coefBcients required for a dispersionless, lossless SHG mechanism, namely, d»=d»
for BaTiO3, applies over the entire measured temperature range. The effects on SHG due to antiparallel ferro-
electric domains are described. The circumstances under which random as well as special antiparallel do-
main arrays can produce either an enhancement or a degradation of the second-harmonic intensity are dis-
cussed. Because of the dependence of SHG on the domain structure, the determination of the nonlinear
coeKcients requires single-domain crystals. A method for preparing suitable BaTi03 single-domain crystals
is described. These crystals are also useful for investigations of the characteristics of ferroelectric domain
growth.

INTRODUCTION

~~~IJANTITATIVE studies of the second-harmonic~ generation' (SHG) of optical maser beams in
ferroelectric crystals are interesting for several reasons.
All ferroelectric crystals' have optical, electrical, and
other properties that undergo large changes with tem-
perature so that one might also expect the eKciency
of SHG in these crystals to vary with temperature in
some pronounced manner. In addition, ferroelectric
crystals have a domain structure that can be in-
Quenced with an external electric field; and, as will be
discussed, the ferroelectric domain structure can have a
maked effect on the production of the second har-
monic. ' ' Neither the domain effects nor the Inarked
temperature dependence of SHG will occur with the
usual nonferroelectric piezoelectric crystal. Ferro-
electric barium titanate is, in many respects, a good
choice as a material for an investigation of these
nonlinear effects. For example, suitable crystals are
readily available, the point group (C4.) is simple, it is
among the most e8Rcient nonlinear materials known,
the Curie temperature (120'C) is easily attained, its
optical properties are well suited to SHG with at least
one of the commonly used optical masers, and its
domain dynamics are quite well understood. 2

From the point group of BaTi03, it can be shown

' For a review on the subject of SHG, see P. A. Franken and
J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).' For a general review of the properties of BaTi03 and other
ferroelectric crystals, the reader is referred to F. Jona and G.
Shirane, Ferroelectrec Crystals (The Macmillan Company, New
York, 1962).

~ R. C. Miller, quoted in Ref. 1.
4 F. Brown, Bull. Am. Phys. Soc. S, 62 (1963).' J. van der Ziel and N. Bloembergen, Bull. Am. Phys. Soc. 8,

380 (1963),and N. Bloembergen, Proceedings of the International
School of Physics "Enrico Fermi, " Varenna, Corno, Italy, 1963
(to be published).

R. C. Miller, D. A. Kleinman, and A. Savage, Phys. Rev.
Letters ll, 146 (1963).

7 R. L. Himbarger and J. L. Bjorkstam, Appl. Phys. Letters 3,
109 (1963).

that the second-order polarization P2„has the form, ' e
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In this equation, I'2„ is the dielectric polarization at
twice the maser frequency co, d;; are the nonlinear
coefficients, and E; are the optical electric fields in the
medium. Inspection of Eq. (1) readily shows that
c-domain ferroelectric plates, i.e., plates with the
ferroelectric direction (s axis) normal to the major sur-
faces, are not very useful for a study of SHG. One would
like to use a-domain plates, i.e., samples with the
ferroelectric direction in the plane of the major sur-
faces of the plate, so that with appropriate use polarizers
and analyzers, one can determine each of the three non-
linear coefFicients. There is some indication in the
literature that u-domain samples are difhcult to prepare;
and, furthermore, that they may be unstable. In
addition, since SHG is influenced by antiparallel fer-
roelectric domains, ' one must prepare a-domain samples
which are free of antiparallel domains, i.e., they must
be single domain crystals. A method fo'r preparing
samples suitable for these SHG studies will be described.

The a-domain samples prepared for the SHG studies
are also useful for another type of investigation. With
electrodes along two opposite edges so that electric
fields can be applied along the crystal s axis, one can
study the domain dynamics of polarization reversal,
i.e., the nucleation and growth of the antiparallel
domains. In recent years, studies' of domain dynamics
through the direct observation of the domains have been
largely restricted to investigations of the sidewise
motion of the 180' domain walls=the boundaries be-
tween antiparallel domains. With the a-domain sarn-

e P. H. Fang and W. S. Brower, J. Appl. Phys. 34, 1516 (1963).



A1314 ROBERT C. M I LLER

ples, one can for the first time observe in detail directly
with a microscope the forward growth (growth in the
direction of the spontaneous polarization) of the anti-
parallel domains under nearly ideal conditions. These
phenomena, however, will not be described in this
paper.

This paper discusses an analysis of some of the
effects of antiparallel ferroelectric domains on SHG, the
preparation of single crystals of BaTi03 suitable for
studies of SHG and the forward growth of antiparallel
domains, the determination of all the nonlinear coeKci-
ents as a function of temperature, and a brief discussion
of these and other related experimental results.

EFFECTS OF FERROELECTRIC DOMAINS ON SHG

The eBects which will be considered are those due to
antiparallel domains. Effects which arise with twinned
crystals due to mixed a- and c-domain configurations
will not be discussed. Barium titanate will be treated
in some detail, however, the phenomena to be described
are not specific to BaTi03—they will occur with all
ferroelectric crystals.

Consider what happens when an optical maser beam
is at normal incidence on a BaTi03 crystal platelet.
The maser beam fundamental produces a second har-

monic forced wave'" in the crystal as indicated in
Fig. 1. This wave, which will be expressed as

Esfgg ~ l, expi(2k&x —2&at) (2)

is tied to the fundamental maser light wave,
expi(k&x —at). In these expressions, ~ is the frequency
of the fundamental light wave, and k~ the propagation
constant in the medium. The quantity /, is the coherence
length, ' which will be described in more detail in the
next paragraph. The plane of polarization of the forced
wave is determined by the nonlinear coefficient in-
volved in the SHG process. For ease of presentation,
the phenomenon to be described will be illustrated with
the nonlinear coef5cient d33 so that all polarizations,
including the ferroelectric polarization, are in the same
plane.

Boundary conditions imposed by Maxwell's equa-
tions, namely, the tangential components of E and II,
must be continuous across the surface of the crystal,
require that a free second-harmonic wave' " also be
present in the crystal. This wave, which is produced
at the surface, is expressed by

n„+1
EI„~ l, expi(—ksx —2a)l),

tt2+2
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FIG. 1. Illustration of the enhancement of SHG due to anti-
parallel ferroelectric domains, one coherence length, /„ thick.
The forced and free second-harmonic waves are shown at the top
of the 6gure and the resultant second-harmonic intensity at the
bottom of the fjgure. At each domain wall the forced wave changes
phase by m., and the free wave increases in amplitude by an amount
equal to twice that of the forced wave. The dotted, dashed, and
solid curves at the bottom of the 6gure show the effect on the
second-harmonic intensity of zero, one, and two 180 domain
walls.

where k2 is the propagation constant in the medium
appropriate to the second-harmonic frequency. The
quantities e~ and e2 are the indices of refraction at the
fundamental- and second-harmonic frequencies, re-
spectively. A reQected second-harmonic wave of small
amplitude is also generated but will not be discussed
further. ' "Since dispersion between the fundamental-
and second-harmonic frequencies is usually present,
2kj will not in general be equal to k2 so that the forced
and free waves, which are initially out of phase by
x at x=0, travel with different velocities. The second
harmonic intensity I2 in the crystal is the result of the
interference between these two waves, and can be
approximated by

(4)I
E„,+E,~'.

l, =or/(ks 2k') =X/—4(ns mi), — (~)

where X is the free-space wavelength of the fundamental.
Now, consider what happens to these two second-

harmonic waves when they traverse a 180' domain wall

~ J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962}.I D. A. Kieinrnau, Phys. Rev. 128, 1761 (1962).

Since (m&+1)/(I&+1) is nearly unity, Is at x=0 is
essentially zero compared to the maximum value of
I2 which first occurs at x equal to one coherence length
l. where the two waves are in phase; and then provided
no domain walls are present, at successive odd mul-
tiples of l,. The minima occur at even multiples of l, .
This oscillating phenomenon is illustrated near the
bottom of Fig. 1. The coherence length l, is given by
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where the normal to the wall is in the beam propagation
direction. Since the 2' axes in two antiparallel domains
are in opposite directions, Eq. (1) says that the phase
of the second-order polarization wave P2„, and hence
that of E2I,„will change by x on traversing the wall.
The effect of the wall on the free wave is determined by
the requirement that the tangential components of the
E and H fields at frequency 2' be continuous across the
domain wall. For a waII at x= xo, the free-wave changes
from the form given in Eq. (3) to

(nr+1) (nt+ns)
expi (2k r

—ks) xs
SQ(ns+1)

)&expi (k2x—2&et), (6)

where the walls are placed at x= x~, x= x~, etc., and it is
assumed that e~=e2 except in /, . Then, for 2S/, &/,
Eq. (7) gives a second-harmonic intensity enhancement
proportional to (1+2K), where again only the part of

for x&xo. Thus, in the case of the free wave, the domain
wall in general introduces a change in amplitude as well
as a change in phase. A reQected second-harmonic
wave is also produced at the wall; however, since its
amplitude is down from that of the transmitted second-
harmonic wave by more than three orders of magnitude,
the rejected wave will not be considered further. Assume
as shown in Fig. 1, that a wall is at xo=/„ in which case
the maximum increase in El,„and hence I2 is obtained.
Setting e~=e2, i.e., small dispersion, one sees from
Eq. (6) that the amplitude of the free wave increases by
a factor of 3. Therefore, the maxima of the total second-
harmonic intensity increase by a factor of 4 due to the
6rst "properly" placed domain wall. In addition, the
minima are no longer zero, but are equal to the maxima
obtained in the absence of the 180' wall. Each properly
placed 180' wall results in an increase of the amplitude
of the free wave by (nr+ns)/ns=2 times the amplitude
of the forced wave. With 1V properly placed walls, the
part of I2 which does not average to zero with
x can be shown to increase by a factor equal
L1+(1+2Ã)')/2. The largest enhancement one can
obtain from this process occurs when the 180' walls
are present at x=l., 2l„3/„etc., up to the crystal
thickness l. The effect is then to increase the coherence
length from /, to the crystal thickness /. With the Nd
maser and BaTi03, /, =2.1&&10 cm for d33' so that for
a crystal of typical thickness, 2&10 ' cm, and with
domain walls spaced l, apart, one has E =10' or a
SHG enhancement of 2X104, a very large effect.

For an array of N 180' domain walls situated ran-
domly in the crystal, the resultant second-harmonic
electric field is given by

E~ l.f ( 1)~e"" e'"—~(1 2exp —( irrxr/—l,)—
+2 exp (—im.xs/f, )—2 exp ( im.xs/l,)+-

+2(—1)"e p(—'
x /f. ))j, P)

I2 that does not average to zero with x is considered.
The restriction that 2//, &/ is required so that in
averaging the product of Eq. (I) and its complex con-
jugate one can permit each phase vrx;/f, to vary from
0 to 2m. Thus, even a random array of antiparallel
domains can produce a substantial enhancement of the
second harmonic in a ferroelectric crystal.

For /&)/, i.e., when the free and forced waves pro-
pagate at very nearly the same velocity, Eq. (7) can
be used to show that the intensity of the resultant SHG
is proportional to the square of the difference between
the total thickness of domains of one sign minus that for
domains of the opposite sign. Since SHG for l)&l, in
the absence of domains' is proportional to P, antiparallel
domains will have a serious degrading effect on SHG
under "velocity matched" conditions.

In the case just treated, the crystal was assumed to
consist of slabs of antiparallel domains with the normals
to the walls parallel to the beam direction. If the wall
normals are perpendicular to the beam direction the
analysis given above does not apply. In the latter situa-
tion, one has second-harmonic coherent light beams
emerging from the crystal with the phase of all the
beams coming from domains polarized in one direction
out of phase by m with those beams coming from do-
mains polarized in the opposite direction. In an un-

focused beam experiment with a few antiparallel
domains present so that the cross sections of the radiat-
ing volumes are much larger than a wavelength, the
emerging beams will be nearly parallel and will not
interfere with each other and reduce the second. -
harmonic intensity below that which one would ob-
serve with a single-domain crystal. However, when
diffraction effects become large, that is, when the cross
sections of the radiating areas are comparable to a
wavelength, the emergent beams are no longer nearly
parallel to that they can interfere destructively with
each other and reduce the second-harmonic output be-
low that which one would observe with one or a few
domains.

The optimum domain array for SHG is one where the
crystal consists of sheets of antiparallel domains, each
l, thick, with the wall normals parallel to the beam direc-
tion. The question arises as to how one can produce
such domain arrays. One possible method that would

apply to crystals which undergo second or higher order
ferroelectric phase transitions, 2 such as potassium
dihydrogen phosphate (KDP), Rochelle salt, and
triglycine sulfate (TGS), involves the formation of a
domain pattern, as the crystal goes from the para-
electric to the ferroelectric phase, which is determined

by the minimum free energy. ' In the case of Rochelle
salt, theory and experiment give a domain spacing ob-
tained in this manner which is proportional to the
square root of crystal thickness. " (This crystal thick-
ness refers to the direction of the ferroelectric polariza-

"T.Mitsui and J. Furuichi, Phys. Rev. 90, 193 (19S3).
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tion. ) Thus, one may be able to produce a suitable array
using this technique. This method vrill not work for
crystals such as BaTi03 which undergo first-order phase
transitions since the domain pattern formed on cooling
through the phase transition is in this case determined
by independent nuclei and not by the minimum free
e11elgy.

It may be possible to produce desired domain arrays
vrith electric fields. There is some evidence that the
number of domains per unit area is determined by the
magnitude of the field producing them, "so that with a
suitable choice of the magnitude and the duration of
the field, one may be able to produce useful domain
patterns. A combination of electrical and thermal treat-
ment may also be found useful.

Order of magnitude enhancements of the second-
harmonic have beni observed with both BaTiO~ and
TGS when antiparallel domains were known to be
present. In these experiments, the ferroelectric domains
had probably either circular, or approximately square,
cross sections in the BaTi03, and probably lenticular,
or circular, cross sections in TGS. Thus, in neither case
did the antiparallel domain configuration approximate
the ideal slab structure. However, in no case was a
decrease of the second harmonic observed when anti-
parallel domains were known to be present which shows
that the enhancement eGects of the 180' walls are
larger than the degrading effects such as those due to
small radiating areas.

A somewhat similar arrangement for enhancing SHG
in quartz where l,&/ was described earlier' ' and con-
sists of stacking crystal plates in such a way so as to
produce the effects shown in Fig. 1 and described in the
text.

PREPARATION

Since no method of preparing samples suitable for
the present experiments has been given in the literature,
the techniques employed to produce the crystals will be
described in some detail. Clear, undoped crystal plates
of the order of 2X 10 ' cm thick (grown by the Remeika
method") with clean smooth surfaces were selected and
then etched in concentrated HSPO4 at 155'C suKciently
long to reduce the sample thickness by at least 5X10 '
cm. The samples were then rinsed in water, alcohol, and
dc poled in distilled water with platinum electrodes.
After poling, the specimens were examined with a
polarizing microscope and only those samples which
had large, unstrained c-domain areas were selected. Of
these crystals, only those which had areas a millimeter
or so on a side that were sufficiently plane parallel to
give a few interference fringes with visible monochro-
matic light vrere used. These selected crystals were then
cleaved, or broken, with a razor blade such that with
much patience and some luck one obtained a c-domain

' H. L. Stadler and P. J. Zachmanidis, J. Appl. Phys. 34, 3255
(&963)."J.P. Remeika, J. Am. Chem. Soc. 76, 940 (1954).

SHG STUDIES

Figure 2 shows a schematic drawing of the essential
components of the experimental arrangement for
studying SHG in BaTi03. For ease of analysis of the
data, a careful alignment vras made so that the polariza-
tion of the laser beam was in the xs plane of the crystal
and at 45' to the x and s crystalline axes. Table I gives
the nonlinear coefficients d;, involved in SHG as deter-
mined from Eq. (1) for various orientations of the
polarizer and analyzer with respect to the crystal s axis.
As seen in the table, special orientations of the polariz-
ing elements enable one to observe separately SHG from
each of the three nonlinear coeKcients. The polarizing
elements in Fig. 2 are set to observe SHG due to d~5.

To make quantitative comparisons between nonlinear

POLAR IZER 2 2
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g
+ d33 E
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E2~a2d1g EtjEZ

Fio. 2. Schematic drawing showing the orientation of the BaTi03
sample with respect to the maser beam. The polarizing elements
are set to measure the second harmonic due to d15. The electric
gjeld is applied to inpure that the sample remains single domain,

sample, rectangular in shape, several millimeters on a
side, with the sides parallel to the u axes, Then air-
drying silver-paste electrodes were painted on the more
perfect two opposite edges and dc fields of a few kV/cm
were applied to pole the sample c domain. The poling
process was monitored with a polarizing microscope
and the process usually hastened by heating the sample
with a focused light beam to a temperature below but
near the Curie temperature. When the poling process
was complete, the light and field were removed and the
resultant a-domain sample examined. At this point, the
samples would in most cases be without antiparallel
domains. If a few antiparallel domains did appear,
they were usually readily eliminated with fields of a few
hundred volts per centimeter. In the studies of SHG, a
field of this magnitude was always kept on the sample
while under investigation to insure that no antiparallel
domains were present. However, even under these condi-
tions, both twinning and antiparallel domains usually
occur at temperatures above approximately 110'C. For
this reason, coupled with the fact that going through
the Curie temperature is frequently a destructive opera-
tion, almost all the studies were made at temperatures
less than about 110'C. There was no indication that
these a-domain samples were unstable, i.e., over periods
of months, no changes in the domain structure were
observed.
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m2f()=
(est+1)'(ns+1)'(mt+Is)

(9)

In Eq. (8), the intensities are those measured outside of
the crystal. Sufhcient data on the indices of refraction
of BaTi03 are not available to calculate the coherence
length from Eq. (5) so that it must be determined ex-
perimentally from the data. The second-harmonic in-
tensity is observed as the crystal is rotated about the
z axis and then plotted as a function of angle. This
rotation changes the path length of the beam in the
crystal so that the periodic variation of the second
harmonic is observed. These data on the angular de-
pendence of I;, are then used to determine l;;, and are
extrapolated to normal incidence to obtain relative
values of d;, . Room temperature determinations of d;,.
and l;; were given earlier, e but are also given here in
Table II.

The temperature variation of the nonlinear coeffici-
ents is calculated from observations of the second har-
monic intensity versus temperature. Figure 3 shows
some of the data for the coeKcient d3~. The oscillations
present in the data occur due to changes in the magni-
tude of l3~ through the temperature dependence of
e2—e~.6 Data on both the angular and temperature
dependence of the second-harmonic intensity are re-
quired to determine directly the direction in which l;;

TABLE I. Orientations of polarizer and analyzer to determine
nonlinear coefBcients in BaTiOI.'

Polarizer

PO

90'
900
45'
45'

Analyzer

PO
PO

9P0
po

900

Nonlinear coefficient

A3
A1

none
d33 and d3j

dls

a The angles are between the transmission direction of the electric field
in the polarizing element and the s axis in the crystal.

' P. D. Maker, R. %.Terhune, M. NisenoB, and C. M. Savage,
Phys. Rev. Letters 8, 21 (1962).

coefBcients, it is necessary to consider the interference
eBects that occur between the second-harmonic forced
wave produced by the maser beam, and the free second-
harmonic light wave produced at the surface of the
crystal. As mentioned in an earlier section, this inter-
ference effect, which was 6rst demonstrated in quartz, '
produces a second-harmonic wave whose amplitude
varies in a periodic manner along the beam direction
from essentially zero to some maximum value. For
d» in BaTi03 and a crystal of thickness l, the second-
harmonic intensity, I» generated by the fundamental
intensity I& is given by

Iss ~ It'f (e)des'lss' stn'(7'/2lss), (g)

where f (n) is a function of the indices of refraction, and
l» is the coherence length. The function f (n) is given by

TABLE II. Room temperature BaTi03 nonlinear
coefBcients and coherence lengths.

d15 ——35&3
d31 =37+3
d33 = 14&1

1.57&0.12 p
2.90~0.14y
2.07&0.04 p,

~ The dsI are relative to dsii for KDP where die —1.00.

changes with temperature. For example, in the case
of Jts, it is found that dIts/de is negative when dIts/dT
is positive so that l~5 must be increasing with tempera-
ture. Similar considerations show that l3$ and l33

both decrease with temperature. These experimentally
determined temperature dependences for l;; are in the
direction one would predict from the limited data on
the optical properties of the negative uniaxial BaTi03
crystal. The published data' show that the index of
refraction for the ordinary ray is temperature-independ-
ent while the index of refraction of the extraordinary
ray increases with temperature and becomes equal to
the ordinary index of refraction at the transition
temperature.

Since f(n) in Eq. (9) is very nearly temperature-
independent, the temperature variation of the amplitude
of the maxima shown in Fig. 3 arises from changes in l3i
and d3$ Since l» is known from the room temperature
data on the angular dependence of the second harmonic
intensity, and each oscillation of the second harmonic
shown in Fig. 3 represents the introduction of two
additional coherence lengths, l3~ can be determined
as a function of temperature. The temperature variation
of dst can then be calculated from Eq. (8). Figure 4
shows data obtained in the manner just described on the
temperature variation of each of the nonlinear coeKci-
ents for BaTi03. The relative values of d;; were com-
puted at the intensity maxima and are normalized so

I-
V)z
LLJ

Z10
U
z0
K
x
Oz .
O
O
LLI
V)

0 I I I I

20 30 40 50 60 70 80 90 100 110
DEGREES C

I IG. 3. Second harmonic intensity due to d31 as a function of
temperature. The oscillations are due to changes in the indices of
refraction with temperature. These data are used to calculate the
temperature dependence of the nonlinear coefhcient.
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FIG. 4. The temperature dependence of the three nonlinear
coeKcients in BaTi03. All three have been normalized to 10 at
20'C. Within the experimental uncertainties of the measurements,
all three coefhcients vary with temperature as the spontaneous
polarization which is also plotted in the Ggure and normalized to
10 at 20'C. The experimental points were calculated from the
maxima of the second-harmonic intensity versus temperature
data similar to that shown in Fig. 3.

that they all equal 10 at room temperature. All three
coefficients were measured as a function of temperature
with a crystal 2.48X10 cm thick, and in addition d»
was also measured with a second crystal 6.25X10 ' cm
thick. In the case of the coefficient des, the curve shown
in Fig. 4 is an average of six temperature runs. Although
not shown in Fig. 4, it has been found that the d;g
decrease to zero discontinuously at the temperature
where the crystal goes through a first-order phase
transition from a ferroelectric phase into a nonpiezo-
electric phase. ' The discontinuous decrease of the
second-harmonic intensity at the phase transition is
consistent with the first-order phase transition. The
temperature dependence of the spontaneous polariza-
tion of BaTiOs (26 pC/cms at 800'K) normalized to
10 at room temperature, is also shown in Fig. 4. Note
that all d;; vary with temperature within a few percent
of each other and I', . The temperature dependence of
the d's will be discussed in the next section.

DISCUSSION

Attempts to describe the temperature dependence of
the d; s given in Fig. 4 in terms of P, (T)ts show that
n= 1 results in the best over-all fit to the data. Empirical
fits inore "accurate" than that given by d;;(T) ~ P, (T)
can be obtained for d~~ and d33, however, these fits are
in some cases not physically significant, e.g., d;; does
not go to zero as I', goes to zero, and furthermore com-
plicated empirical fits would not seem justified at this
stage since within the experimental uncertainties of
the measurements d;, (T) and P,(T) have the same
temperature dependence, Therefore, the temperature
dependence of each of the three nonlinear coefficients
for BaTi03 from 20'C to about 105'C can be described
by

in which P, (T) is the temperature-dependent spon-
taneous polarization, and 0.;; is independent of tempera-
ture. The question arises as to the significance of Eq.
(10). At first glance there may be some objection to
trying to describe a purely optical property such as d;;
in terms of I', which is a dc or at most a low-frequency
characteristic. However, there is at least one purely
optical quantity whose temperature dependence is
described by some power of I', . Namely, in BaTi03 the
birefringence is proportional to P,'."Also in KDP, the
temperature dependence of the change in birefringence
consequent on passing through the ferroelectric phase
transition is proportional to I','.' Therefore, at this
point one can say that it may not be simply fortuitous
that Kq. (10) describes the temperature dependence of
the d,;.

There are few other data with which one can compare
the present results or test the general validity of Eq.
(10). SHG studies of KDP both above and below the
Curie temperature, 123'K, have been described in two
recent publications. ' ' Since SHG occurs in KDP both
above and below the Curie temperature (it is piezoelec-
tric in both phases) the temperature dependence of
SHG in KDP will be different from that of BaTi03.
The onset of ferroelectricity in KDP involves a phase
change from the point symmetry D2& for the paraelectric
form, to the point symmetry C2„ for the ferroelectric
phase. This lowering of the crystal symmetry results
in the introduction of one nonlinear coefficient, d33,
not present in the paraelectric phase. Therefore, the
temperature dependence of d33 will be different from
that of the coefficients which are also present in the high-
temperature phase. If it turns out that Kq. (10) does
indeed have some general validity, it would be reason-
able to propose that the temperature dependence of
the nonlinear coefficients for a ferroelectric crystal which
is piezoelectric in the paraelectric phase, such as KDP,
is given by

where d; is a temperature-independent nonlinear coef-
ficient characteristic of the paraelectric phase. The
change in the nonlinear coefBcient in going through the
phase change is described by n;;P, (T). For the new
coefIicient, d», which appears when the crystals be-
comes ferroelectric, d33'= 0.

Himbarger and Bjorkstam' observe no significant
change in the second-harmonic intensity from KDP in
going from room temperature, through the phase transi-
tion, to 80'K. The data, which were obtained with a 0'
ruby rod and therefore not a highly polarized maser
beam, indicate that any discontinuity in the coefficients
at the transition temperature is small. In terms of Eq.
(11), these data would imply that d;P))u;;P, except for
dg3 and also that d33« all other d,;. The coefficient d33

'5 W. J. Mere, Phys. Rev. 76, 1221 (1949). D. Meyerhofer,
Phys. Rev. 112, 413 (1963).

rs B.Zwic)ter and P. Scherrer, Helv. Phys. Acta 17, 346 (1944).
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is reported by van der Ziel and Bloembergens to be at
least an order of magnitude smaller than the coefBcients
in the paraelectric phase. However, in disagreement with
the data of Himbarger and Bjorkstam, van der Ziel and
Bloembergen find that the nonlinear coeKcients which
are present in both phases change by factors ranging
from about 3 to 0.2 as the crystal symmetry is lowered.
Furthermore, except for the change in these coeKcients
at the phase transition, they are temperature-independ-
ent. The temperature dependence of d33 has not been
determined. The discrepancy between the results of
these two investigations on KDP could be due to
effects arising from antiparallel ferroelectric domains;
however, both groups were clearly aware of this com-
plication. Discontinuities in the coefFicients at the
Curie temperature coupled with temperature-independ-
ent coefficients in the ferroelectric phase as reported
by van der Ziel and Bloemberger are not consistent with
Eq. (11).

Kleinman' has used a thermodynamic approach to
show that if SHG arises from a nondispersive, nonlossy
process, e.g. , a high-frequency electronic mechanism,
symmetry in addition to that required by the point
group of the crystal will appear in the tensor which
describes the second-order polarization coefficients.
Data6, is, i9 on the Kleinman symmetry condition jn a
wide variety of crystals show that the additional
symmetry is indeed present in the second-order polariza-
tion tensors. This symmetry condition requires for
BaTi03 that d~~=d3i. As is evident in Table I, this
condition is satisfied at room temper ature within
the approximately &10% experimental uncertainties.
The data shown in Fig. 4 demonstrate that the Klein-
man symmetry condition is also satisfied over the
entire measured temperature range.

A phenomenological theory' of ferroelectricity in
which the Helmholtz free energy is expressed as a power
series in the polarization has been quite successful,
especially in the case of BaTios (Devonshire's theory),
in explaining much experimental ferroelectric data.
The validity of the Kleinman symInetry condition
mentioned above, and the more general symmetry re-
lations for nonlinear optical effects in lossless media
derived using energy considerations by Pershan" both
suggest that it may prove fruitful to extend the ferro-
electric thermodynamic approach into the optical

'~ D. A. Kleinman, Phys. Rev. 126, 1977 (1962).
's A. Savage s,nd R. C. Miller, Appl. Opt. 1, 661 (1962)."R. C. Miller, Phys. Rev. 131,95 (1963).
» P. S. Pershan, Phys. Rev. 130, 919 (1963).

region. This approach would give d;;(T) expressed as a
power series in I', with the coeKcients of the various
terms determined from the free-energy expression for
the paraelectric phase. For BaTi03 only odd powers
of I', will occur in d;;, while d;; for KDP will involve all
powers of I', . Therefore Eq. (10) includes only the
first term for BaTios, and Eq. (11) the first two terms
for KDP. However, dispersion does occur between the
present optical frequencies and the frequencies at
which the various coeKcients in the free-energy expres-
sion have been determined. Therefore, coefFicients for
the free-energy expression at optical frequencies as well
as clarification of the KDP second harmonic data and/or
additional SHG measurements with other ferroelectric
crystals are required before the full significance of Eqs.
(10) and (11) can be ascertained.

Another phenomenon which will be discussed briefly
is the possible effect on the SHG due to a temperature
dependence of the absorption edge in the BaTi03
crystals. As the crystal is warmed, the absorption edge,
about 4000 A at room temperature, shifts to slightly
longer wavelengths. "It has been suggested" ~ that the
eKciency of SHG should increase as the second-
harmonic wavelength approaches that of the absorption
edge; however, to date, no data supporting this sug-
gestion have been presented. In fact, data on SHG in
CdS show that d does not change significantly when the
absorption edge is moved thermally through the fre-
quency of the second harmonic. In any event, this edge
eGect would if anything give an increasing d;; with
temperature, which is opposite to what is observed.
Therefore, if the proximity of the edge to the second-
harmonic frequency is aGecting the temperature de-
pendence of the present data, it is being dominated by a
still larger eGect which results in d;, which decrease with
increasing temperature.
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