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Magnetic Properties of Nearly Free Electrons. *
Nonoscillatory Magnetic Susceptibility
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The partition function is derived for a gas of electrons in the presence of a weak periodic potential and
uniform magnetic Geld. From it the steady terms in the free energy and the zero-Geld-zero-temperature
total electronic magnetic susceptibility are calculated. The results are applied to the alkali metals. The non-
additivity of the paramagnetic and diamagnetic susceptibilities and the inadequacy of the eftective mass
approximation are discussed.

I. INTRODUCTION

'HE purpose of this note is to derive expressions
for the nonoscillatory free energy and magnetic

susceptibility of a degenerate, nearly free electron gas.
That is, we consider a gas of noninteracting electrons
in the presence of a weak potential, due to a lattice of
positive charges, and a uniform magnetic field. The free
energy of the system is evaluated to second order in the
temperature and field parameters with both paramag-
netic and diamagnetic terms in the Hamiltonian taken
into account; however, only nonoscillatory behavior
is considered. The effect of the lattice on the de Haas-
van Alphen oscillations will be the subject of a future
report.

The calculation was made with two ends in view.
First, considering the success of the pseudopotential
concept, ' ' it appears that the nearly free electron ap-
proximation has computational value as well as being
merely instructive. Second, we wish to go beyond the
limitations of the effective mass approximation for
describing lattice effects in the context of magnetic
properties. A calculation is performed in Sec. III using
available pseudopotential parameters for the alkali
metals Li, Na, and K. There exists no completely
satisfactory calculation of the role of correlation in
metallic properties for the density range into which these
metals fall and, since this topic is outside the scope of
the present study, we shall only point out that correc-
tions can be estimated by interpolation methods. 4

Quantitative accord with experiment thus can not be
expected, but it is proposed that for metals with small

energy gaps the effect of the lattice is qualitatively
accounted for. The criterion suggested is that the ratio
of the energy gaps to the Fermi level be much less than
unity.

II. CALCULATION

Ke consider X noninteracting electrons moving in a
weak periodic potential V(r), which occupies a very
large volume 0, in the presence of a magnetic field
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' J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).' M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
3 J. M. Ziman, Phil. Mag. 6, 1013 (1961).
~ S. D. Silverstein, Phys, Rev. 130, 1703 (1963).

represented by the vector potential A= ( Hoy, 0,0—).
An electron will therefore be described by the
Hamiltonian

Using the Schwinger trace formula' (the variable of
integration has been changed to sc=yst)

Z(y) —Tr(e 'r«} —y Tr(V(r)e 'r«l

+,'y' Tr-dNV(r)e —~«" "&V(r)e ~«~

Since the Zeeman term commutes with the remainder
of the Hamiltonian, the spin part of the trace is per-
formed very simply to give

Z( )=2 h( ~o )I: ( )— ( )+ ( )j (5)

so(y) is known from the work of Sondheimer and

'L. Landau and E. Lifshitz, Qgarstgm 3Eecharsocs, (Addison-
AVesley Publishing Company, Reading, Massachusetts, 1958),
Sec. 125.

o A. Saenz and R. O' Rourke, Rev. Mod. Phys 27, 38.1 (1955).
There is a misprint in Eq. (1.2.8) which should read:

Tr{Q(s)}=Tr{e ' l —s Tr{be ' l+s Z (—1)"/a
1

+so-2

)&Tr be ' ds~ ~ ~ ds 1b(s1) 'b s y)
0 0

X= (1/2sss) (P—(e/c) A)'+2IsoHoSz+ V(r)
—=5co+ V(r). (1)

As is well known, ' the eigenstates of Xo are (apart from
normalization)

&) e—1 (sop) oH-b y )ec(sae+szz) X (2a)

E (N, k~) =2IsoHo(to+1/2)+5'k, '/2sl+p oHao, (2b)

where po
——Bohr magneton; X,=spin state, 0=~1;

rl = (eH/fic)"'y rio= —(Ac/eH)'"k. ; H~= ssth Hermite
polynomial.

The thermodynamic properties of the system can be
studied conveniently by means of the partition function

Z(y) =Tr (expI —p(Ko+ V)$), p = 1/kT. (3)
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Wilson~'

sp(y) =«y p)'(upIIpy) csch()ipIIp7),

n =—(m/27r))i')P".
(6)

V(r) =gir Vxe '"' (7)

where the K's are reciprocal lattice vectors. Represent-
ing the trace in the form

si(p) can be calculated directly if V(r) is represented as
a Fourier series

is the partition function for free electrons. For conveni-
ence, the term E=O has been separated from the sum
and this is denoted by the prime.

For comparison the partition function has also been
calculated for the case where the diamagnetic terms in
(1) are omitted. This can be carried out easily using
plane-wave states; the result is

g2/3

Tr{B}=
(2s.)'

u. uk, P &k.uk,
~
a ~k,&k,), (S)

n=O

1
+v'"~ — p' vs

kn

e
—~&(/p)

(13')
(2s)P e(k —E)—e(k)

and using the generating function for products of
Hermite polynomials' we obtain

si(V) =V«p(V), (9)

s, (p) = sp'sp(p)E Vx'

1 kc QA

X exp — K,'u — K, Pu(1 —u) du. (11)
0 eH 2'

Ki and K~~ are the components of K, perpendicular and
parallel to the magnetic field, and

tu
'= coth()(pHo&u)+coth[ppHpp(1 —u)g. (12)

Combining (5)—(11) we have

z(&) =z, (~){1—~v, y-', ~pv, &

+pe' Z' G(K,v) Vx'}, (13)

where G(K,y) is the integral in (11) and

Zo(y) =20 y ()((oHoy) coth(upHp) (14)
7 E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. {I.ondon)

A210, 173 {1951).
P Eq. (A4) of Ref. 7.

where Vo is the average crystal potential. For simplicity
it will be assumed that V has a center of symmetry.

The evaluation of sp(7) is straightforward but tedious.
We begin with the expression

Q4/3 1

sp(y) =-,'y' du dkgk. ' dk, dk, '
(2~)' o

X P )(k.uk. )V(r)(k, 'u'k, '))'
fs ~

Xexp{—yE(u', k.') (1—u)+E(n, k,)u} . (10)

First the spatial integrals over r and r' in the matrix
elements can be done, except for the y and y' integrals,
making use of (8). The sums over I and ts' are evaluated
next using the generating function' and the y and y'
integrals then performed in terms of the variables
y&y . At this point the remaining integrals, except for
the u integration, are done without difficulty leading
to the result

I„(x)=
1, ~ ts —g fly e

(1 y) 1/2
(15)

Thus,

where
z(v) =z'"(v)+p'z") (v),

Z"'(v) =2«v '"{1—yvs+-'y'Vo'
+-,'y' P' Vt('Ip[-', ye(E) j}, (16a)

Z")b)=2(1 v '"{lv'—b'V
+-'v'V '+—'v' 2' Vtr'Io[-'v (E)]}
+ (1/192)yo P' vive(K, )I,[-',ye(E)$. (16b)

The quantity C =I ei, (I=E—/0), will now be calcu-
lated using Eq. (14) of Ref. 9.Asymptotic expansions in
powers of the degeneracy parameter (yi) can be ob-
tained for the contributions of the 6rst three terms of
(16a) and (16b) to obtain C. For the remaining terms
the procedure described in Ref. 9 would be permitted
only if yt))i~ye(E); since this is not the case for the
alk.ali metals, the relevant parameter for these terms
is a=4t'/e(E).

The calculation as outlined gives

g) —g) (o)+p—P@ (o)+Ps@ 0)+ (P/p)sC (i) (17)

' M. L. Glasser, J. Math. Phys. (to be published).

Zp'(y) =2«7—' ' cosh(tupHoy),

e (k) = It),'k'/2t)p.

It follows from these expressions that to second order
in the potential the paramagnetic and diamagnetic
effects of the field are not simply additive.

The free energy and other thermodynamic properties
can now be calculated. Since we consider here only the
steady susceptibility, we may simply disregard the
poles of (13) lying off the real axis in the inverse
temperature plane. ' It is convenient at this point to
separate Z(p) into field-dependent and independent
parts retaining terms of no higher than second order in
the field. Introducing the parameter P=upHp we find

u—PCS[1—s(Py)'Sj where 5=u(1—u) and G(K,y)
= sIp[g+e(K)]+P'p'(e(E, )/96)I&[4&e(K)], where



M. L. GLASS ER

where TABLE I. Pseudopotential and free electron
parameters for the alkali metals.

C'o'"' = —(2/v' ) {(8/15){'"—l l'o{'"+l'o'|'"
+-.' 2' Ux'[e(&) j'"f(a)&, (» )

g& (o) 1~2(2a/Q~){{-1/2 r P' {—1/2 t P' 2{—3/2

+P' lrxo[e(+)$
—»sg (a) ) (]8b)

Ll
Na
K

ro (Ryd)

0.355
0,235
0.155

Uic, (Ryd)

0.112
0,010—0.018

X free ~
0

0.54
0.43
0.35

x*'

0.25
0.20
0.18

a'1'(5 —3a)
h(a) =-,' tanh 'ga+

2(1—a)'
(21)

In order to use these expressions, the chemical poten-
tial must be known to second order in the various
parameters. It can be calculated by solving the equation
(c)C/r)&)n+e 0. E=xcept in rare cases, the temperature
and field dependences of { are small enough to be
neglected. Hence we need retain only Co&" in this equa-
tion and solve for t to second order in the lattice poten-
tial. This calculation is easily carried out and yields

{={o[1+(Uo/to) oi o'"—2' l'x'[e(&) j '"f'(ao)3, (22)

where {o = s (9~rP)'"(2tr&'/~) and as=4K o/e(&)
The magnetic susceptibility can now be calculated.

Putting (17) into the formula x= —(1/H)(r)F/r)H) I n

we find y= —21io'[Co&'&+(kT)'Crt"j To second order,
the temperature-independent susceptibility is

Xo= Xo""L1—(1/g| o') r.' U'rc'F (ao)) (23)
where

F(ao) = (ao)'" tanh '(ao)'"

ao 1 e(K)
ao'"h(ao), (24)

1—ao 4 e(K)

f(a) =&a+(a 1) tan—h—'ga,
g(a) =a-'"(1—a)

—', (19)
g& (1) (2~/Q~) {s{I/2 t V t

—1/2 & P' 2|—3/2

+-; Z' l'"[e(&)3-'"g(a)
+ s 2' l'x'(e(K. )/[e(&)]'")h(a)) (2oa)

Crt" = —-'7r'(2n//7r){ ——'{ '"—-'Vo{ '"
——' l'o'{ 'Io+(16/3) 2' l'x'[e(&)3 7log" (a)

+ s 2' l'x'(e(K. )/[e(&) j'")h"(a) &, (20b)
aild

a ()&10s cgs vol. units).

measured. Ke shall cast our analysis for these metals
in the form of a one-parameter model in terms of the
lowest nonzero Fourier coefficient of the crystalpotential.
This is determined by the energy gap at the zone sur-
face and estimates from band calculations' "are listed
in Table I.An estimate for sodium based on Callaway's"
pseudopotential showed that the sum in (23) is given
almost entirely by the contributions fron the reciprocal
lattice vectors of shortest length. The results obtained
by summing over only these vectors and using the Four-
ier coef6cients listed in Table I are shown in Table II.
F(ao) is a universal function for a given lattice; for the
bcc case F(ao)= —6.33 for the vectors of type 2ir/a
(1, —1, 0) and —4.29 for those of type 2s./a (1,0,1)
where a is the lattice constant. The calculation for Na
carried out using Callaway's pseudopotential gave a
result much larger than that listed in Table II. This is
consistent with the observation that the energy gap
(at the point X) found by Callaway is an order of mag-
nitude larger than that found in most other calculations.

Estimates of the correction to the susceptibility due
to correlation have been made on the basis of Silver-
stein's' work and are listed under y* in Table I. The
entries in Table II denoted by a star were obtained by
including these adjustments. The starred values of the
paramagnetic susceptibility are ili close agreement with
Abe's" values, obtained by a Sampson-Seitz procedure.
Considering that the sum in (23) has been underesti-
mated and that correlation has been accounted for in a
very crude fashion, agreement with experiment for Li
and Na appears to be satisfactory.

Also listed in Table II are values for the "diamagnetic
susceptibility" obtained by subtracting X~ (A5) from

TABLE II. Experimental and calculated susceptibility
(X10' cgs vol. units).

and Xo""=@os/{ o is the susceptibility for free electrons.
A similar formula can be obtained for the temperature-
dependent term.

An equation, resembling (23), for the paramagnetic
susceptibility was published recently by Abe." His
formula is derived along the lines of this calculation in
the Appendix.

III. DISCUSSION

XObre

xp d

x,b
X& (calo)

x~b

Li

1.20*
0.95
2.94+0.05
1.33~
1.08
2.08&0.20—0.13—0.24&0.25

0.64*
0.44
0.88+0.03
0.84*
0,66
0.95w0. 10—0.22—0.07&0.11

0.56*
0.38

0.73*
0.55

—0.27

In this section the results of the preceding analysis
are applied to the alkalis I i and Na, these being the
only metals for which the spin susceptibility has been

'o R. Abe, Progr. Theoret. Phys. (Kyoto) 29, 23 (1963).

a From Eq. (,23).
b R. T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58 (1956).
& The ionic diamagnetism has been subtracted.
d From Eq. (As).

"J.Callaway, Phys. Rev. 112, 322 (1958).
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For lithium, 6=0.62, while for sodium, 6=0.012.
Therefore care must be taken in separating the para-
magnetic and diamagnetic susceptibilities for compari-
son with experiment. Since the diamagnetic suscepti-
bility is not directly measured, it is believed that the
estimates in Table II are more significant than those of
Samoilovich and Rabinovich. The existence of this
nonadditivity has been discussed in a general way by
Blount. '4 This feature would appear to be a source of
considerable error in previous calculations of diamagnetic
susceptibilities.

In conclusion, a comparison can be made with the
effective-mass approximation within the scope of the
nearly free electron model. The susceptibility is given
in terms of the effective mass ratio by'

X /X free —
222(me/m)3/2 2 (m/m&)i/2 (25)

In the nearly free electron approximation m*/m, aver-
aged over the Fermi surface, is

m*/m=1+(1/4(o ) P' Vx (a,) /2 tanh-t(a )i/2

Combining (25) and (26) gives

Xo/xp'- ——1+(5/8$p') Q' Vfr'(ao)'/' tanh —'(ao)'/'

which differs significantly from (23).
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Xp (23). Because of the nonadditivity of diamagnetic
and paramagnetic effects, discussed below in more
detail, these values correspond only roughly to the
Landau-Peierls diamagnetism. There is some evidence"
that the diamagnetic susceptibility is only slightly af-
fected by correlation; thus, much of the correlation con-
tribution is subtracted off by this procedure. The close
agreement between theory and experiment here is
strong evidence in favor of a pseudopotential theory
of these metals

In the course of this calculation it was discovered that
the same basic method has been applied by Samoilovich
and Rabinovich" to study the diamagnetism of nearly
free electrons; where comparable, their results agree
with this calculation. However, due to the nonadditivity
of the susceptibilities, the result of adding their expres-
sion to Abe's diRers from (23); indeed

6=[X&(SR)+X (Abe) —xo(23))/xo""

1 «(Ki)
Q' Vx' [ao(1—ao) —paop 2k(ao)]

161p' «(E)

where

C"=@'o'+C't'+@2'+C'2", (A1)

C p' ———fr/y (m/22rh2'y)2/2[B p(y (i +ppH) )
+Bp(V (i /2—pH))3

42' = fr Vo(m/2frkpy)'/2[B2(p (i +/2pH) }
+Be(v(i —/ipH)) 3

42'= —2'/2 Vp'(m/2frA'p)'"[Bt{y(i +/2pH) }
+Bi {V O

—/2pH) )]
and

Q+QCO

B.( )=
2&1

S C Scar Se 'dS

is an integral discussed in another paper. ' Itis convenient
to handle C2", corresponding to the last term in (13'),
somewhat differently. We first calculate 2"(E), the
inverse Laplace transform of the corresponding term in
Z'(y)/y2. Then we obtain

C2"=Q' Vfr' (g(E, E+/2pH)+ g(K, E /2pH))dE, —
BE

where fp is the Fermi function and

g(E,X) = (22r)-2 d p[k(«k —K)—«(k)] '

In the zero-temperature limit (A1) becomes

-C (T=0) = [1/I (!)j(m/2 /rf')'/'

X([(f'+ oH)'"+(P —pH)' 'j
2Vp[(t o+/—2pH)'"+ (i /2oH)"j-

+ (15/8) V '[(f+ ~)"'+(f—~)'"1}
+Q' Vfr (g(K, i+/2pH)+g(E, i /2pH)) . (A2)—

This leads to

4
I/

m )2/2
X2,= /I2o

( )

i'/' 1—Vp/i —22(VQ/()'
1 2~52)

2z m Vp'

2mh2 E'—4kp'
(A3)

where ko is the free electron Fermi momentum. The
chemical potential is obtained as before. Inserting (22)
into (A3) leads to Abe's" expression

APPENDIX

Using (13') and proceeding as in the body of the text
we find

The author is grateful to Dr. V. E. Wood and D r.
F. J. Milford for conversations on this topic. x„/x„"-= 1+(1/8i'pp)

"H. Kanazawa and N. Matsudaira, Progr. Theoret. Phys
(Kyoto) 23, 433 (1960).

A. Samoilovich and E. Rabinovich, Fiz. Tverd. Tela 5, 778
(1963) LEnglish transl. : Soviet Phys. —Solid State 5, 567 (1963)j.

'4 E. I. Blount, Phys. Rev. 126, 1636 (1962).

Vr«2 1—222 u+1
XQ 1+ ln

Q —1 2N
(A4)'I—1

where X free —
3/22222/2{ p and 22

—E/2kp —1/gap


