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Low-Temperature Galvanomagnetic Phenomena in an Intense Electric Field
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The electron distribution function is calculated for a many-valley semiconductor in an intense electric
Geld for the case of anisotropic scattering by acoustical phonons at low temperatures.

I. INTRODUCTION
' 'N this paper we shall consider the low-temperature

- galvanomagnetic properties of a semiconductor in
an intense electric field. In order to calculate the low-
temperature anisotropic transport properties of semi-
conductors such as e-type germanium and silicon, it is
necessary to abandon both the simple picture of
spherical constant energy surfaces and the assumption
of phonon equipartition.

Zylberstejn and Conwell' have studied the deviations
of the phonon distribution from equilibrium in a semi-
conductor in an intense electric 6.eld at low tempera-
tures. They show that the deviation is small for a sample
of small dimensions and small carrier concentration. We
shall treat this latter case and assume that the phonon
distribution remains in equilibrium.

The predominant electron scattering mechanism in a
pure semiconductor at low temperatures is by acoustical
phonons and the equilibrium number of such phonons
of crystal momentum g is given by

1V,= 1/(e""r—1),
where s is the velocity of sound, k is Boltzmann's
constant, and T is the absolute temperature. The
conservation of energy and crystal momentum require
that the acoustical phonons with which an electron of
energy e can interact have a maximum energy of the
order of 2 (ems')'ts where m is the effective electron mass.
At high temperatures the average electron energy e,
even in an intense electric held, is such that

2(ems') "&&kT and therefore tplV, = ItT. (2)

Stratton' has calculated the electron distribution
function in the limit of zero-point scattering for the
case of spherical constant energy surfaces and isotropic
scattering, while Paranjape' has calculated the electron
temperature for a Boltzmann distribution for the same
case. Koenig, Brown, and Schillinger (K.B.S.)e have
recently applied Shibuya's' theory of hot electrons in
order to describe hot electron phenomena in n-type
germanium at low temperatures. Shibuya's treatment is
based on the assumption of phonon equipartition and is
therefore not applicable under the condition for which
K.B.S. have used it. We see in fact from Table II
of their paper that the electron temperatures, or the
corresponding mean electron energies, do not satisfy
the equipartition condition (2).

Stratton s zero-point distribution function and
Paranjape's calculation predict an electron mobility
IJ, E ', where E is the electric field. This is in agree-
ment with the low-temperature conductivity measure-
ments of Bray and Brown. '

In this paper we shall extend the previous calcula-
tions23 by considering a many-valley semiconductor
with ellipsoidal constant energy surfaces in an intense
electric field and a magnetic field. We treat the case of
acoustical phonon scattering in the zero-point limit, and
allow for anisotropic scattering in our calculation.

In Sec. II of this paper we set up the Boltzmann
equation for a many-valley semiconductor, and in
Sec. III we derive expressions for the energy and
momentum relaxation in the case of anisotropic zero-
point scattering. We solve the Boltzmann equation for
the distribution function in Sec. IV.

This is the case of equipartition of energy.
At low temperatures, on the other hand, an intense

electric field may result in the average electron energy
e being su%ciently large such that

II. BASIC EQUATIONS

In a previous publication, ' the author has shown
that the Boltzmann equation for the case of ellipsoidal

~t
~

constant energy surfaces can be expressed as two2 (emss) 't'~

coupled equations for S and A, the isotropic and aniso-

Since the probability of phonon emission and absorption
are proportional to 1+%, and tV„respectively, we
may in this case neglect S~ compared to one and
consider only acoustical phonon emission; this is the
case of zero-point scattering.

*Present address: Xerox Corporation, Rochester, New York.
'A. Zylberstejn and E. Conwell, Phys. Rev. Letters 11, 417

(1963).

s R. Stratton, Proc. Roy. Soc. (London) 242, 355 (1957).
e B. V. Paranjape, Proc. Phys. Soc. (London) B70, 628 (1959).

S. Koenig, R. Brown, and W. Schillinger, Phys. Rev. 128,
1668 (1962).' M. Shibuya, Phys. Rev. 99, 1189 (1955).

' R. Bray, D. Brown, Proceedings of the International Conference
on Sennconductor Physics, Prague, 1960 (Czechoslovakian
Academy of Sciences, Prague, 1961}.

s H. Budd, Phys. Rev. 131, 1520 (1963).



A1282 HERBERT I . BUDD

tropic parts of the distribution function, respectively,

8
eE' V~ S+AnfeE' V A}+—y'x B' V' A=C'A,

Sip

with p'=np, E'=uE, B'=RB, e= p"/2mp,

tSp
0 0

~ »2

IsfeE' V'„A}=C'S, (4)

5$p

5$0
0

SSz4

0 0. »2

R= 0 m„0
0 0 e,-

(msmpmz) ~

where E and B are the electric and magnetic field vectors, e and p are the electron energy and momentum and

m„m„, m, are the electron masses corresponding to the three principal axes of the ellipsoid.
An(a} and Is(a} represent the anisotropic and isotropic parts of g respectively, and C' represents the collision

operator in p' space.
Assuming that C 2 can be described by an energy-dependent tensor whose principal axes coincide with those of

the ellipsoid:
r.(e)

0
0

0 0
r„(e) 0

0 r (s),
(6)

and neglecting the An( eE' Vp'A } term (see Appendix II), we obtain straightforwardly:

dS r(eE'+reE'&&eB'/mp)+ (e'/mps) B'(B'.eE') r' ~
A= ——V'

-1+( '/ o') 'L(&."/ *)+(&."/ .)+(&."/ .)3-

2 d dS e'E'rE'+7'(e'E' B'/mp)'
C'S= ——

sm„'~'z. a. u+( 'e'gm, ')[(s."y,)+(s„"y-„)+(p,"r„)])

(7)

where V'= (y'/mp) and r'= r,r„r,.
We shall consider the solution of this equation after having calculated the energy relaxation term O'S, and the

relaxation time tensor 7-.

III. CALCULATION OF ENERGY RELAXATION TERM AND RELAXATION TIME TENSOR

In this section we shall derive expressions for r and G S for a many-valley semiconductor with anisotropic
scattering by the zero-point acoustical phonons. Denoting by 3fI,', cz, and 3fz', cz, the matrix elements and elastic
constants corresponding to the longitudinal and transverse modes respectively, we obtain

Cf(p) =
5(2m.b)'

dQLf(P+ '(I) (I++ ) f(P)V p]kxr++&3+ d(ILf(y —(1)&.—fty) (~+&.)3L~r+ ~F3 (9)

+L,T= (qSL, T/2CL, T)~I„T ()(e(y+0) e(p) qSLT)),
where

I'r„~= (q», ~/2cr„r)M&, r'b(s(p q) e(y)+q», r),— —

psl, '=cl., ps&"-=cz and where p is the density. The matrix elements have been calculated by Herring and Vogt, '
and we see from Table V of their paper that Ml.' and 3II~ are simple polynomials in cos'0, where 0 is the angle
between the principal axis of the ellipsoid and q.

Transforming the elliposidal constant energy surfaces to spheres (5) in both the electron and phonon space,

p C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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we obtain

1/2271 5$p5$1,
/

5 (2+5)'rnoa"
e —(p') X,e]LXL'+XT'jd«'(f(p'+ «') (1+&~*)—f p

YT', (10)«
' —' — ') (1+N,e)][YL'+YTd«'Lf(p' —«') &"—f(p

where

' cos'8*)X, '=(q , 2CL, T) VL, T

e(p ) q. SL,T)X5(e p « —e

' cos'8*)
g 2&L,T)~L,T

8(e p —«

an

s2g~ 1/2i"' 'L1+(E 1) cos-q*= (mT/mo q

coso*=
E'/2 cose'

E=
$1+(E 1) cos'8'1'~'—

where

~ ~

gonly. e

pde endent an
larl

wou

C' 'll therefore in genera ep
of the direction of y . e s
O'S over all directions of y, i.e.,

is o e
' '

has been taken as
po q p

d longitudina mastransverse on

'nte rations we obtainout the required integra ioand carrying ou

2 1/2

1/2~1/2 P+O'S=
de 5V2k4pc"'

where

0

(Ex )2 Ex'q-
Rm~

&R')

M ' i+sTiVT'R')

with

1/Tii =— 4 ii'|-'4 ii'dQ„

$,'C'$ 'dQ„

Q )"dQ„,

g~"dQ~. ,

(15)

and
R= (1+(E—1)X']'".

erall exist when the
11 d nd

the procedure o er og
principa re

' '
es as1 laxation times as

(O'S), = O'SdQ~. (12)

an le in y' space.w
'

the differential solid ang
' ' ce.where dQ„ is t e i

ribution function varies s ow
h hooenergy interva q

(16)

where
Tp T]

where --.y
p

the ellipsoid. , re p '
n times:h 1

an m'

the following expr
'

e

1 48 (27r)'
SZ& fÃg

Sh

dS (qs)' d'S
S( +qs) =S(e)+qs— (13a)

Si 1
= T1,

2

2 (~ms')'~') k T

er e is suKciently largee electron energy e is su()
ne ligible comparsuch that E, is neg g' ar

13b)

Ex) sT (Ex)
T = dxR(x)x'" ML'—

en r e 1 tlcconstantsents and average e as
'

The matrix elemen ra e e as
Table V of Herring angiven in Ta e

1.5Ex' 1.75K'x4~
1+„~0.15—

Ex'Wy'- . x
+
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/ Ex') I x'Ze'W'( Ex') ) I"x') Z„
II 1+Vr

apl&
0.37S 0.625

1 c44 c44+ pc
cl, ——cgp+2c4 +0.6c*;

(111)valley

CT
(100) valley,

c44+ pc c44+ pc

2*

3gg
(111)valley

9 1 1

8 c44 c44+ pc )
(111)valley

(100) valley
( 1 1

6c&~ —,(100) valley,
(c44+ pc c44+ pc

where Zq and Z„are the deformation potential constants for dilation and uniaxial shear. Inserting these matrix
elements in Eqs. (16) and (14) we obtain the relaxation time tensor and C S (see Appendix I).

IV. THE DISTRIBUTION FUNCTION

We shall now solve Eq. (8) for S, the isotopic part of the distribution function. Substituting Eq. (14) in Eq. (8),
we obtain

Be'~'de

where

5=exp-
p 2 ( ep E'r E'+ [(e'/m p) E'. 8']'r'

I+&
3mp (1+(e'r-'/mp') L(B."/r.)+(8„"/r„)+(8,"/r. ))~

6 47mrr'ml. '/PZ'* 4v2
H= m '~2V*eH.

V2h4p 5

(17)

We shall consider the case of a small magnetic field
(p/'7'«1) and we neglect the 6eld-independent term in.

the denominator of the integrand of Eq. (17) (see
Appendix II). We then obtain

with

S=exp —(p/AT, )'/',

dS — ( eS')-
A = ——V' r~ eE'+erE'X

dp — 0 Blp~-

Zp TP/2/s g4/P 324
T,=X(y)C

Pmrsr, /lp'j'/P 16K'*E~sj.p

—2/t5

(18)

(20)

where
/1

X(y) = 1+y'i —1 i, E'=E
&z'

v2n-(27) (25) —'/'
6=

-16'(2+1/K) '
and y is the direction cosine of E with respect to the
longitudinal axis of the ellipsoid. p is the low-Geld

mobility for acoustical phonon scattering and is related
to the average deformation potential which appears in
Herring and Vogt's paper LEqs. (49) and (50)j

Z4= L)Ze'+gZ„Ze+i'Z„')p.

When we consider the simple model of spherical con-

stant energy surfaces, Z„=O and neglect elastic aniso-
tropy (c*=0), the last factor in our expression for T,
becomes equal to 1, as does X(p), and Eq. (18) becomes
identical with the distribution function calculated by
Stratton. ' Since the low-field mobility for acoustical
phonon scattering varies as T '~', our expression T, is
independent of temperature.

Using Eqs. (19) and (20) we obtain the following
expressions for the mobility p and the low magnetic-
field Hall coefficient R.

p, =I'E ". R=B
where I' and 8 are complicated functions of the
orientation of the electric and magnetic fields with
.respect to the crystallographic axes but are independent
of the magnitudes of the applied fields. The field depend-
ence of the mobility is in agreement with the experi-
mental results of Bray and Brown. A discussion of the
orientation dependence mill be considered in a future
publication,

ACKNOWLEDGMENTS

The author expresses his sincere thanks to Professor
P. Aigrain and Dr. E. Conwell for their stimulating
discussions. Thanks are also due to Dr. A. Zylberstejn
and D. Olechna for helpful suggestions and to the Xerox
Corporation for partial support of this work.



GAL VANO MAGNETIC PHENOM ENA I N INTENSE ELECTR I C F I EL D A1285

APPENDIX I
We shall express all the required integrals of Sec. III in terms of the elementary integrals

x~dx
(m, n) —= (A1)

p f1+(E—1)x2)"/2

Z'*=Zes(-', +-',E(1+W)'+yz f0.I—0.45K+1.75E'(4,2)+2EW(0.05—1.5E(4,2)+1.75E'(6,4))

+ KW ' 015 42 —1.5E 64 1.75E'86 + r EW ' 42 E6—4 A2( )( (, ) (, )+ (, ))) ~( )(( ) ( ))} ( )
V*= {sz((0, —3)+2EW(2, —1)+E'W'(4 I))+ssKW2((2, —1)—E(4,1))

+yzszf0. 15(07 —3)—1.5E(2, —1)+1.75E'(4 1)+2EW(0.15(2, —1)—1.5E(4,1)+1.75E'(6,3))

+ (EW)'(0.15(4,1)—1.5E(6,3)+1.75E'(8,5)))+yzsr(EW)'((4, 1)—E(6,3))}, (A3)

To——Zss —((27 —1)+2EW(4, 1)+(EW)'(5 3))+—EW'((471)—E(3,3))
CJ. CT

+yz,—f0.15(2, —1)—1.5E(4,1)+1.75K'(3,3)+ 2KW (0.15(4,1)—1.5E(3,3)+1.75E'(3,5))
CL

+ (IC71 )'(015((3)—1/51'I'(", 5)+1 751'I'( 07))]+7r (IC)V) ((,3)—IC(—t5))} (A4)
CT

The integrals (m, n) are all straightforward. For K= 1, (m, n) = 1/(m+1), and for KW1 one can easily show that

1
(m+2, n+2) = (m+1)(m, n)— (AS)

n(E—1) +n/2

for n~0. We have tabulated some of the integrals in Table I. The remaining ones are easily calculated by means
of Eq. (A5).

TmLE I. Integrals.

(2, -1)

(4,2)

E'/' sinh '(E—1)'/2

+
2 2(E—1)'/'

8(E—1) (E—1)'/'

1 E 4 tan '(E—1)'—/'
+

(E 1)' 3 (E—1)'/2—

1 sinh '(E—1)'/2
EI/2(2E 1)——

E'/2 sin '(1—E)'"
+

2 2(1—E)'"

1 E—4 tanh '(1—E)'/'
+

(1—E)'/2(1—E)' 3

1 sin '(1—E)'/' '

—E'"(2E—1)+
8(1—E)i (1—E)'"

APPENDIX II
We see from Eq. (18) that s=kT,/I'(0. 6) =skT, and therefore using Eq. (3) the zero-point scattering condition

is satisied for electric 6elds large enough such that

fm T3/2] s )2/5 - 3Z4

g6~ ~

(X(y)G)"' (A6)&~i fmrsz2/ k)i/" -16Z2*Nisz p-

mhere m* is a complicated average of the longitudinal and transverse masses and is given approximately by
m'= ', ms (K"' -1)/(K —1)—

and s* is the average sound velocity.
For spherical constant energy surfaces and Z„=e*=0, Eq. (20) becomes approximately

2.4 (ms'/0)" 'fI/4, T'/'/s)'/5& T .

The neglect of the field-independent term in the denominator of Eq. (17) is equivalent to neglecting ms /kT,
compared to one. It is easily seen that the An( eE Vs 2} term is a correction to the distribution function due to
neglecting higher order terms than the first-order spherical harmonics, i.e., terms of the form V2„(8,c()), etc.


