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Paramagnetic Resonance Line Shapes of Fe++ in Mg0$
D. H. McMAH0N*
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(Received 18 October 1963)

The asymmetric ~=2 paramagnetic resonance line shapes of Fe++ in MgO are explained using a model
of stochastic distributions of cartesian strain components as a strain-broadening mechanism. Strains
broaden the AM=2 resonances at lower frequencies by means of a direct zero-Geld splitting and at higher
frequencies by means of a strain-induced change in g value. It is found that this model of broadening gives
mathematical expressions for the AM =2 line shapes which agree quantitatively with experimental results.

INTRODUCTION

&HE paramagnetic resonance spectrum of Fe~
in MgO consists of 3 lines: One transition is very

broad and represents the normal AM=1 transition;
the other two are forbidden 63f=2 transitions and
exhibit narrower asymmetric line shapes. Originally,
Low' suggested the possibility of strain broadening as
a line-shape mechanism. Watkins and Feher' have since
measured the eBects of applied uniaxial strains of the
paramagnetic resonance spectrum, showing that the
Fe++ ion is sensitive to strains and making the strain-
induced linewidth hypothesis more reasonable. Feher
and %cger' have applied the concept of random internal
stress components to make a second-moment calculation
of the strain-broadened resonance of Mn++ and Fe' ' '

in MgO. One can also apply the concept of stochastic
distributions of strain components to make a calculation
of the line shape itself. This procedure, though less
rigorous than a calculation of moments, can be applied
with bene6t to the Fe++ hM =2 resonance lines because
it explains the asymmetric shapes, because it permits a
quantitative comparison of the 631=2 and AM=1
shapes, and because the calculation of moments does
not apply.
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One finds at low frequencies that the paramagnetic
resonances are strain broadened by means of a direct
zero-field splitting mechanism which can be adequately
explained using the spin-strain Hamiltonian of Watkins. '
However, at higher frequencies, a g distribution
broadening mechanism predominates and it must be
taken into account to explain line shape changes.

The paramagnetic resonance spectrum of Fe++ in

MgO is shown in Fig. 1. The broad line at g=3.4 is
the usual AM=1 transition. The width of this transi-

tion, which will be referred to as the "single quantum
line" and abbreviated SQL, is accounted for by the
extreme sensitivity of Fe++ to strains.

The narrow line at g= 3.4 is, in terms of perturbation
theory, a second-order process in which two microwave
photons are absorbed by the spin in rapid succession.
This transition takes place between the two end levels
of the ground-state triplet. Its width is less because it
is broadened only by second. -order strain shifts and
because the energy denominator of second-order rf
perturbation makes the process likely only when the
first-order strain shift is small. This type of transition
is generally called a "double quantum transition" and
will be abbreviated DQL.

The line at g=6.8 is called the "half-field line" and
abbreviated HFL. This transition, which is strictly
forbidden for cubic crystal fields, occurs because strains

produce small admixtures of the pure Zeeman eigen-

functions. Using the admixture of eigenfunctions, the
rf field can induce a transition between the two end

levels of the triplet ground state using only one photon.
The DQL and HFL will be collectively referred to

as 635= 2 transitions. Low' has given the above

interpretation for the HFL Orton et u/. ' have established
the double quantum nature of a Ni~ transition in

MgO, a case which is similar to Fe~ in MgO.

THEORY OF STRAIN-INDUCED LINE SHAPES

Fro. 1.The paramagnetic resonance spectrum of Fe~ in MgO at
9.5 Gc/sec. The derivative signal is illustrated. It will be assumed from the beginning that strains,

caused by nearby crystal imperfections, are the cause of
the observed line shapes and a theory based on this

premise will be developed. The results of experiments

presented later on will justify this assumption.
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It is likely that the observed strain broadening of the
Fe++ resonance lines is due to dislocations. The strain
Gelds produced by dislocations are in general aniso-
tropic; dislocations are preferentially oriented, and
often form nets of dislocations resembling a super-
lattice structure. Not only is the problem of calculating
line shapes in terms of a dislocation model too dificult
to treat mathematically, even if the dislocation structure
were known, but, in addition, one does not know such
essential details as whether the Fe++ ions are randomly
distributed in the lattice. It is therefore not reasonable
to attempt to explain line shapes from first principles
using a dislocation model.

An alternate, more modest approach, is to explain
the HFL and DQL widths and shapes in terms of
information obtained from the SQL. Assume that there

is a stochastic distribution in the values of the strain
components e„,e,„,etc. at the paramagnetic ions sites.
If the set of 6 independent Cartesian strain components
is known, one may use %atkins eRective spin-strain
interaction to determine completely the eRect of the
strain components of the spin system. Having deter-
mined the resonance energy shifts in terms of the strain
components, the strain induced line shape is calculated
by integrating over the probability distribution of
strain components. The type of probability distribution
is chosen so that the shape of the SQL agrees with the
experimentally observed Lorentzian line shape.

If the static magnetic field is along the L1001 axis of
the crystal, the spin-strain interaction can be written
in matrix form, that is, in a representation in which S,
is diagonal. The result is

(—Gii/4) (e„+e» —2e„)
(G44/g2) (e.„+ie„,)

(3Gii/4) (e„—e„„)+iG44e, „

(G«i) v'2 (e* —e *)
(2Gii/4) (e.,+ e„„—2e„)

( G44—/g2) (e„+ie„,)

(3Gii/4) (e„—e„„) iG4—4e,„
(—G44/V'2) (e-—ieu*)

(—Gii/4) (e,.+e„„—2e,.)

Changing the orientation of the crystal relative to the
static magnetic field will intermix the diagonal and
oR-diagonal elements of this array and produce minor
changes in the width of the Fe++ paramagnetic reso-
nance lines. These changes are not of interest here, and
consequently the theoretical analysis and experimental
procedure are carried out only for the case in which the
magnetic Geld is along a [100) crystal direction.
%atkins' and Shiren, ' using different techniques, have
determined the constants of this Hamiltonian, The
average of their results is

G'ii(= —2Gis) =720 cm ', G44=460 cm '.
This interaction is applied as a perturbation assuming

that the three levels of the ground state are already
split by a relatively large Zeeman energy. From this
one can deduce that the resonance condition of the
SQL in the presence of strains is,

E=ha&p+ (4)Gii(e„+e»—2e„)+2nd-order terms.

Correspondingly, the resonance condition for the
DQL is

E=S~p+ (G44s/Ao~p) (e,„'+e„s+e„')
+ (9GiP/16Pioip) (e„—e„„)'.

In these two cases Atop is the Zeeman energy between
two adjacent levels. The resonance condition for the
HFL is

E=popo+ (2G44'/Ao~o) (e „'+e„s+e.,s)

+ (9Gii'/Sa~o) (e..—e„,)'.
Here, as in subsequent applications referring to the

P N. S. Shirou, Bull. Aru. Phys. Soc. 7, 29 (2962).

HFL L)p is the Zeeman energy between the two end
states of the triplet. This formulation is consistent with
the fact that paramagnetic spectrometers are constant
frequency devices. The difference in the DQL and HFL
resonating conditions occurs because two rf photons are
absorbed in the former and one in the latter.

Since the HFL is forbidden in a perfectly cubic
field, the strength of the rf field interaction is strain
dependent. One must therefore calculate the strength of
the interaction in terms of the strain components. If one
denotes @+„@p,p as the Zeeman eigenfunctions in the
absence of strains, the eigenfunctions in the presence of
strains are,

G44 (e„+ie„,)
C'+=4++ e+( )~,

~2 A o/2

G44 (e„—ie„g)
+-=~-+ 4.+( )~+.

K2 Acup/2

Since the rf Geld interaction can be represented as
H,i=gbH. (S++S ), the magnitude of the interaction
for the HFL is

(e„—ie„,)
Sehi=(C~IX, ilC )=2V2Gp4 X,f.

ACOp

Assume that the distribution of Cartesian strain
components is given by the probability P(e) =P(e„,
e»,e„,e„,e„,e,„) of finding a spin subjected to the
strains e, e», etc. To make practical use of the distri-
bution in solving problems, it is assumed to be separable
into products of probability distributions of individual
strain components,

P(e) =P(e„)P(e»)P(e„)P(e,„)P(e„,)P(e,„).
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= 1st-order perturbation strain shift,

2G44' 9 Ggg2

oro
—— (e,w'+ewe'+e, .')+- (e..—e„„)'

AG) p 8 Ao)p

= 2nd-order strain shift for HFL,

G44' 9 Ggg'

(e* '+e *'+e.*')+ —(e* -eww)'
L)p 16 Acop

1
P(e, ;)=-

or e; o+6'
1

P(e;;)=—,i',
m. eg'+8' = 2nd-order strain shift for DQL,

S=g'p'H 'T~Tp saturatio——n factor SQL and DQL,

S'= g'p'H~'T~'Tp satura—t—ion factor for HFL.
where 2 and 5 are the widths of the diagonal and
off-diagonal distributions of strain, respectively.

Since it is known that the SQL has a Lorentzian shape strain resonance frequency
within errors of measurement, one must choose the 3~
distributions of strain to be Lorentzian in order that ~&=4G»(»+ ww

the SQL be Lorentzian. (Gaussian distributions give a
Gaussian shaped SQL.) The choice of Lorentzian
instead of near-Lorentzian distributions is for mathe-
matical convenience.

Because of symmetry considerations, one can assume
that all of the widths of the distributions of diagonal
strains are the same and that all of the widths of the
distributions of off-diagonal strains are the same. There-
fore one has,

CALCULATION OF LINE SHAPES

The procedure for calculating the strain-induced line
shapes will be as follows. First of all, the power absorbed
for one spin as a function of the Cartesian strain
components is found. The power absorbed by one spin
will have a strain-shifted resonance denominator of
width T2 '. This finite width, over which a spin can
absorb power, will be replaced by a Dirac delta function
resonating condition. The delta function resonating
condition, which is a function of the strain components,
is integrated over the probability of finding a given set
of strain components, producing a result which is
equivalent to sunnning over an ensemble of spins.
Because the delta function and its associated factors
represent power absorbed per spin, the result of integrat-
ing over the strain probabilities gives a line shape that
represents total rf power absorbed as a function of
frequency.

In Appendix 1, formulas for the absorbed power per
spin as a function of frequency and strain are derived
using the density matrix approach. The results of this
Appendix can be summarized as,

4 Ao) pSr 1
~sq

3 T~ 1+T (ego+o~) poP

SAorpS'v-

Note that the g in S' is the same as the g in S. This
occurs because the strength of the rf matrix element for
the HFL was calculated in terms of the rf matrix
element of the SQL.

Replacing the finite widths of the resonating denom-
inators by an infinitely sharp 5 function amounts to
the following replacement in an integrand:

1 7r 7rA~—5(op —o)g) =—5(E—Eg).
1+Too((o—(og)' To T2

Changing the frequency to energy units will be con-
venient later on.

This substitution is justified if the intensity of the
line does not change significantly in a frequency interval
Aco~T2—', a condition which is always satisfied for the
SQL and which is usually satisfied for the HFL. On
the other hand, it will be found that this replacement is
not a particularly good assumption for the DQL
because in this approximation the DQL shows a dis-
continuous derivative. It does, however, produce a
simplification that allows one to perform the calculation
and one can in fact get good qualitative results for the
DQL by adding T& as a broadening mechanism at the
end of the calculation.

The method of distributions of strains consists of
entering the R's in an integrand which is summed over
the probability distributions of strains. Thus one has,
when substituting in the appropriate b functions,

X 1(gh
[1+To (op+opy+Qp ) ][1+To (Ql —(oy+Mp ) ]

4~kppp (gPH, f)'r
b(E Eg)P (E,)dEg, —

4 AcopS'r 8(e.,'+e„,')
~hf

3 T] Atop 1+T ~(op+ opp)o

4pr (gPH, g)'r 8(e.,'+e„,')
I(E)ps =—h~o

3 A (A(op)'

where co=rf frequency measured with respect to zero- XS(E—E,)P (E,)dE„
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&(E)g,——Sirhieo(g'P'H "i)-2r2'i

where

X 5(Ei) 5(E Ea—)P(Ei&Eg)dEidE2 &

2644'
P(E2) = 5 E2 —(e,„'+e„,+e„')

AMp

P(Ei) = 5[Ei G»—(e. +e» 2e„—))P(e)de,

)6 1
I(E)e,=gm+eo(gpH, i)'T,ri — bi2ui3I'

i42 ce2

with

H(bi/y)

1 dyH(bi/y)
X (3)

o y'(1 —y)"'(1—y+4~i) (1—y+~i)

o 5*'+ (t i/y) j[1—*'+(f i/y) j"'L1—*'+(2f i/y)1

(e„—e„„)' p(e)de, and
8 Asap

P(EiE2) = 8/E, Gii(e—„+e„„2e„)]—

L(g/3) AGii j'
ACOpB

c= (4/3)Giih,

)2Q 2

by=
ACOpE

R—G445,

644'
X& E, (e,y—'+e„'+e..')

~Cop

9 Ggg'
(e„—e„„)' P(e)de,

16 Atop

P(e) = —
I I

—
I

(e„'+A2) (e„y'+6') (e„'+6')

(e„'+5') (e„,'+5') (e„'+5')

de =de,de»de„de, „de„,de„.

4ir (gPH, i)' 3GiihI(E)„=—Aa)o r
3 E2+ (3G11~)2

In Appendix 2, the evaluation of the above integrals
was carried out as far as possible in terms of closed form
expressions. The result is

Graphs of the functions I(E)M and I(E)e~ have been
obtained using a computer program to evaluate the
integrals. The results, plotted in terms of the dimension-

less variables (1/a) = 9EAcoo/128Gii26' and (1/ui)
= (2/a), are shown in Figs. 2 and 3. Even though the
width depends on the ratio a/b, the shapes are insensi-

tive to the ratio and hence only the case a= b is shown.
The HFL and DQL shapes are broad and have

relatively steep slopes at the high-field or zero-strain
side of the lines. Because of this, the derivatives of the
line shapes are significantly different from zero only for
small strains and the derivatives are asymmetric.
Another characteristic common to these resonances is
that they get narrower as the spectrometer frequency is
increased because they scale according to the factor
1/a or 1/ai as the case may be.

The line shapes are not valid for large 1/a because
the theory does not take into account the fact that
imperfections can not be nearer the paramagnetic ions
than nearest-neighbor sites.

HEIGHT AND WIDTH COMPARISONS
OF SQL AND HFL

(gPH &)2 ~ 16 f&gil2q

I(E)„=—A~,
3 A (3ll AMO ~

with

H(b/y)

and

It is useful, in terms of comparing theory and
experiment, to make a quantitative comparison of
relative widths and heights using the above theory.

dyH(t/y) Because the SQL and DQL intensities vary differently
with rf power, a comparison of heights is not convenient
in this case. As a result, height and width comparisons
of the SQL and HFL will be made and the widths of the
HFL and DQL will be compared.

For a paramagnetic spectrometer with linear detec-
1 dx tion the output voltage (deflection of recorder pen) is

proportional to the derivative with respect to magnetic
o L*'+(f/y)lL1 —*'+(f/y)j"'L1 —~'+(2f/y)3 field of absorbed power divided by the rf magnetic

Geld strength. If the rf power level at the sample cavity

2L(g/3)G»A3'
is held constant, the ratio of the absorbed power, that is,
the ratio of the I(E)'s for the SQL and HFL, will yield

A(opE AcopE a quantity which can be determined experimentally.

2)2G 2
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I,O

H. F.L.

In measuring heights, one determines the quantity

dI(E)
5I= M,

d(E) -*

I

dy H(a/Y)
y(1-y +o)(I-y) /2

0

where M is the depth of the magnetic 6eld modulation
in energy units. Taking the ratio of the two height
parameters, one gets

0 2 4 8 10
I I 1

12 14 16

Fio. 2. The strain induced HFL shape at low frequencies
assuming u=b. For comparison vrith experiment the derivative
shape is included.

Since spectrometers plot out derivatives of line shapes,
it will be convenient to express parameters in terms of
the derivatives of the SQL and HFL. A computer
program was used to calculate dD(1/u)/d(1/u) versus
1/u, where,

(11
D~

—~—=bu»s
(u)

dyH(b/y)

y(1 —y+u) (1—y)"'

for the three cases u=b, u=4b, 4u=b. The results are
illustrated in Fig. 4. As convenient parameters for
measuring the width and height of the HFL, the width
at half the maximum height of the derivative, and the
maximum height of the derivative will be used. These
will be compared with the peak-to-peak height of the
SQL derivative and the width of the SQL between the
two peaks. From the graphs of the function dD(1/u)/
d(1/u), one gets the relationships (accurate to about
5 o)

where m represents the modulation depth in gauss.
Taking the ratio of the two widths, one finds, if m, ~

and why represent the widths in gauss and H2 is the
magnetic field for g=2, that,

H,ref,f/tn„'= 2.3 (b/u) "4.

Some features brought out by the height and width
comparisons are: The width of the HFL is proportional
to the square of the SQL width and is inversely propor-
tional to the spectrometer frequency (Zeeman splitting);
the ratio of the heights of the derivative curves for the
SQL and HFL is independent of frequency.

If one uses Figs. 2 and 3 to compare the half-height
widths of the HFL and DQL, one gets the relation
2x«=m„, where m«and msq are measured in gauss.

It is evident that the theory does not determine the
value of the ratio u/b.

M=2 LINE SHAPE AT HIGHER FREQUENCIES

VVhen the Fe++ d,M = 2 resonances are observed using
a high-frequency spectrometer (4-mm wavelength),
a second-order perturbation through the next higher
spin-orbit state, which can be schematically represented
as

and

dD(1/u)

d(1/u)

o 7s

=0.32I —
)

9Acop

128Grrsd, ' (b "4
3.0i-

ku

(strain) (Zeeman interaction)

(spin-orbit split ting)

is effective in producing another strain-broadening
mechanism. This mechanism, because it depends on

dI(e) f,f (4&~erg'p'H, fs~ ( 16 y

3a

dD (1/u) d (1/u)
X

d(1/u), „dE

.IO

.08

.06

.04

D;Q.L.
. a=b

The peak-to-peak width and height of the SQL
derivative are given by

dI(E)8, (4~ooog'p'H ford 3~3

dE E 3A ~ 4fr (3Grrh)'

.02

I/a

I

7/2 dy H(a/y)

y ( I-y)' (I-y +4a)(l-y+a)
0

W„=2VBGrrh.
FIG. 3. The strain-induced DQL shape at low frequencies

for the case 0=5,
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+C7

4
Qo
0

frequency condition, but does not relax further the
forbidden nature of the AM=2 selection rule. Conse-

quently, the transition probability matrix element of
the HFL is still the same.

Unfortunately this formulation leads to mathematical
difhculties which cannot be easily circumvented. An
alternate and suKciently accurate approach is to 6nd
the width of the distribution of & as a function of energy
position E produced by the low-frequency broadening
mechanism. The unnormalized probability of finding
the energy shift V at E is

I I I 1

I 2 3 4 5 6 7 e 9 IO II 12

I/a

FIG. 4. The low-frequency HFL shape for different values
of the ratio o/b.

the Zeeman interaction, represents a strain-induced g
shift. The distribution of strains implies a distribution of
g's and hence a linewidth.

Because excited states within a manifold of a spin-
orbit multiplet are involved, the strain interaction must
be expressed in terms of a more general orbital-strain
interaction instead of the "effective spin" strain interac-
tion used above. In order to calculate the size of the
orbital-strain coupling constants, this same interaction
in terms of orbital operators is applied as a perturbation
between the ground-state triplet eigenfunctions. These
eigenfunctions are expressed as products of spin and
orbital operators and result from applying crystal 6eld,
spin-orbit, and Zeeman perturbations in succession to
the 'D free ion con6guration of Fe++. For the case of
the ground state triplet levels, the magnitude of the
orbital-strain coupling constants can then be found in
terms of the equally applicable "effective spin" strain
interaction, for which the coupling constants are known.

Using this procedure, one has for the relative energy
shift between the M, =&1 ground states (caused by
the g distribution perturbation):

27kb) p'

Grr(e„+e„„—2e,.),
4X

p(p, E)= g)~ E)b/—E EjP—(e)de,

27&pGgg
Ea= (e„+e»—2e„) .

4X

A simple estimate of the effective width of the distribu-
tion is given by

W(y) = P(v, E)dy.
P(O,E)

Using methods similar to those applied in Appendix
2, one can calculate W(&). The result is,

f277K@ (do

W=/
4 192liGgr

4 &(&/y)/LX(1 —
X)"'(1—y+ ~) (1—y+4~)]

One 6nds that the ratio of the two integrals has the
asymptotic values 4u for a, b —+ Do and 6g for u, b ~ 0.
Since both extremes of energy shift E give nearly the
same value of W(V) and it is reasonable that the case

1 will not give a very different result, one is justi6ed
in setting

27+Ac) pG»~

where X(L S) is the spin-orbit coupling.
The correct way of introducing the new width

mechanism into the HFL is to include it as part of the
energy shift factor in the 8 function resonating condi-
tion. Thus one has,

8(e.,'+e„.')

2&p2

XhLE —Eq(e) —~ (e)jP(e)de,

where P(e), de, and E2 are defined as in the HFL case
above. This formula takes into account the fact that the
new width mechanism enters only in the resonating

In addition to having a numerical estimate of the width
of the new strain mechanism, one has the following
results: The width of the broadening mechanism is very
nearly the same for all parts of the HFL (or DQL).
The strain-broadening mechanism produces a linewidth
that increases directly with increasing frequency.

APPLICATION OF g DISTMBUTION 'WIDTH
MECHANISM TO HFL

Assume that the broadening caused by the distribu-
tion of g values has a Lorentzian probability distribu-
tion. This is a reasonable approximation because this
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width mechanism is linear in strain and because the
strain distributions are Lorentzian. If one forms the
convolution integral of the two strain width mecha-
nisms, the g distribution broadened HFL shape will be
given by,

, 50

I*(E)g1——W
I(E')~1dE'

p (E E') '—+W'

.20

With the available spectrometer frequencies one
finds experimentally that this broadening mechanism,
in terms of half-height widths of resonance lines, never
gives contributions appreciably greater than the low-

frequency strain-broadening mechanism. It is therefore
of value to express the g shift broadening in terms of a
more sensitive parameter for which the mechanism
causes large relative changes at lower frequencies. A
sensitive parameter to use in observing broadening
mechanisms is the width of the sharp or high-field side
of the HFL derivative between the ~~ and 4 height
points. Call this quantity H/'&. If the line is broadened
only by the low-frequency strain mechanism, one has
the relationship, 8'~.=0.088 hf, which can be obtained
from Fig. 4 graphically. This formula is a good approx-
imation whatever the value of a/b because the line shape
is nearly independent of the ratio. Using Eq. (4) for
the half-height width 8'~~, one has,

as the low-frequency asymptotic value. In the high-fre-

quency limit the HFL shape is given by the expression,

.IO

-6 -4 -2 0 2 4 6 8 JO i2 l4 I 6

FIG. 5. The HFL shape broadened by the g distribution mechan-
ism. Several ratios of the broadening parameter are shown.

graphical errors, that the curve is in fact symmetrical
and that it has to a good approximation the form

Wr, =s(t+p1')/p1, where the constants s and t can be
determined from the asymptotic limits of 8 L,.

COMPUTER PROGRAM FOR g DISTRIBUTION
BROADENED LINE SHAPES

To obtain the "broadened" line shapes, a computer
program has evaluated the function I*(E)1,f and I*(E)qp

as a function of E, for various values of the broadening
parameter W. The results have been plotted in curve
form and are illustrated in Pigs. 5 and 6.

The curves plot the derivative functions

I*(E)h1~ 27Aa)poli~

16K

2771 AM pGyyk
E2+

16)
where

d (1/a)d(1/a)

dD*(1/a) g1 dD*1(1/a1) a~
and

From this one can show that what corresponds to 8"~ is

Wz, = 277rhcvpG116/16K.

If one sets the low-frequency asymptotic expression
for 8'& equal to the high-frequency asymptotic expres-
sion, a condition for the minimum value of 8'~ is
obtained. Thus,

fi'&o p'/XG1 16=0.64 (b/a)'". (7)

This equation indicates that the frequency at which
is a minimum is directly proportional to the

magnitude of the strains in a crystal. It is also evident
that the ratio a/b must be determined before this
relationship can be utilized.

In using the above method to determine the frequency
of the minimum value of lVL, , it has been tacitly assumed
that the curve of TVL, versus frequency on a log-log
plot is symmetrical about the minimum value. Because
the function I(E)1,f is complicated, it is not obvious
that this is the case. However, using Fig. 5 one can
obtain values of 8'L, versus frequency and show, within

W - D(1/a')„d(1/a')

Ea) s1 s' o L(1/a) —(1/a') $+W'

1 Dl(1/al )dgd(1/al )

p E(1/a1) —(1/a1')J+W1'

1q W
D1

a,Ig,

4 (gPH, 1)' 16 (1)I"(E). =-
3 A 3~p kaf „'

and

t 6) /1)
I*(E)g,= SAu&p(gpH, 1)'T1ri iD1*i —i

k+'pe& (a,& „'

D/ —
/

= ba'~'
|'1l
(a~,f

dy H(b/y)

o y(1—y+a) (1—y)"'

in terms of the dimensionless variables 1/a and 1/a1,
where 8' and 8 ~ represent the broadening parameter
width in units of 1/a and 1/a1, respectively, and where
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FIG. 6. The DQL shape broadened by the
g distribution mechanism.

EKPERIMENTAL RESULTS

Strain as a Line-Shaye Mechanism

A simple check on the assumption of strain broaden-
ing is to compare the strain-broadened SQL width with
the strain-broadened width of another ion species
present as an impurity in the crystal. It has been
shown that the energy shift of the SQL in the presence
of strains is

DEsc4r. = 4G» '(e„+e» 2e„)—
if the magnetic field is along the L100j crystal axis.
Correspondingly, by using the same method and the
same crystal orientation relative to the magnetic Geld,
it can be shown that the energy shift of the Mn++

(—', to ss transition) is given by

+EMn sG11 (e +ezy 2ezz) ~

Mn~ has an S= ~ effective spin ground state. If one
assumes that the widths of the stochastic distributions
of cartesian strain components are the same at both the
Mn++ and the Fe~ sites, then, using Watkins" or
Shiren's4 6 values, one can show that the ratio of the
Mn++ (rs—ss) linewidth to the SQL width is given by

WMa/WsoL ——0.00325.

The Mn++ (—,
'

ss) and the Mn++ (rs, —rs) widths were
measured for samples in which the SQL widths were
also known. The Mn++ (rs, —sr) line is not broadened

by strains and very likely its width is determined by
diPolar broadening. Therefore the Mn++ (sr, ——,')
linewidth was subtracted from the Mn++ (-', ,—',) width
and the difference, presumably due to strains, was
plotted against the width of the SQL. The results of this
plot are shown in Fig. '/. The agreement between the
theoretical ratio of strain widths and the experimentally
measured ratio is good.

Fxo. 7. Comparison of
widths of Fe++ SQI and
Mn~ (-',=,') resonances.
The magnetic 6eld is
along the (100) axis of
the crystal. Each point
corresponds to a dif-
ferent sample.
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The theory of strain-induced line shapes predicts
several relationships between the paramagnetic res-
onances of the Fe++ system. Some of these relationships
will now be compared with experimental results.

Because the width of the HFL at low rf frequencies
is a second-order perturbation of strain broadening, the
width of the HFL is proportional to the square of the
SQL width. This feature is verified by a comparison of
the SQL and HFL widths measured at 9.5 Gc/sec and
illustrated in Fig. 8.

Additional evidence is supplied by the detailed shape
of the HFL. In Fig. 9 is shown a picture of the HFI
resonance observed at 9.5 Gc/sec and at O'K. This
picture illustrates the low-frequency limit of strain-
broadened line shape. If one subtracts oG the baseline
variation which is due to the SQL (see Fig. 1), and
compares the resulting picture with the theoretical
HFL shape shown in Fig. 5, the agreement is excellent.

One also finds experimentally that the width of the
HFL varies inversely with the spectrometer frequency
in the low-frequency limit. This feature is not illustrated.

The Ratio a/b

The width and height of the HFL are given in terms
of the variables u and b, where

1/a= 9EAppp/128Grt LV, 1/b= Eh(up/2G44sb .
Taking the average of Watkins' and Shiren's values of
G» and G44 quoted above, the ratio of a/b is given by
a/b = 16(h/b)'.

Equation (5) gives the ratio of the maximum height
of the derivative of the HFL to the peak-to-peak height
of the SGL. The quantity I(E)z&m,p/I(E), p444s& has
been measured at 9 Gc/sec for about a dozen samples
with the result,

I(E)s fsN zp/I (E)„4' 4 2.0+0.3.

From this one has the estimate a/b= 13.
Equation (6) gives the relationship between the HFL

and SQL widths. From the graph of Fig. 8, which plots
the HFL width against the SQL width for several
samples at X band, one obtains

IIsws4/te„' =0.16.

One therefore has the estimate a/b=15. Using the
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FLG. 8. Width of
the HFL versus
width squared of the
SQL Measurements
were made at 9.5
Gc/sec. Each point
corresponds to a dif-
ferent sample.

average value of a/b, e/b= 14, one has the result,

6/8=0. 94=1.

One intuitively expects 6/8=1.
expectation has been substantiated
to support the strain-mechanism
shapes.

The fact that this
is further evidence
hypothesis of line

Evidence for the g Distribution
Broadening Mechanism

In the theory of line shapes it was indicated that 5"l.
has the form

Wr, = s (I+a&')/cv.

As additional evidence one has the following experi-
mental information which can also be predicted from
the theory.

The width parameter Wr, measured at 72 Gc/sec,
where the low-frequency strain mechanism gives an
insignificant contribution to the width, correlates well
with the SQL width, which is a measure of strain. The
graph of Wr, at 72 Gc/sec versus SQL width shown in
Fig. 11 implies that these two widths are directly
proportional to one another.

The width increase of 8'& is directly proportional to
spectrometer frequency. The RB1 sample in Fig. 10
illustrates this behavior.

The minimum of 5'L, decreases in frequency as the
magnitude of strains in the crystal decreases. Compare
the frequency of the minimum for the RB1 sample
(Fig. 10), which has a SQL width of 400 G, with the
RB54 samples for which the SQL width is about 1000 G.

Measurements on the width of the high field edge of
the DQL also exhibit broadening as frequency is
increased. Thus the width mechanism is not a pecularity
of either the HFL or the SQL.

20

l2

If the plot of 5& versus frequency co is made on a
log-log scale, the shape of the curve, aside from
translational shifting of position, is given by (1+&v )/&u.

Experimentally the constants s and t are determined
by moving this trial curve in a horizontal or vertical
direction until it 6ts over the data points. This exper-
imentally determined fit to the function is shown in
Fig. 10. It is apparent that the width parameter 8'g
has a minimum in the neighborhood of 10 Gc/sec.

The broadening produced by the g distribution
mechanism can be estimated from theory by using the
measured values of the SQL width and the value of the
ratio a/b. Using these values, the theoretical condition
for the minimum of Wr, , Eq. ('7), becomes

OP= 0.28 R'Sg ~

8

4

IO

5
to

5

2-

40 I

20

12

8

ihR85 HS-
I I I I IIII I I I I I III

5 IO 20 40 80

6, RBI
I I I I IIII I I I I I III

5 IO 20 40 80

Q SK I.O
0 SE O. I

FIG. 10. The width
8'I, of the high-Geld
edge of the HFL as a
function of spectrometer
frequency for several
samples.

where ro is the frequency in Gc/sec and w„ is the peak-
to-peak width of the SQL measured in gauss. This
relationship also predicts, within the accuracy of the
theory, that the minimum occurs near 10 Gc/sec.

Fro. 9. The HFL derivative shape measured at 9.5 Gc/sec
illustrating the low-frequency limit of strain broadening. Magnetic
Geld increases to the left.

5 IO 20 40 80

z& &.ec)

CONCLUSIONS

The theory of strain broadening of the Fe~ reso-
nances using a model of stochastic distribution of
Cartesian strain components at the paramagnetic ion
sites gives only one adjustable parameter, the ratio
a/b. Even this parameter is not completely arbitrary
because it is proportional to the ratio of diagonal to
off-diagonal strain-distribution widths, which one
intuitively expects to be about unity. Experimental
results quantitatively verify the applicability of this
theory in many essential details. There is little doubt
that strains in the crystal 6eld potential cause the



PARAMAC NETI C RESONAN CE L jt NE SHAPES OF I' e~+

50

Ol
CO

20
CS

O
C9

10
I-

5

I I I I I I I I

5 10

Wsq (GAUSS )

I I I I

2 5

FIG. 11.The width parameter Wz, at 72 Gc/sec versus SQL width.
Each point corresponds to a different sample.
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(P-)-i-=1/T1Z(P P» P&p )
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limit of saturation. The density-matrix equations can
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APPENDIX 1

Density Matrix Approach to the DQL Following Clogston, ' one makes in succession the
substitutions,

pn~=on~e '"""'+pnme, where 00n~=h '(E„—E~)

gbII„g,
0 ~

—) g
—&«nk —&nk) & with g „— e&$ k

2A

O=Q(p 4a—ps& )+zTig(A 24 —& 2A2 )

1+iT2(zen„—Qn~) =iT2 Q(An24~ —linsA2~) r n/nz

In the case of the DQL and SQL transitions there is
only one applied rf field so that one can set,

0012 000+011+~2 )1

The treatment of the DQL in terms of second-order
rf Geld perturbation theory is complicated by the
presence of the SQL transition. Since contribution to
the DQL occurs for the case of little or no first-order
strain shifts, the energy denominator encountered in
second-order perturbation theory becomes vanishingly
small, making the perturbation expression arbitrari]y K-e p ng only the secular terms, the result is

large. For this reason perturbation theory is riot valid
and the density matrix approach is used.

The energy differences of the 3 levels of the ground
state in an applied magnetic Geld which produces the
Zeeman splitting ~o, subjected to the Grst-order strain
shift A~~, and the second-order strain shift Aco2, can be
taken to be

~22= 000 011+012 0012 = 2010+2012 ~

The time variation of the density matrix is given by

Ap„„—i[x,p „],
where e and m vary over the levels 1, 2, and 3.

The static magnetic field part of the Hamiltonian is

BC„=gbHg5 =E„5„

and the rf magnetic Geld interaction is

SC„.=gba„e- «-~+&-)=V„Yam p

where Q„and @„are the frequencies and phases of

A 12 A 28 (gf +rf/2~) =A r A 13 Or Q12 Q28=Q ~

These conditions correspond to the application of an rf
field which is near resonance for the SQL and DQL.

One can further simplify the subsequent expressions
by making the substitutions,

[1+ZT2(0012—Q))=—a,
[1+iT2(~12—2Q)]—=P,

[1+iT2(0122—Q))—=y.

The equations of the six independent components of

' A. M. Clogstou, Phys. Chem. Solids 4, 271 (1958).
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the density matrix are then

P 1 ()I'22+ ~33)—(P2+Ps) )ill+ 2A Tl ()l21 )l12),

P2()ill+)ass) (Pl+Ps))l22+3ATl[()j 12 )121)

+(x„+)„)J,
Ps()lil+)2i2) —(Pl+P2))lss+3AT1()l28 )l32),

n)l12 sA T2[()122 )ill) ~18$ y

P)mls =ZA T2 (X28—)mls),

'yX23 ZA T2()ass X22+)mls) ~

(A1)

(A2)

(A3)

quantities T1 and T2 is not a good assumption if S&1&
and for this reason the validity of the above equations
in the limit of saturation is questionable.

If one uses the intensity behavior with rf power to
discriminate between the terms producing the SQL
and DQL, one finds that parts of the terms P and Q
vary as the rf Geld squared and are responsible for the
SQL. For the unsaturated case one has

gbHoSr 2

The rf power absorbed per spin is equal to the amount
of power dissipated through spin-lattice relaxation.
This is given by,

&=gbHs[()ass —41)—(ps —pl) $

By solving the 6 simultaneous equations for the
components of the density matrix to get )» and X33,

and substituting the expressions for these quantities
into equation, the absorbed power per spin is

gbHsrS (P+Q+41V)+6S(PQ+P1V+Q1V)
R=

3T1 1+2$(P+Q+1V)+3S2(PQ+P1V+Q1V)

where r= gbH3/kT is the Boltzmann factor, S=A' T,T,
is the saturation factor, and where

nPp+n*P*7*+4A2T22
N=—A'T '

—
l
nPV+A2T22(n+V) l'

2l pal'+A'T '[( +7)p*v*+( *+&*)pvjP= )

Input+A

T2 (n+ Y) I

'

2I p I'+A'T'L(+v) *P+( *+&*) pj

l
npp+A2T, 2(n+p)

l

'

Redfield' has discussed the effects of saturation on
the Bloch and hence on the density matrix theory.
He indicates that the use of the phenomenological

If one sums over co1, one need not distinguish between
the resonating denominator factors lnl' and
Picking out the terms which vary as the fourth power
of the rf field strength as the source of the DQL, the
result for usual the case of T2(&T1 is

SgbHo7.S'- 1

—lnv l'-

In a similar manner one can apply the density matrix
method to calculate the power absorbed per spin for
the HFL transition. If the HFL is not saturated, the
result is

(4gbH8S'r) S(e„'+e„,') — 1

3T' ) 8',' ) 1+( +,)'T, '

where S'=g'b'H, 'T1'T2 and T1' is the 935=2 spin-
lattice relaxation time.

APPENDIX 2

Calculation of Strain-Induced Line Shapes

As an example of this calculation, the HFL will be
used. Calculations for the SQL and DQL shapes
proceed in an analogous fashion.

Using the results of Appendix 1 and assumptions
quoted in the text, the intensity of the HFL (aside
from some constant factors) is given by

SG44'
I(E)=

A Goo

~ (e.,'+e„.') b E—2G44 9 G]1
(e.„'+e.,'+e,,') —— (e„—e„„)'

~coo 8 ~coo

(b 8(&)8 de, de„„de,„de„, de„xl-
l

—
l

(sr

(sr�)

(e„2+62) (e»2+62) (e,„'+b') (e„,+bs) (e„s+bs)

3 x
e

4 Gll

3
eely

= G44 —Q
4 Gll

2 A. R. Redfield, Phys. Rev. 98, 1787 (&955).

E represents the energy shift from the unstrained
Zeeman splitting. Make the following substitutions:

EAcvo I 5 m

e „=, e„,=, e„=
2 G44 G44 G44

8 (n)'f e

1(E)=
3Alesk~l 4.

(u'+ ll2+w') dudvdw

(u2+ 232) (s2+ N2) (w2+ N2)

dxdg
X b[E (u'+s2+w') —(x——y) 2$.

(gsy e2) (y2+ e2)

Then, since aside from the factor e, 2+e„s, the integral
is symmetric in e,„,e„„e,, one gets
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where

F(Ei)=

Igi) =
312(00

/n)'

&.)

F (Ei)G (E E—i)dEi,

ritten inri t in the formThis can be wri t in
A

('l'
G(&2) =

(

—
I

E~

SHAP

5 Ei (—u +'v +w2))u' ~'+w')dudedwbttE, —u
(u'+n') (i'+n') (w +n

~N, -(x-y) j.
(x2+ ~2) (y2y ~2)

lP"s herical coord'dinates,6rst integral to spChanging the rs
the result is,

r2r4dr sin8d8d&5 (Ei r—
2 2 n

'
2 ' 2 n2)r' cos n

' ' ' +n') (r' sin'8 sin gr'cos'8+n')(r' ' ' coPy n
F(Ei)=I -)I

the 8 function,Eliminating e

Bq'12 sinede1)nq'
dp dq(E2 —p')

L(v+ p)'+«'EL' —p
'2+.4~2j

('l'
G(E,)= 8] —

/

2n'

2 n2n') (Ei sin'8 cos'Q+ng sin'8sin'p+n i
' ' ' n0 1

d contourt r integrating,the 5 function and t rEliminating the u
one has,

Doing the p integral,

sin g

ion is ~~, thet ansformat1on
'ofte rSince the Jacobian

result is

2(n)
F(Ei)=2( —IEi

singe@

Let x= cosa. hen,

0

1r

8
'

28 n2) 1/2
' '8 2n')(Eisin( icos'8+n') (Ei sin 8+

I(E)= dyIIP/y)16 ba'"

3ir' Aa)o 0 y(1—y+u)(1 —y
'~'

ex ressions for G and F into I E)S b tituting the p
and letting y=Pi/, u= 2e
the final result is

/n)' ' dx
F(Ei)—4Ei I

I

Aix +n

1

x' 2n')n')'I' (E — ix(Ei—Eix' n

II(b/y)

where

2$

"'L1—*'+(»/y) jWy) jL1—*'+8'/y) 1'

ex ression further.simplify this expressi r.
lG l t p= —,f hIn solving or

128Ggg'dP

7

9L)pZ

25'G44'

L00E


