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negligible at low pressures. The values of the potential
constants which give a fit to the data, o=2.75 A,
6=51.7)& 10 ' ergs) differ at most by only a few percent
from those given by gas phase data, ~=—2.75 A,
~=49.2)&10 "ergs.

The fact that different constants are needed to explain
the gas and solid-phase data of neon should not be at
all surprising. The Mie—Lennard-Jones potential is a
phenomenological interaction and should be expected
to vary somewhat from one type of phenomenon to
another. " A similar situation occurs, for example, in
the treatment of argon. Second virial coefficient data"
give, e = 165)&10 ' ergs, gas viscosity data'6 give

' See, for example, Ref. 10, p. 208."E.Whalley and W. G. Schneider, J. Chem. Phys. 23, j.644
(1955).

"H. L. Johnston and E. R. Grilly, J. Phys. Chem. 46' 938
(&942).

6= 171)&10 ergs, and crystal data give c= 169)(10
erg s."

ACKNOWLEDGMENTS

We would like to thank the Digital Computation
Division (ASNCD) of the Aeronautical Systems
Division at Wright-Patterson Air Force Base for their
assistance in processing the computer programs. We
are grateful to Professor Eugene Feenberg for his
encouragement and for a critical reading of the
manuscript.

"C.Domb and I. J. Zucker, Nature 178, 484 (1956).
"A small change of potential parameters may not account for

the experimental data of the heavier inert gas solids. See the P-V
data and discussion of C. A. Swenson for xenon [International
Conference on the Physics and Chemistry of High Pressnres (Society
of the Chemical Industry, London, June, 1962)g. It may be
necessary to include the eGects of many-body forces to correlate
the properties of solid xenon.
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The question as to whether the existence of a bound positronium-like system in an ionic crystal is energeti-
cally possible is considered with particular reference to lithium hydride. The crystal field of LiH is simulated

by a potential expressed as a sum of central Geld potentials centered on the ion sites. An upper bound is ob-
tained for the ground-state energy of a system of an electron and a positron in Coulomb interaction with
each other and moving in the crystal potential, and comparison is made with estimates of the energies of the
positron and the electron moving independently in the crystal. The result is energetically favorable to the
formation and persistence of positronium in the crystal through capture by a positron of an electron from
the valence band.

I. INTRODUCTION

~CONSIDERATION of possible mechanisms for the~ annihilation of positrons in ionic crystals gives rise
to the question as to whether positronium, or more
precisely a positronium-like bound system, can be
formed and persist for an appreciable time in such a
crystal. This question has formerly, on the basis of
qualitative arguments, been answered in the negative. ' '
It would appear desirable to reconsider the matter on a
more quantitative basis.

In the following, we consider in Sec. II the simulation
of the crystal field of LiH by means of a suitable po-
tential. In Sec. III we consider the problem of a system
of a positron and an electron in Coulomb interaction
moving in the constant periodic potential of the crystal,
the potential energy of the positron as a function of
position being taken to be simply the negative of that of

*Supported by the National Research Council of Canada.
R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956).' P R. Wallace, .So1id State Physics (Academic Press Inc. , New

York, 1960), Vol. 10.

the electron. By treating the eGect of the crystal field as
a perturbation of the Hamiltonian for free positronium,
the energy shift of the ground state is calculated to
second order of perturbation theory. An improved result
is then obtained in the form of an upper bound to the
ground-state energy by calculating the average of the
Harniltonian with the aid of a wave function given by
perturbation theory. In Sec. IV the procedure used in
estimating the ground-state energy of a positron in the
crystal field is outlined. In Sec. V use is made of the
results obtained in a discussion of the energetics of
positronium formation in the crystal. Section VI con-
tains an assessment of the results and their relation to
experiment.

II. CRYSTAL POTENTIAL OF LiH

The lithium hydride crystal, being an ionic crystal,
has a relatively open structure. We therefore make the
approximation of treating the potential as being made

up of a sum of spherically symmetric potentials centered
on the ion sites. The first problem, then, is to obtain an
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P= 1.715 A
—'.

The crystal potential is now taken to be

approximation to the potential due to a lithium ion and The value of P for the best fft is
that due to a hydride ion.

We shall take the potential due to a lithium ion to be
of the form

'U) (E)= (e/R) + (2e/E) e

where e is the charge on a proton and n is a parameter
which is to be determined. This potential has the correct
behavior for both large and small E. It has the ad-
vantage of being simple in its mathematical form.
Similarly, the potential of the hydride ion is taken to be

V(R) =p $'U)(R —R;)+'U2(R —R,—a)$, (11)

where R; is the position vector of the jth positive ion
and a is the position vector of a negative ion with re-
spect to an origin at the location of a positive ion.

'U2(R) = (2e/R)e e~—(e/E), (2) III. GROUND-STATE ENERGY OF POSITRONIUM
IN THE CRYSTAL

+=4.j.52 A ' (3)

The value for the parameter P in the hydride ion
potential was obtained in a different fashion. Using a
wave function for the hydride ion, the charge density is

where P is a parameter which is to be determined.
The parameter n is obtained by observing that the

potential 'U) (R) is effectively the potential in which the
third electron of a lithium atom moves. The ground-
state energy of this third electron is known. We may,
therefore, set up the Schroedinger equation for this
particle, wherein only the parameter o, is unknown.
With a fixed value of n we may solve the equation
numerically. The parameter e can be varied until we
obtain a solution which has one radial node and which
behaves properly as r —+ ~. This procedure was carried
out on a computer, and the value for n obtained was

We shall now investigate the problem of positronium
in this potential. The Hamiltonian for the two-particle
system in this field is

H= —(&'/2~)(V1+V2) —(e'/~ r2 rl~)
+e V(r&) —e V (r2), (12)

(13)R= (r(+ r2)/2

I= 1'2—1'y.

The Hamiltonian becomes

(14)

where r~ and r2 are the positions of the positron and
electron, respectively. It is to be noted that the po-
tential energies of the electron and of the positron due
to the crystal field differ only in sign.

The Hamiltonian may be expressed in terms of the
center-of-mass coordinate R and the relative coordinate
r, where we have

p(Rq) = 2e ~P(R—),R2)
~

JT2. (4)
h 8

H = — V'g2 ——V' 2——
4m m rThe potential due to this charge density, v(E), is given

by
r)I p r)I

+«(R—
I

—«I R+—
I (&&)

2) & 2i
V'e(R) = —kn p(R).

The wave function for the hydride ion was taken to
be of the form used by G. Darewych. ' In accordance with perturbation theory, we write

(R R) (1~ ~ )( (,+„,)+ („,„,)) (6)
" + " f" p

where

and
I)'-g, ——

~
R,—R, ~,

X=0.9033 A ',
p= 2.0315 4—'

) =0.5898 k '.

where
H =Ho+H),

$2 $2 tp2

Hp ——— V'g2 ——V' '——
4m m r

H, =eV( R—
f

—eV( R+- /.
2~ 4 2~

(16)

(17)

Using this wave function, it is possible to carry out the
integration in Eq. (4) and to solve the Poisson equation
to give an explicit form of the potential. This potential
was approximated with high accuracy by the form

Hj will be treated as a perturbation on the Hamiltonian
Hp.

Hp consists of the sum of two noninteracting parts,

'U2(I)'. ) = (2e/R) e
—~ —(e/R) .

' G. Darewych (private communication).

(9)
—(A'/4m) Vg'

—(A'/ts) Vp' (e'/r) . —
(19)

(20)
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The first is the Hamiltonian of a free particle and the
second is the Hamiltonian of the positronium atom.
Therefore, the eigenfunctions of IIO may be written

where 1/L2 is the square of the normalization constant
used in the box quantization procedure. By suitable
shifts of origin, expression (25) can be reduced to the
form

4'k, nlm e iflnlm(r) y (21)

where p„l„(r) is a positronium wave function, where the
quantum numbers e, l, m have the usual meaning. The
energy corresponding to this state is

L1111— eik ReV(R)drll

(A2k2/4212)+ E, (22)
&& p»0*(r)p„l (r) (e'k &'l &'e—'k &'l &')dr, . (26)

TF

(27)

where E„is the energy of the Nth level of positronium. Now V(R) has the periodicity of the crystal. It may
Let us examine the effect of the perturbation on the therefore be expanded as a Fourier series.

ground-state energy. The first-order perturbation energy
V (R)—g C e2niK R

Lilt'0. 100(r)gh4'0, 100(r)j
Since H& is of odd parity in the r space, this vanishes.
From similar parity arguments, it can be seen that all
odd-order perturbation energies vanish. Thus the
second-order perturbation, which we shall now calcu-
late, is in fact accurate to third order.

The second-order perturbation energy is

I LA, »0(r), &14k..l-(r)] I'

k, nlm E1 I (k2k2/4222)+E

The inner product in the above expression involves an
integration over both the R and the r spaces. The
functions of R are not quadratically integrable, so we
must resort to a box quantization procedure. The inner
product becomes

4ZIC I'P
K n lm

(
$100*(r)y.l-(r)»"I&2)

p
k2k2

+E-
I

&4—m "i

where K is a vector of the reciprocal lattice.
The integral

I,im — e' '"V (R)drIl
Li-woo L 3

rB

is equal to C x, if ir is 22r times a reciprocal lattice vector
and is zero otherwise. Also, it is obvious that CK= C K.
Substituting these results into Eq. (26), we find that the
second-order perturbation, expression (24), reduces to

Lim-
Li-koo I 3

rRirr

r) r
y»0 (r) evI R——

I

—ev R+—
2) 2

Xy„l„(r)e" drlldr„, (25)

Now E„=El/222 As 22 .increases E„quickly becomes
small. We set E„equal to zero, in the above, in order to
facilitate summations. We shall come back later and
correct for the erst few terms. Using this approximation,
(29) may now be written

4ZIc*l Z
K nlm,

~k rq pk r'q
4'100 (&)4100(r')4. l (r)y. l-*(")»nl

I
sin

k2 2)
(30)

2 e.l-*(r')4-1-(r) =t'(r' —r).
nlm

(31)

We now sum over n, l, and 212. Since {p„l„(r)i is a which is equal to
complete orthonormal set of functions, we have

(33)
{1—I 1/(1+i202k2)2j)

Ei (f12k2/4 —222)—
Integration over the r' space reduces the integral to

(li r)
I+oo()I'

'
'I
&2 V(R)e—2nix Rd& (34)

We must now evaluate Cx. From Eq. (27) we obtain

A'k'
~l

4m

(32)

where 6 is the volume of a unit cell of the crystal lattice
and the integration is carried out over this volume.
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Substituting Eq. (11) in (34) we obtain Consider the sum

1
Cx——— P fu, (R—R,)+u, (R—R,—a)]

y e
—2niK Rdr (35)

It is easily seen that this is equal to

1
L'U1(R)+'U, (R—a)]e—""'"dr13,

4100 (r)4100(r')4 1~(r)gn1~*(r')
odd l, m

(k r) (k r'
Xsinl I

»
l

dr, dr, . (41)E2f' E2

We express sin(k r/2) in terms of complex exponentials
and use the relation

where this integration is carried out over all space. %e
now let

e"'= P (2l'+1)i'P 1.(cos8)j1 (kr),
l'=O

(42)

nlbl+n2b2+ n3bo (37) where j1 (kr) is a spherical Bessel function. We also
write $„1„(r)as

2' g 2 1+—
I.3 k'+n2 k'

2
y ( 1)ny+n2+n3 (38)

k'+P2 k'

where I. is the shortest distance between positive and
negative ions in the crystal. It is to be remembered that

where b1, b2, and bo are a set of basis vectors in the
reciprocal lattice, and e~, e2, and m3 are integers. On
substituting the functions V1(R) and V2(E) into the
integral we obtain

(43)

42r Q (21+1)
odd l

(kr)
(44)

The energy shift given by Eq. (40) therefore reduces

K n=2 odd l

On summation over m and integration over angle, the
expression (41) reduces to

k= 22rK= 22r(n, b1+nob2+nobo) . (39)

4 Z ICxl' 2 '2 y100*(r)y100(r')y 1 (r)y„t *(r')
K n=2 odd lorn

kr) kr
&&sin

l
sin ldr„.dr„2I 2

(40)
$2/2 @2/2

~1
4m.

&i—&n-
4m

Substitution of this expression for Cz into Eq. (33)
leaves only the summation over K to be performed.

It is recalled that this value is an approximation to
expression (29) wherein we took E„to be zero. We shall
now go back and correct for the 6rst few values of e.

From parity considerations it is clear that the integral
in expression (29) vanishes when l is even. We therefore
need consider only the odd values of L in the correction
calculations. This implies immediately that we need not
consider I=1 for which L has only the value 0. The
correction term to be added to (33) is, therefore,

/kryo
0100(r)E 1(r)j11 —lr'«

(2&

X (4-~)
E1 F —(@ok2/4n3—) F—(Aoko/4n3)

wherein the integrals can be explicitly evaluated. The
summations in expressions (33) and (45) were evaluated
on a computer.

These computations yield a second-order energy shift
of —4.51 eV. Since the unperturbed energy is —6.802
eV, this places the energy of the positronium system at
—6.802—4.51=—11.31 eV.

Since this energy shift is quite large, it was decided to
obtain a check on the result by calculating an upper
bound to the energy. This was done by evaluating the
expected average of the Hamiltonian using the wave
function given by the perturbation theory. This per-
turbed ground-state wave function is given by

($0, loop +1/k, n 1m)

&=$0,100+ Q 4k, 1 (46)
kn t~ E, E„—(Aok2/42n)—

where the summation over e is terminated at m= 5. Using this wave function, we wish to calculate (Q,II/)/
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k, nlm

LE„+(h'&'/4~)g
~ (Po. ioo, Hi&~, -i ) I'

EE, E„—(Ii'k'/—4m) j'
The denominator reduces to

QpP). The numerator reduces to

I (Po ioo, Hig. , -t-) I

'
Q,W)=Ei+2 E

k, n lm A'k'-
E~ E

(47)

all six permutations. This function has the complete
symmetry of the potential.

The Fourier coefficients in the expansion of P are used
as the variable parameters in the variati. onal technique.

The Hamiltonian for the positron is

H = —(ao/2~) Vo+.V(R), (51)

where V(R) is the crystal potential obtained previously.
It can be easily seen that the inner product Q,Hp) is a
homogeneous quadratic function of the Fourier coeffi-
cients, i.e.,

Q,HP)/Q, P) = —13.43 eV. (49)

It is to be recalled that this is an upper bound to the
energy.

It can be shown that the error in the above result,
arising from the approximation procedure used in the
summations, is less than 0.01 eV. If, in (47) and (48) we

attempt to approximate by taking the discrete sum only
up to v=5, the result obtained for (P,HP)/(PpP) is
—7.044 ev. The large discrepancy between this and the
more accurate value obtained above indicates that there
is a substantial contribution to the wave function P
from the higher excited states of positronium. This, in
turn, implies (since the 1=0 states do not contribute)
that there is a signi6cant departure of the wave function
from spherical symmetry.

IV. GROUND-STATE ENERGY OF A POSITRON
IN THE CRYSTAL

We must now estimate the ground-state energy of a
positron in the simulated potential. An upper bound to
this energy is calculated by making use of the variational
principle. Since we are seeking the ground state, the
wave function must have all the symmetries of the
potential. A trial wave function P is expanded into a
Fourier series, where the basis functions have the form

( (Po, ioo, Hi4'~, t~) ('
Q,4) =1+ 2 (48)

fE E —(h'—k'/4m) $'

The first sum in Eq. (47) is the same as that in
expression (24). The other two sums in Eqs. (47) and
(48) are evaluated in much the same fashion. The result
of this calculation is

(AH4) =2 &'~~'~~, (52)

where C; is a Fourier coeKcient and a;, is a constant.
Similarly, the inner product Q,P) has the form

(W,4) =2 b''~'', (53)

where the coefficients b, ' are constants.
The variational procedure involves minimizing Q,HQ)

with respect to the variable parameters. In other words,
we wish to minimize Q,HP) subject to the condition
that (P,P)=1. By the introduction of a Lagrange
undetermined multiplier this problem reduces to 6nding
the smallest eigenvalue of the matrix whose (i,j)th
element is a,,/b, b, . A total of 15 Fourier coefficients were
chosen, the corresponding values of a,; and b; were
calculated, and the 15&15 matrix was diagonalized
with the aid of a computer. 4 The ground-state energy of
the positron was found to be +7.317 eV.

V. POSITRONIUM FORMATION IN THE CRYSTAL

We consider now the energetics of positronium forma-
tion following the usual type of argument. Let E„be the
ground-state energy of the bound positronium system in
the crystal, E+ the actual energy of the positron, and
Eo+ the energy of its ground state, —V; the energy of an
electron at the top of the valence band, and —U~ the
energy of an electron at the bottom of the conduction
band.

In order for it to be energetically possible for a
positron to capture an electron from the valence band
to form positronium, the positron energy must be large
enough to satisfy the inequality,

2X+1X
E(ei,eo,eo) cos

V,)E (54)

P(ny, n2, n3)

2&e2I' 2ze3Z
&& cos cos . (50)

In order for the positronium so formed to persist, energy
considerations should forbid the separation of the bound
system with the deposition of the electron at the bottom
of the conduction band. Thus we require

The X, F, Z coordinates are chosen along the funda-
mental lattice vectors, each of length a. The symbol
P (ei,lo,mo) represents a permutation of the three
integers e~, n2, and e3. The sum is carried out over

E,+—V,&E+—V, . (55)

4 The computation of the matrix elements and the diagonaliza-
tion of the matrix was performed by A. G. Heinicke at the Uni-
versity of Manitoba.
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E+—E,+& V,—V,-9 eV, (57)

the right-hand side being now the measure of the width
of the Ore gap. Thus, we have that a positron in the
crystal with an energy anywhere within a range of some
9 eV above the ground-state energy can, by capture of
an electron from the valence band, form a positronium-
like bound system, which will be energetically stable
against dissociation by deposition of the electron in the
conduction band.

VI. DISCUSSION AND CONCLUSIONS

A number of questions arising out of the preceding
treatment would seem to merit discussion at this point.
These comprise the use of perturbation theory, the
perhaps surprisingly low value for the upper bound to
the positronium energy, the mean life for electron-
positron annihilation from the bound state, and the
neglect of exchange in treating the electron and positron
of the bound system as being subject to the same
effective crystal 6eld.

Perturbation theory is used in the preceding treat-
ment to the extent that it provides a wave function with
which to calculate an upper bound to the positronium
energy. It is not suggested that this function gives a
particularly close approximation to the state of the
system. The use of a better function would, however,
result in a lower value of the upper bound, and this
would strengthen the energetics argument of Sec. V.

' A. J. Dekker, Solid Stute Physics (Prentice-Hall, Inc. , Engle-
wood Cliffs, New Jersey), pp. 371—373.

Values of V, and Vi for LiH are not available, but for
purposes of the present argument it will turn out that
rough estimates of these quantities are sufhcient. For
the alkali halides, V; ranges up to about 9 eV, and V~ has
been estimated of the order of 0.5 eV' or less. For use in

(54) and (55) we shall set V;=10 eV and Vi ——1 eV.
With the value of E~ obtained in Sec. III, (54) becomes

Z+ &~
—13.4+ 10= —3.4 eV. (56)

This is certainly satisfied even if we set E+ equal to the
value of Eo+= 7.3 eV obtained in Sec. IV.

It can, of course, be argued that the value used for
Eo+ is probably much too large, since in obtaining this
value the positron was considered as moving in a 6xed
potential, no regard being taken of polarization effects.
In the actual crystal the positron would be expected to
concentrate the electron cloud about itself, with a
resultant lowering of its energy. The amount by which
the energy would thus be lowered would, however, not
exceed the free positronium binding energy of 6.8 eV.
Making allowance for this, even if we set E+=Eo+=0 in

(55), the inequality is satisfied. Thus, the energy re-

quirement for positronium formation is satisfied for
positrons of energies down to the ground-state energy,
Eo ~

The inequality (55) can be rewritten

For the sake of completeness only, the above wave
function is used in Appendix A to estimate the mean
life of the positronium system, but obviously no great
weight can be attached to the numerical result obtained.

The result obtained in Sec. III for the upper bound to
the positronium energy might at 6rst appear to be
surprisingly low. It would be expected that the posi-
tronium in the crystal would suffer distortion such as to
increase its internal energy; and this is indeed the case.
However, positronium being an extended system, its
constituent electron and positron will not have the same
distribution in the crystal, with the result that the two
particles may on the average occupy (different) posi-
tions of low respective potential energy. It is in fact the
very distortion tending to raise the internal energy of
the system which enables the positronium to "6t" the
shape of the crystal 6eld so as to lower its potential
energy. An examination' of the expression (49) for the
positronium energy reveals a very slow convergence of
the series. This indicates the importance of the terms
involving large quantum numbers. These higher terms
do not greatly affect the internal energy, but through
providing high angular momentum components in the
wave function they give a distortion of the positronium
which results in a large downward shift of the potential
energy.

The use of the same form of crystal potential for both
particles of the positronium system implies neglect of
effects of exchange between the electron of the bound
system and electrons in Bloch states of the crystal. An
examination of this question, details of which are given
in Appendix 8, reveals that the exchange energy in the
interaction between the electron of the positronium and
an electron of the crystal is zero. This constitutes the
justification for the neglect of exchange and for the use
of the same form of crystal potential for the electron and
the positron of the bound system.

The present investigation indicates that positronium
formation is probably an important part of the process
of positron annihilation in lithium hydride. Pending
further investigation, one is tempted to speculate that
this might also be the case in other ionic crystals such as
other alkali hydrides and alkali halides. If positronium
is formed in such a crystal in the triplet state, the
subsequent two-photon annihilation of the positron
with an electron through a "pick-o6" process would be
expected to contribute to a 7.2 component of the positron
annihilation radiation. Such a v2 component has been
observed7 in a number of ionic crystals.

APPENDIX A: ANNIHILATION MEAN LIFE

For a calculation of the mean annihilation rate from
the singlet state of the positronium-like system with

Details of the calculation are given in R. I. Verrall, M.Sc.
thesis, University of Manitoba (unpublished).

A. Bisi, A. I"iorentini, and L. Zappa, Phys. Rev. 131, 1023
(1963}.
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state function f of Eq. (46), it is sufficient to calculate
for this state the density of the electron at the location
of the positron (averaged over all positions of the center
of mass) and compare this with the corresponding
density in the ground state of free positronium. The
ratio of the two densities will then be equal to the ratio
of the corresponding annihilation rates, that of free
positronium being known.

It will be recalled that the terms involving excited
states of positronium which occur in the expansion (46)
all have l &0, and these terms vanish for r =0. Thus, it is
only the ground-state term, Pp, ipo which contributes to
the electron density desired, and the contribution of
this term differs from that in free positronium only
through the fact that P is not normalized to unity. Thus
the electron density at the positron for positronium in
the crystal is to the corresponding density in the ground
state of free positronium in the ratio of 1/(PpP) = 1/1.16.
Thus, for the wave function f the mean life of singlet
positronium in the crystal is 1.16 times the mean life of
singlet, ground-state, free positronium.

r23
(60)

APPENDIX B: EXCHANGE EFFECTS

An examination will now be made of the nature of
possible exchange effects, hitherto neglected. For this
purpose we consider the system of positronium in the
crystal in interaction with an electron in a Bloch state.

I.et the wave function for positronium in the crystal
be of the form of a superposition of free positronium
functions similar to (46), i.e.,

g (1,2) =P A (k,elm)

X«pl~iK (ri+r2)]p. i (ri—r2), (5g)

where the subscripts 1 and 2 refer to the positron and
electron, respectively. For the electron in the Bloch
state we write the wave function (3). For the two
systems in interaction we take a symmetrized function

4= (1/v2) I f(1 2)x(3)+P (1 3)x(2)] ~ (59)

To examine the effect of exchange, we consider for
definiteness the Coulomb interaction between the two
electrons. Its average will be proportional to (4,(1/r23)%').
The direct term in this inner product is equal to

while the exchange term is

(1 2)x (3)4'(1 3)x(2) (1/"28)dr (61)

In order to compare these two expressions, we select a
typical term from the summation which results in each
from the substitution of the expansion (58).

Out of the expansion of (60) we take the term

I= expL7ri(K' —K) (ri+r2)]q „i„*(r&—r2)

By a coordinate transformation this can be rewritten

I= expt si(K' —K) r,](p„i„*(r,)y„ i.„.(r,)dri

X expt 2mi(K' —K) r2] dr2—
r2

~x(r3) (' expL2mi(K' —K) r3]dr8. (63)

Out of (61) we take the corresponding term

J= expLmi(K' (ri+ra) —K (r&+r,)}]q„&„*(r&—r&)

X q „.i „.(ri —r3)x(r3)x(r2)dr. (64)

We can, by omitting the exponentials in (64), write

Xx*(ra)x(r2) dr. (65)

Because of the nature of the positronium functions y
the integral (65) converges, in spite of x not being
quadratically integrable. By contrast, the third integral
in (63) diverges. Thus, a suitable box normalization to
ensure the convergence of the direct interaction term I
causes the exchange term J to vanish.


