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Fine Structure of Helium*f

CHARLES SCHWARTZ

Department of Physics, Unioersety of California, Berkeley, California
(Received 6 January 1964)

Under the expectation that experiments will soon give values for the 6ne structure intervals of the 2'I"
state of helium to an accuracy of 1/10', we have undertaken a program of calculations which, it is hoped,
will lead to a new determination of the 6ne-structure constant n. This paper gives a brief survey of the
over-all program, and a detailed report of the successful completion of the', 6rst task: The construction of
approximate solutions to the Schrodinger equation which lead to average values of the leading fine structure
operators accurate to about one part per million.

I. INTRODUCTION

HE early studies of the fine structure of the
helium atom by Breit' provided very important

confirmation of the newly developing theory of the
quantum interactions of electrons and the electro-
magnetic 6eld. Over the intervening years there have
been several efforts to increase the accuracy of this
analysis, chief by the construction of successively
more complicated approximations to the nonrelativistic
2-electron wave function. Breit, ' with a 2-term trial
function got values of the 6ne-structure intervals v

(see Fig. 1) accurate to several percent. Araki' and
co-workers with 8 terms came within about 1%, and
also considered two small corrections to the first-order
theory. Traub and Foley, ' with an 18-parameter
function reduced the error to about one part in 10';
and most recently Pekeris, Schiff, and Lifson, ' with up
to 220 terms in the trial function, came within one part
in 10' of the final results we have attained. (These
numbers refer to the larger interval vol. In the calcula-
tion of the small interval vl2 there is a cancellation
between separate terms amounting to a full order of
magnitude, and a corresponding loss of accuracy
results. )

While these studies have been chiefly aimed at check-
ing the theory, we here take another position: Assuming
the current theory of quantum electrodynamics, one
can combine the calculated and measured fine-structure
intervals of helium in order to determine the value of
the fine-structure constant n. At present, the best value
of n comes from the work of Dayhoff, Triebwasser, and
Lamb' on the fine structure (2P&t&—2Pet&) of hydrogen.

3=0 )(

FrG. 1. Energy levels
of the 1s2p'I' state of
helium.

vo& = 0.988 crn ' = 29 619 PAc

That value is uncertain to about one part in 10', due
essentially to the short lifetime of the 2p state, and it
has not appeared feasible to improve on those measure-
ments. However, the lifetime of the 'P state of helium is
about 2 orders of magnitude longer, and it is expected'
that these 6ne structure intervals can be measured to
an accuracy of one part in 10' or perhaps better. ~ It
then becomes necessary to calculate theoretical values
for the helium fine structure to 1/10', and this is the
task we here commence. It may be remarked that in
the case of the hydrogen fine structure the theoretical
formula' is very simple; this is not the case for helium.
However, we believe that those circumstances which
made the hydrogen problem simple, will have the effect
of reducing the helium calculation from "impossibly
dificult" to merely "dificult. "

We should add that there is at present a speci6c
need for a better value of o.. Analysis' of the hyperfine
structure of hydrogen reveals effects due to the electro-

*This work was supported in part by the U. S. Atomic Energy
Commission and the U. S. Air Force under Grant AF-AFOSR
130-63, and in part by the Advanced Research Projects Admin-
istration through the U. S. OKce of Naval Research.

$ A preliminary report of this work was presented at the 1963
Annual Meeting of the American Physical Society, Bull. Am.
Phys. Soc. 8, 20 (1963).

' G. Breit, Phys. Rev. 36, 383 (1930).References to other early
studies may be found in this reference.' G. Araki, M. Ohta, and K. Mano, Phys. Rev. 116, 651 (1959),
and several earlier papers referred to therein.' J. Traub and H. M. Foley, Phys. Rev. 116, 914 (1959).

4 C. L. Pekeris, B. Schi8, and H. Lifson, Phys. Rev. 126, 1057
(1962).' E. S. Dayhoff, S. Triebwasser, and W. E. Lamb, Phys. Rev.
89, 106 (1953).
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e V. W. Hughes (private communication).
r For the best measurements to date (accurate to about 0.5/104),

see J.Lifsitz and R. H. Sands, Bull. Am. Phys. Soc. 6, 424 (1961),
and earlier references given therein.

See, for example, H. A. Bethe and E. E. Salpeter, QNuntgm
Mechanics of One and Two Ele-ctron Atoms (Acad-emic Press Inc. ,
New York, 1957), p. 105.

C. K. Iddings and P. M. Platzman, Phys. Rev. 115, 919
(1959); also see D. E. Zwanziger, Bull. Am. Phys. Soc. 6, 514
1961).
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magnetic structure of the proton, but a clear interpreta-
tion of those results is spoiled by the present uncertainty
in the value of n.

II. PLAN OF THE CALCULATIONS

We will now outline the several parts of the task of
calculating the fine structure intervals in helium to an
accuracy of about one part in 10'. The zeroth-order
problem is the nonrelativistic two-electron Hamiltonian
in a fixed Coulomb field:

terms at these higher orders are spin-independent, and
thus, while affecting the absolute energy level, do not
contribute to the fine structure.

As an example, consider the effect on the fine structure
of some deviation from pure Coulomb potentials
occurring at some small distance R. The integrals which
occur are of the general form of the familiar ((1/r)
X(BV/Br))-(1/r'), and are taken over radial wave
functions for l&0 orbitals. Thus the relative correction
would appear to be of the order

p
2

p
2 Zes Zes e2

&o= + — — +-
2m 2m ry r2 ry2

r'drr" ' r'drr" '= (R/a)" ~ (R/a)'

The next terms in a nonrelativistic expansion are the
well-known" fine-structure terms which we shall denote
as n'Hs.

t Our reference for energy is e'/ao=cPmcs, and
we shall not note factors of Z (=2) as being pertinent
to the classification of the expansion terms. ] We thus
expect an energy level formula something like

Ez Eo =o('(K)2+—c/ (+4)J+ If2

Ep —Hp

+(terms of order c(o and smaller

which we shall ignore), (2)

where H4 is some higher order operator which has not
yet been worked out.

There are still many terms not represented in this
formula (2). The most apparent is the correction for the
anomalous magnetic moment of the electron, of order
n'. This is quite simple and has already been included

by some authors. '4 The reduced mass must be put in

properly, and there is also the operator p& p&/M
correcting for the motion of the nucleus; this is itself
spin-independent but will contribute in a second-order
calculation mixed with H2. There are then very many
diagrams one could write down describing radiative
corrections of many higher orders.

The most extensive work on the fine structure and
Lamb shift in hydrogen has produced terms up to, but
not including, the order a'mc', " which is just to the
same order that we now need. But the two-electron
atom seems so much more complicated than the one-
electron atom that our project might appear too dificult
to attempt. A thorough relativistic theory of the two-
electron atom has thus far been analyzed" only as far
as the leading Lamb-shift terms, nome'X (inn+const),
and our goal is well beyond this. What encourages us
to proceed is the expectation that most of the dificult

' See Ref. 8, p. 181.
"A. J. Layzer, J. Math. Phys. 2, 308 (1961), has calculated

terms of order mc'cP ln'n and mc'n7 Inn. Only the latter contributes
to the ine structure, and we hope it will not be dificult to include
the term of this order in our problem.

"J.Sucher, Phys. Rev. 109, 1010 (1958).

Thus the effect of finite nuclear size would seem to be
completely negligible, and the effect of vacuum polar-
ization would appear to be of order n(n)'=n' on the
fine structure intervals, again negligible.

The entire project may be divided into three rather
well-separated parts. First, is the task of constructing a
sufficiently accurate eigenfunction of Ho so that the
leading term in Eq. (2) can be determined to about
1/10'; this is mostly a computer problem. Secon.d, is the
task of carrying out a proper relativistic analysis and
determining the operator H4 and whatever else may
appear to the required order; this will be a matter need-
ing both formal technique and enlightened short-
cutting. The third job will be the evaluation of these
smaller corrections to the fine structure, and this will

require a combination of modest computer effort and
much algebraic detail.

The rest of this paper is concerned with the first of
these tasks.

III. THE SCHRODINGER WAVE FUNCTION:
FIRST ATTEMPT

We wish to construct a good approximation to the
lowest 'I' eigenfunction of the equation

Iloy=Eof.

This will be done by setting up a sequence of trial
functions P, using the variational principle

and seeing how results of interest converge as we make
the trial functions larger and larger.

We started with the functions

1—Pqs) )+m+I &u

« .r)ri"rs ru'
4~&2) /, ; o

Xe—(a~/2) ri& (z/2) rs (5)—
where 8~2 exchanges coordinated r~ and r2, and the P-
state character is represented by the vector sign. The
unit of length is ao=h'/me'; and the scale parameters /(

and 0- were taken, by extrapolation from the results of
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TABLE I. Result of variational calculations of 2 'P with the
standard Hylleraas basis (5).

Number
co of terms

Energy—E(e'/e0) c(g'n' Ry) D(k~' Ry)

2.132678402
2.133085039
2.133140222
2.133157595
2.133162268
2.133163594
2.1331639812
2.1331641067
2.1331641530

2 10
3 20
4 35
5 56
6 84
7 120
8 165
9 220

10 286

Final result
from Table II 2.1331641908

—0.07065132
—0.06829756
—0.06771029
—0.06745614
—0.06733560
—0.06728399
—0.06726722
—0.06726320
—0.06726453

—0.05404532
—0.05379667
—0.05394716
—0.05400336
—0.05402833
—0.05403823
—0.05404284
—0.05404503
—0.05404627

—0.06727529 —0.05404839

Some of the details of the construction of the matrix
elements and the numerical methods used will be found
in the Appendix. We give in Table I the resulting
eigenvalues for the series of trial functions of degree
~=2, 3, -, 10. This was done with 16-decimal
arithmetic on an IBM-704 and consumed a total of
some 20 h of machine time.

This work very closely parallels that of Pekeris,
SchiG, and Lifson, diBering only in the specification of
the exponential parameters, ~ and 0-. This makes a
non-negligible difference: At 220 terms our eigenvalue
is an order of magnitude better converged than theirs. '4

Our chief interest anyway is not the energy eigen-
value, but the eigenvector, or more properly the average
values of the two spin-dependent parts of H2. These
are the well-known" spin-orbit terms

/e& ' +o, o— /rxp, r, xAp
H(s.o.) =

(
~ ~i +

(2mc 2 E rrs rs'

3(rr —rs) X (pr —ps)
(7a)

and the spin-spin term

( eA&'1 3er ' russo's ' rrs'l
H(s. s.) =i

i er es—- (7b)
(2mct rrs'

Traub and Foley, ' to be 4.62 and 0.29," respectively,
and were not varied. The variation of the linear
parameters C~ „ leaves us then with the numerical
problem of finding the eigenvalue and eigenvector of a
symmetric matrix of degree

X(re) = sr(&e+1) (a)+2) (a&+3) .

LWe have dropped here a term in H(s.o.) which has
only off-diagonal matrix elements. ) The first-order fine-
structure levels are customarily given in terms of two
constants C (from s.o.) and D (from s.s.):

(H&)J s ——const —2C—(10/3)D,

(Hs)q r ——const —C+ (5/3)D,

(Hs)~ s
——const+C —(1/3)D.

LThese values will subsequently be given in units of
(egi/2mc)'as '= (a'/4) (e'/as) = 'rrs -Ryf. These results
are also shown in Table I.The accuracy of our C and D
values here is hardly better than that of Pekeris et al.4

(about 1/10 ) and far short of the desired 1/10s. At the
time when these results were obtained we attempted to
extrapolate the apparent rate of convergence of the
output numbers, and thus estimated that something
approaching 2000 terms of the series (5) would be
needed to obtain the required accuracy in C and D. It
seemed that, at best, this would be an extremely
expensive venture; and we thus decided that this
attack had failed.

Two possible paths were then considered. Ke might
start with the wave functions already constructed, and,
by use of auxiliary variational calculations of modest
size, attempt to increase the accuracy of the C and D
integrals to something approaching that which is
obtained directly for the energy eigenvalue. "However,
it appeared that, due to the rather singular nature of
the operators II2, the auxiliary functions needed for
this method would be of a complicated analytical
nature; and so we did not make a serious attempt in
this direction.

Alternatively, we could seek a better set of basis
functions for the calculation of P. The most likely cause
for the slow convergence noted above appeared to be
the weak logarithmic singularity in the two-electron
wave function studied by Pock."'~ It appeared, how-
ever, that putting into lt the explicit logarithm term
given by Fock would be a very messy job. Furthermore,
it was felt that the reward wouM be rather slight if only
the first term were accounted for; and the higher terms
of Pock's expansion appear to be complicated beyond
our ability to manage. We then sought, in a much more
ad hoc manner to introduce just any covenient terms
which would add flexibility to lt especially in the region
(rr ~ 0 and r& ~ 0). We thus chose to try the addition
of the simple factor (rr+rs)'I' to the series (5)."The
efficacy of this extension of the basis functions was first
tested on the relatively simple calculation of the

"The precise values of ~ and 0 used were about 10 ' smaller
than the Ggures given here, due to the decimal-to-binary conver-
sion operation of the machine."For a discussion of relative convergence rates, see the article
by C. Schwartz in methods in Compgtutionul Physics (Academic
Press Inc. , New York, 1963), Vol. 2, p. 241.

"The method referred to is that described by C. Schwartz,
Ann. Phys. (N.Y.) 6, 170 (1959).

"V.A. Fock, Izv. Akad. Nauk SSSR Ser. Fiz. 18, 161 (1954).
' See also the discussion and analysis in Ref. 14, p. 256.
' Half powers were earlier introduced into the Hylleraas

expansion by H. M. Schwartz, Phys. Rev. 120, 483 (1960).
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TABLE II. Results of variational calculations of 2 'P
with the extended basis (9).

TABLE III. Extrapolation of the calculated interval ~12
(in units of —,'n' Ry).

Number
co Of termS —B(e2/a0) Cg

In units of -'0.2 Ry
Ce Number

of terms
Calculated

2D—2C
Successive
differences

Ratios of
successive
differences

1 7
2 19
3 39
4 69
5 111
6 16?
7 239
8 329
9 439

2.132580318470
2.133100285189
2.133155369966
2.133162942721
2.133164012406
2.133164164417
2.133164186301
2.133164189955
2.133164190626

0.127974449
0.136827714
0.138223897
0.138649978
0.138640520
0.138638567
0.138635834
0.138636386
0.138636755

—0.198448086
—0.203765520
—0.205167872
—0.205 707289
—0.205858266
—0.205898542
—0.205908639
—0.205911292
—0.205911984

—0.053285232
—0.053888850
—0.053987664
—0.054026808
—0.054041649
—0.054046487
—0.054047869
—0.054048248
—0.054048351

Extrap- 2.13316419080
olation ~5

C =Cz+Cs~ —0.067275287
~19

—0.054048390
&13

helium ground state (1'5), and those very successful
results have already been presented. "

The calculations reported in this section are not a
total loss, since we can expect to use these medium-
accuracy wave functions for the later calculation of the
small correction terms schematically represented in
Eq. (2).

19

39

167

239

329

439

0.0343768105

0.0260979112

0.0259126200

0.0260610066

0.0263521949

0.0264269761

0.0264498718

0.0264533164

0.0264537543

—0.008279

—0.00018529

0.0001483866

0.0002911883

0.0000747812

0.0000228957

0.0000034446

0,0000004379

Projected increment =0.000000064
~21

Extrapolation =0.026453818
+21

0.022

—0.800

1.962

0.257

0.306

0.151

0.127

IV. THE WAVE FUNCTION: SECOND ATTEMPT

The expanded basis now looks like the expression (5)
with the replacement

Cl ~ Ct +at (rl+&2) (9)

and the single term Dppp is omitted. The scale parameter
0. was left fixed as before at 0.29," but after a short
search we changed the value of a to 4.0 (exactly). The
matrix elements of Hp and H2 are more complicated
with the half-power terms, but once we had learned
to evaluate the integrals C and D even with the old
basis, the new techniques were not very dificult (see
Appendix). The results converged much more rapidly,
than before, but it was found, as might be expected
that as one approached more closely to the exact 6tting
of the function numerical accuracy became more and
more critical at an alarming rate. We found it necessary
to construct special programs to do all our arithmetic
to an accuracy of 30, and then 52 decimals; the resulting
cost in machine time was very great. The total labor
took some 30 h on an IBM-7090.

In Table II are presented our results with the half-
power functions up to the ninth order. We show here
separately the contributions from the two parts of Pa):

C= Cz+C, .

V. RESULTS

From the numbers in Table II we now must give our
best values for the fine-structure intervals along with an
estimate of their probable uncertainty. This we do by
attempting to extrapolate the results shown to co —+ ~;
the smoothness of the sequence of computed numbers

"C.Schwartz, Phys. Rev. 128, 1146 (1962).

will be used to indicate the reliability we may place
on this extrapolation.

Table III shows the details of such an extrapolation
for the small interval

t » ——-',n' Ry (2D—2C).

(It does make a helpful difference on the final error
estimates that we extrapolate the combined integrals,
rather than combine the extrapolated integrals. ) The
table shows values, differences, and ratios of successive
differences; attempts to extrapolate must be based on
the behavior of these ratios, especially at the bottom
of the sequence. It is clear from Table III that these
ratios cannot be very well described in any simple
analytical terms; but it is to our advantage that they
are very small. "Af ter some playing with these numbers,
attempting various analytical and graphical 6ts, it was
decided that a reasonable procedure would be simply
to extrapolate from the last step as if we had a geometric
series, and assign as our uncertainty 3 of the added
increment. That is, if 6 is the last di6erence recorded
and R' is the last ratio, our final answer is gotten by
adding to the last computed value the quantity

R'

, l(1~-:). (12)
1—Z'&

"By way of contrast one may note that the corresponding
ratios in the work oi Pekeris et ul (Ref. 4) are much. smoother,
but also quite a bit larger. One may also notice that while their
value for pop calculated with 220 terms is 0.011% larger than our
6nal result, their extrapolated value is 0.009% too small. Their
extrapolation here was thus in error by about 45%. (For v» their
extrapolation erred by only about 16%) We point these numbers
out intending not to chasten others, but to emphasize the need
for a critical attitude toward any attempts at numericaj. extrapola-
tion, and in particular our own.
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We thus arrive at the following results for the intervals
of the 2'P state of helium, bare of any higher order
corrections whatsoever.

vol
——-', n' Ry/0. 33751721(7)]

Z'=0.210

v» = -,'n' kyL0. 02645382 (2)]
R'=0.127

(13a)

(13b)

voo = on' RyL0.36397101(9)]
R' =0.172.

(13c)

The number in the inner parenthesis gives the un-
certainty in the last 6gure quoted, arrived at according
to (12). If our extrapolations are accepted, then we
have achieved the desired goal of 1/10' accuracy. If it
becomes necessary, @re could, without too much expense,
carry the numerical work one order further and thus
increase the certainty of these numbers by about a
factor of 5; but at present we feel this part of the
program can rest, and wait for the experimental work
and the analysis of higher-order corrections to catch up.

VI. CONCLUSION

The 6rst major goal of the plan outlined in Sec. II
has now apparently been achieved, and this encourages
us to proceed with the other parts of the over-all
program for the redetermination of 0.. There are two
rather apparent cautions which we wish to-make. First,
regarding the extrapolation and error estimation, we
have tried to be both clever and objective in our
analysis, but each reader will have to And his own
measure of skepticism regarding the precise accuracy
of our results. Secondly, while we have endeavored to
check and recheck all our algebra and computer
programs, the considerable complexity of the work
reported here must leave open the possibility of some
undiscovered error of importance. To this point we
report the following experience.

Six months after we had completed the last of our
computations, there was discovered an error in our
computer program for multiple precision division. It
turned out that the last ten decimals were sometimes
treated incorrectly; but some conditions under which
this error would not arise could also be precisely
identified. A detailed scrutiny of all our programs then
revealed the astonishing fact that this mistake did not
have any effect at all on any of the matrix element
computations. The error could work on]y in the process
of solving for the eigenvectors of the matrices; but our
method was, at the end, an iterative process, so that
we suffered only a slower convergence (paid more
dollars) as a result of the mistake, and all our Anal
answers were unaffected.

We hope that someone, working independently of us,
will repeat and check all this work; this is the best

insurance we can imagine for the reliability of these
important results.

One can ask for a comparison of the present best
experimental and theoretical values for the 6ne-struc-
ture intervals. Adding to our results (13) the simple
correction for the anomalous magnetic moment of the
electron' (the only correction of relative order n) and
using the value of the Rydberg for helium,

we get

o.' Ry=2.921374 cm ',

vog=0. 987837 cm ',
v~~

——0.0765302 cm ',
v02

——1.064367 cm '.

(14)

(15)
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APPENDIX: NUMERICAL METHODS

The many matrix elements of the operators Ho and
H2 in the basis used were evaluated in terms of pre-
tabulated integrals of the following general type:

i+ )I+ ~V+&"I I gp
Az(L, M,X)=

20 4m 4m

Xrg' ye+ vn ' fx(ry y'o), (A1)

Bg(L,M,N) = same as (A1) but with a factor

cose~o under the integral. (A2)

These may be compared with the experimental values

vox=098791(4) cm ~,

v~o=0.076423(3) cm—',
voo

——1.06434(3) cm '.
[Pote added ill, Proof. The numbers quoted here have
been corrected, relative to those published (Ref. 7),
according to private communication from Dr. R. H.
Sands. See also F. M. J. Pichanick, R. D. Swift, ancl
V. W. Hughes, Bull. Am. Phys. Soc. 9, 90 (1964).]
The differences are about 0.0001 cm ', which is roughly
what one would expect due to the neglected terms of
relative order o.'. Araki' has considered one such higher-
order term, the mixing with the nearby 2'P state;
Perkeris et al.' give for this effect a resulting downward
shift of 0.000158 cm ' to the /= 1 level. The addition
of this correction appears to do little more than change
the signs of the discrepancies for the 0—1 and 1—2 in-
tervals; and this indicated that all the higher order
terms of Eq. (2) will have to be treated together.
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L, M, N are integers greater than zero; a(0(a(1) is a
general parameter which is put=0. 29 for the direct i1+aiM+N+(//2)
integrals and=1 for the exchange integrals; and f/, G(M, N)=l
is a homogeneous function of degree —',A. in the two & 2a) 0

lengths r1 and r2.

By use of the following identity referring to in- X
tegration over the angle 012 (signified by the angular
brackets)

dr~—r/orM —1

dse 'sN 'f/, (s,r)

2 r12
(s)n ~12r12 ) COS012

(L+2) r)r2
(A3)

one can easily establish the following recursion formulas:

Our general method for building tables of integrals is
by the use of such recursion formulas; but one must
be careful that the particular recursive scheme chosen
does not build by taking differences of nearly equal
numbers (most obvious recursion schemes do suffer
from this serious drawback. ) For the above integrals-
for large values of L, M, S in particular —the main
contribution comes from large values of r12, thus cos012
is mostly negative, the integrals A and 8 have opposite
signs, and the recursion schemes (A4) are safe.

In order to start the recursion sequence we need to
evaluate A and 8 for L= 1 and 2. The angular integrals
are simple and we can express the results in terms of two
families of two-dimensional integrals. (The subscript A

is understood in what follows. )

B(2,M, N) =0,
A (2,M, N) =F (M+1, 1V+1)+G(N+1, M+ 1),
B(1,M, N) = ',F(M+2, N —1)-+-',G(N+2, M—1), (AS)

A (1,M, N) =F(M+1, N)+G(N+1, M),

where

A (L,M,N) =A (L—2, M+2, N)+A (L—2, M, N+2)
—2B(I—2, M+1, N+1),

B(L M, lV) = [(L—2)/(L+2) j[B(L—2, M+2, 1V)

+B(L 2, M, 1V+2—)
—2A (L—2, M+1, N+1)). (A4)

(1+a) M+N+ (1(/2)

1'I M+N+-
2a 2J

2/(1+a)
F(M,N) = [aF(M+1, N)+F(M, 1V+1)j

(M+N+-2'A)
(A7)

2/(1+a)
G(M, 1V) = [G(M+1, N)+aG(M, 1V+1)j.

(M+N+-2'A)

These recursions start from the values of F and G along
the line M+1V=constant (about 30 in our work).
We have found the following devious, but numerically
safe, procedure for these evaluations. After Eq. (A6)
make the change of variables

(A8)

implying

f~(~~1) = (1+u) '""f~(1—ut 1+u) ~

f/, (1,2() = (1+u) (~/') f&(1+u, 1—u);
(A8)

then expand the resulting denominator of F in an
ininite power series in

[-'(1-a)(1-u)j,

I gM—1f (1 g)
X d~

[1+(g/a) jM+N+
(/1/2)

We shall again tabulate these two dimensional arrays,
F and G, by recursion; but all the obvious formulas we
have looked at (proceeding from small to large values
of M and 1V) are badly behaved regarding loss of
accuracy from subtractions. We thus use the backward
iteration formulas

F(M N) [(\+a)/2a jM+N+(A/2) d'r~ —rrM —1

and the denominator of G in terms of ([(1—a)/(1+a) j
Xu). Also make the binomial expansion of the resulting
numerator factor (1+u)N ' according to the separation

(1+u) =2u+ (1—u) .
dse "s" 'f/. (r,s)

The resulting expressions are

1+a M+N+(/ /2) A.

Fl M+1V+—
20 2

2:M—'f~(2: 1)
X d* ', (A6)

[(1/a)+2( jM+N+(d/2)

F (M,1V)

G(M, N)

(N —1)!2s '(M+1V—I—1)!

(N I) (2M+N+(6/2) 1—
Fs(M+N)x, (A9)
Cs(M+N)
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where

(1—0)"
F (E)= El(1+ )3 +'""2 I.=0 4 2 J

(E+-',A —1+k)!
X Fg'(k, E),

k!(J—1)!(E—1—J)!
(A10)

1—~ ' (E+-,'A —1+k)!
G~(E)= Z Gg'(k, E),

1+0 k!(J—1)!(E—1—J)!

X= (x,Hx)/(x, Sx) . (A15)

In this work we always have a very good guess for )
to start with, and the alternating iteration (A14),
(A15) is very rapidly convergent. Most of the time

goes into solving (A14); the process of solving

simultaneous linear equations

once ) is known; but we can get a stationary estimation

for ), once an approximate vector x is known, from the

Rayleigh quotient,

Ax=b (A16)

Fg'(k, E)= duf~(1 u1+—u)u' '(1 u)x '—'+'

(A11)

6z'(k, E)= duff(1+u, 1 u)u—~ '+"—(1 u)x—

fq(ri, r~) = ln (ri+r2) (A12)

in Eq. (A6); but this reduces to 2~1' lnu in Eq. (A11),
and these final integrals are again easy.

The infinite sums in Eq. (A10) are rapidly converging
for our values of ~; and the entire procedure worked
very well.

Matrices of dimension 440 in sextuple precision
require over half a million words of machine storage
space (an order of magnitude more than what is
available in the core) and so we made extensive use of
magnetic tapes. The most time-consuming operation
was the matrix inversion carried out at the start of the
eigenvector calculation. For the largest, dimension

438, this took 10 h of 7090 time —equivalent to about
one billion simple 8-6gure multiplications on this
machine.

We will now describe the method used for finding the
eigenvector. Given two symmetric matrices II and S
(1V)0) of order u, we separate the problem

n

Q (H,;—X)V,;)x,=0, i=1, 2, , u (A13)

as follows: Set x~= 1, and solve for x; from

P (H ;; XX;;)x,= —(H'., i —. X—W, i), i=2, 3,n (A14)
/=2

For most of the integrals of interest the function

fq(ri, r~) is (ri+r2) I' (A=0, &1, or 2); and so in the
final expressions (A11) the function fq is merely a con-
stant and these integrals are trivial. However in treating
H2 we also run into the spectral case of Eq. (A3) for
I = —2, and this leaves us with

by the direct method of elimination takes 6m' operations
(for a symmetric matrix A ). On the other hand, iterative
attacks on the solution of (A16) require only of the

order of e2 operations per cycle, but many iteration
schemes do not converge at all well. The general
criterion is that one have some "good" approximation
to the inverse of the matrix A; then

x('+'& =x('i+A (b Ax'")— (A17)

~' After completion of this work the following, possibly more
eScient, method occurred to us. The new terms one is adding to
the basis at each step in the sequence of variational calculations
must be numerically of decreasing importance (if the entire
process is converging at all well). Then it may be sufFicient to get
(3) by carrying out the direct calculation on only a small
submatrix representing the dominant terms, and simply using the
diagonal elements for the higher parts of the matrix.

where A approximates A ', can be expected to con-

verge "rapidly. " For our problem the matrix to be
inverted (A14) changes only very slightly, as our value

of ) is improved, so that it is necessary to calculate

only once an inverse matrix (by the direct method" ),
and then we use this as the kernel of the iterations

(A17), until both eigenvalue and eigenvector are

converged.
This process works well, but as one goes to larger and

larger matrices, loss of numerical accuracy becomes a
serious problem at a rate much beyond any that could
be attributed to statistical phenomena. Obviously, the
full matrix (H X1V) in Eq. (—A13) is singular —for the
correct X—but one would think that the remnant
matrix in Eq. (A14) is far from singular since the most
important element of the basis has been removed. In
actuality, however, the removal of a single trial function
does not prevent the convergence of the variational
sequence, it may merely slow it. Thus, as we go to larger
and larger bases, the matrix in Eq. (A14) does come
closer and closer to being singular, and at a painfully
fast rate. We handled this problem by the brute force
method of using higher precision arithmetic, but the
cost was quite great. (It may be that the problem would

not have been quite as bad as it did appear to us, had
we caught earlier the error mentioned in Sec. VI.)


