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-~'= Eh„(0,0)]"'[3c,,(0,0)j'I'
64 ~'K4T4

= &~y(0,0) =3c,y(0,0) =
45 (hc)'

It follows from (5.13), (5.14), and (5.11) that o and
a may be represented in series form as follows:

From (5.15) we obtain in the special case r=0

5.14
(spotiol coheretsce between the electric and magnetic
fields), for typical nondiagonal elements of o and o.,

180
o.„(r,o) = —e„„(r,o) = i s P — . (5.16)

+~4 n=l ~' r' 0,»
i80+4

SQ+1CT

-(r )=-;-(r, )= The diagonal elements are, of course, identically zero,
since 0 is antisymmetric.

00 We see from (5.16) that in the plane s=O (xy plane)
o,„(r,0) is identically zero. In Fig. 8 the contours of
~o,„(r,0)

~
in the yz plane are presented and in Fig. 9

Here the constant n is given by (2.3) as before. the variation of
~

o.,„(r,O)
~

along the s axis is shown.
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Expressions are derived for the electromagnetic correlation tensors of blackbody radiation defined on the
basis of the theory of the quantized field. Correlation functions of all order are considered, but second-order
ones are discussed in detail; it is found that these are identical with those obtained on the basis of semi-
classical theory in part I of this investigation. This result illustrates a recent theorem of K.C.G. Sudarshan
relating to the equivalence between semiclassical and quantum mechanical description of statistical light
beams.

1. INTRODUCTION
' "N part I of this investigation, ' expressions were
- - derived for the complex second-order electromag-
netic correlation tensors of blackbody radiation and
their behavior was discussed in detail and illustrated
by a number of diagrams. The statistical methods used
were based entirely on classical concepts, though
quantum mechanical features of the radiation were
implicit in that treatment, since the spectrum of the
radiation was taken to be given by Planck's law.

In the present paper the second-order correlation
tensors introduced recently by Glauber' on the basis of
the theory of the quantized field, are evaluated for
blackbody radiation and are shown to be identical with
those defined and evaluated on the basis of the semi-
classical theory. This result illustrates a recent theorem
of Sudarshan, ' relating to the equivalence between

semiclassical4 ' and quantum mechanical description of
statistical light beams.

In Sec. 4 higher-order correlation tensors of black-
body radiation are briefly discussed.

2. THE SECOND-ORDER CORRELATION TENSORS OF
THE QUANTIZED FIELD

It will be useful to begin with some results which will
be needed later, relating to quantization of the electro-
magnetic field and the definition of the correlation
tensors of the quantized field.

The electric-field operator, at the space-time point
x=—(r,ot), when expanded in a Fourier series is given
by' (with i= x, y, s)

A, (x) =E,&+& (x)+A, t-& (x),

'The term "semiclassical" implies here that the distribution
functions characterizing statistical properties of the beam are
not necessarily non-negative and may therefore not be true
probabilities. They are essentially Wigner distribution functions
(see Refs. 5 and 6), called also "quasiprobabilities. " However, in
the present case (blackbody radiation} the distribution function
turns out to be positive. LSee Kq. (3.1).g

5 E. P. Wigner, Phys. Rev. 40, 749 (1932).
6 (a) J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

(b) G. A. Baker, Jr., Phys. Rev. j.09, 2198 (1958). (c) C. L.
Mehta, J. Math. Phys. 5, 677 (1964).' All operators are denoted by circumQex.

~ This research was supported by the U. S. Air Force Ofhce of
Scientific Research.

' C. L. Mehta and E. Wolf, Phys. Rev. 134A, 1143 (1964),
preceding paper.' R. J. Glauber, (a) Electronique Quantique, 3eme Conference,
edited by N. Bloembergen and P. Grivet (Dunod Cie, Paris, 1964},
p. 111; (b) Phys. Rev. 130, 2529 (1963); (c) ibid 131, 2766.
(1963).' E. C. G. Sudarshan, (a) Phys. Rev. Letters 10, 277 (1963).
(b) in Proceedings of the Symposium on Optical lasers (Poly-
technique Press, Brooklyn, New York and John Wiley 8t Sons,
Inc., New York, 1963), p. 45.
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where

(2rrfic) " 2

8;~+&(x)=iI I P(k)' {P s,'"&a&(k)e'"*) (2.2)

(27rhc) '"
~;-(x)=Ã;. (x)»=-'I

I
Z(»~

EV~

X{P e;&"&dg&(k)e
—'"*). (2.3)

Here V represents the volume to which the field is
confined and d&, (k) and d&,t(k) are the annihilation and
creation operators, respectively, for a photon of
momentum hk and polarization X; they satisfy the
commutation relations

LA(k),4 t(k') j=»v&.~, (2.4)

~x=k r kct. — (2.6)

In writing down Eqs. (2.2) and (2.3), the modified
Lorentz condition was used in the form introduced by
Gupta and Sleuler, ' employing an indefinite metric:
Allowable states

I P) are only those for which

tz & OX'
(2.7)

where A &+' is the positive frequency part of the potential
of the field. This condition justifies our restriction to
transverse photons ()I,= 1,2) as long as only expectation
values of products of field operators are considered.

The magnetic-field operator may be similarly written
in the form

I d&, (k), fi&,.(k') j=I tt& t(k)A. &(k') j=0. (2.5)

e"& and e"~ are two unit vectors, such that a&" a&'&

and k/k (with k =
I
k I) form a right-handed orthogonal

triad and ~x represents the usual four-vector product

'X,;(xr,xs) =Tr{PB;&—
& (xr)8;&+& (xs)},

'g,;(xr,xs) =Tr {p8;l—& (xr)8;&+&(xs)),

(2.12)

(2.13)

g,;(xr,xs) = 'g;;*(x,,x,)
=Tr{p8;& & (xr)A;&+& (xs)) . (2.14)

To evaluate the correlation tensors 'h, 'X, 'g, and 'g
for blackbody radiation, it will be useful first of all to
express the density operator p in a representation in
which the base vectors are the eigenvectors

I {z))of the
annihilation operator dq (k):

d&, (k)I {z})=z&, (k)I {z)). (2.13)

Here {z) denotes the set of z~(k) for all Vs and k's,
so that

I {z))=III "(k)). (2.16)

Since the operator d&, (k) is not Hermitian, its eigen-
values z&, (k) are in general complex,

z&(k) =x&(k)+iy&(k),

(x&, (k), y&, (k) real) and the eigenvectors belonging to
different eigenvalues are not orthogonal. However, they
obey a closure relation (cf. Ref. 9).

(2.17)

g I
z&, (k))(z&, (k) I

d'z&, (k) =1,
X,k

(2.18)

order correlation tensor of the electric field, introduced
by Glauber'~ b may defined as

'8;;(xr,xs) =Tr{pP„& &(xr)8;&+&(x,)}, (2.11)

where the indices i, j specify Cartesian components of
the tensor (i, j=x, y, z) and the prime on h is used to
distinguish this tensor from the corresponding one
defined in paper I in classical terms. In a similar way,
one may define the second-order magnetic and mixed-
correlation tensors

where
8,(x) =B,l+&(*)+8,&-&(*),

A.

(2.8) where I is the identity operator if, as we shall assume,
they are normalized so that

(2~bc) 'n
8,&+&(x) =iI —

I P(»'
l, V&

(k x s'"&);
x u, (k)e' * (2 9)

(2z lgc) &~s

kV~
(k x e'"&);

x tt&, t(k)e-'"* (2.10)

If p is the density operator of the field, the second-

8 See, for example, S. S. Schweber, An Introduction to QNantlns
Field Theory (Harper @ Row, New York, 19|IIi), p. 242.

(z&(k) I z&(k)) =1.
The eigenstate Izq(k)) has the following expansion

in the number representation':

0|& {z~(k)) ~x(&&

I
z&, (k))= P exp( —-',

I
z&, (k) I') I»(k)),

&g &=o L»(k)!j'"
(2.20)

where the I»(k)) form an orthonormal set of eigen-
vectors of the number operator a&,t(k)4&, (k):

A, t(k)a(k) I»(k))=»(k) I»(k)) (2 21)

The eigenvectors of the annihilation operator have
been found very useful in the analysis of problems

' J. R. Klander, Ann. Phys. (N. Y.) 11, 123 (1960).
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relating to the statistical behavior of radiation. ' ' "
An important property of these eigenvectors is expressed
by a theorem established recently by Sudarshan' which
we shall employ. According to this theorem, any
operator and in particular the density operator p may be
expressed in the "diagonal" form

(3.1)

that the "phase-space" distribution function g({s))for
blackbody radiation is given by

1 Isk(k)l'
y({s))=II exp—

&({ )) I{ ))({ ) ld'( ).
where Rk

—=nk, k /=1, 2) is the average number of
photons with momentum k and polarization ),

(2.22)
8k ——1/(e "—1), (3 2)

Using this representation of the density operator, it then
follows from (2.2), (2.3), (2.11), (2.22) and (2.15) and
its Hermitian adjoint that the second-order correlation
tensor of the electric field may be expressed in the form

'8;;(xg,x2)

4 ({ ))({)I~" '(* )6"'(*)I{ ))d'( }

with
n=Ac/ET. (3.3)

That the "phase-space" distribution g({s})given by
(3.1) does indeed lead to the well-known expression for
the density operator p of a radiation Geld in thermal
equilibrium at temperature T is verified directly in
the Appendix to the present paper (see also MandeP').

If we substitute from (3.1) into (2.24), and also use
the relation

=Q g e;&"'(k)e,'"'&(k')4 kk( k, k'; x',x2),
)',k X',k'

(2.23) 1
sk. *(k')sk" (k")II exp( —Isk(k) I'/mk)d'sk(k)

where

4'k&, (k,k'; x~,x2) = (2~Ac/V) (kk')'" exp( —iKxy+$K x2)
Isk (k') I'

X 4({ }) *(k) (l')d'{ ). (2.24)

The corresponding expressions for the second order
magnetic and mixed correlation tensor s deGned by
(2.12)—(2.14) can also readily be written down. We only
need to use the expressions (2.9) and (2.10) in place of
(2.2) and (2.3) where appropriate. We then obtain in
place of (2.23) the following expressions for the other
second-order correlation tensors of the quantized Geld:

+I, ~X'X"~k'k" )

x exp( —
I
sk (k) I'/rzk )d'sk. (k')

(3 4)

where 8 is the Kronecker symbol, we Gnd that

@k,k (k,k'; xi,x2)

2' Ac
beaks bkk exp{—i"(»—x2)). (3.5)

(k x s&"& (k' x s&"'&'I

ac,, (x„x,)=g P
Ik,k k', k' (

X@'u, (k,k'; »,x2) )

/k'x s"''
'S';(*,*)=2 Z ',&"'(k)l

Xekk. (k,k', x,,xg),

(k x s'"&

'L(x&,x2) =Q P I

e;&"'&(k')
k, k V,k'(

XC»,k (k,k'; xg, x2).

(2.25)

(2.26)

(2.27)

Next we assume that the linear dimensions of the
enclosure are large compared with the mean wavelength
of the radiation. Summation over k may then be
replaced by integration over the whole k space, if use
is made of the usual rules"

Zf(k) ~
(P') 1/2 (2~) 3/~

Bkk'~8(k —k) ~

d'kf(k), (3.6)

(3 7)

where f is an arbitrary function and 8(k—k') is the
three-dimensional Dirac delta function. One then
obtains from (3.5) and (2.23), the following expression
for the correlation tensor '8:

3. THE SECOND-ORDER CORRELATION TENSORS OF
BLACKBODY RADIATION

We will now evaluate the correlation tensors 'h, '3'.,
'8 and 'g for the case of blackbody radiation. It would
appear from a discussion of Glauber [Ref. 2c, Eq.
(10.23)j, based essentially on the central limit theorem,

' L. Mandel, Phys. Letters 7, 117 (1963).

'8;;(x&,x,) = kek exp{ix(x2 x&)}-
4m'

X Q e, &"&(k)e, &"'(k)d'&. (3.8)

"J. M, Jauch and F. Rohrlich, The Theory of Photons and
E/ectroes (Addison Wesley Publishing Co., Cambridge, 1955),
p. 38.
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Q e,&'&(k)ej&"&(k)=fl;;— (3.9)

Next we substitute for ns from (3.2) and also use the
relation

where r=t, l2—and r=ri —rs, it follows on comparing
Eqs. (3.10), (3.12), and (3.15) with Eqs. (5.7), (5.9),
and (5.8) of paper I that

which follows from the fact that a&'&, e&'&, and k/k form
a triad of mutually orthogonal unit vectors. We thus
finally obtain the following expression for the second-
order electric correlation tensor 'h of the quantized field:

'h;j(xr, x2) =-', h,j (xi,x2),
'x,;(xi,x2) = -',x;j*(xr,x2),

'b, j(xi,x2) =-',b;j*(xi,x2),
'g,j(xi,x2) =-',b;s*(xi,x2) .

(3.17)

Ac
'h, j(xi,x2) =

4m'

k&S,;—k;k;

k(e"—1)

Xexp(2K(xs —xi))d'k. (3.10)

For the magnetic second-order correlation tensor, we
obtain in a strictly similar manner from (2.25)

'X,j(xi,xs) =
4x'

ktt«exp{iK(x2 —xi))

Ac

g'j(xl, x2) kts«exp(2K(x2 xl))
4~'

k x e&'&)

x p .;t"&(k)
~ I

&'k. (3.13)

It may readily be verihed that

k x e&"&)

Q e;&«&(k)
~

= e;stkt/k, (3.14)

where e;;& is the completely antisymmetric unit tensor
of Levi Civita. Hence, if also (2.14) is used, (3.13)
reduces to

Ac

gij (x1&x2) L&ij (x1~x2) eij l
4~-'

Xexp(2«(xs —»))d'k. (3.15)

Noting that «(x2—xi) is the four-vector product

K(x2—xi) =kcr-k r, (3.16)

pk x ei»q k x et»
x g I ~

dk. (3.11)
k ~, k

Now the three vectors k x e"&/k, k x e~'&/k and k/k also
form a triad of mutually orthogonal unit vectors, and
hence a relation similar to (3.9) holds between them. In
consequence, the right-hand side of (3.11) becomes
identical with the right-hand side of (3.10) and hence
we have

'3e,j(xr,x2) = '8,j(xi,x2) . (3.12)

For the mixed second-order correlation tensor 'g we

obtain from (2.26) in a similar manner

The relations (3.17) show that the second-order
electromagnetic correlation tensors of blackbody radia-
tion defined for the quantized field by Eqs. (2.11),
(2.12), (2.13), and (2.14) are proportional to the
complex conjugates of the corresponding tensors de6ned
for the classical field by Eqs. (1.3a), (5.1), (5.2), and
(5.3) of paper I." '4

4. HIGHER ORDER CORRELATION TENSORS

Up to now we have considered correlation tensors of
second order only. For the sake of completeness, we

will now briefly consider electromagnetic correlation
tensors of higher orders for the case of blackbody
radiation. Again these correlation tensors may be
de6ned either as appropriate averages of products
involving the field vectors of the complex classical Geld

at a number of space-time points, ""'7 or as quantum
mechanical expectation values involving the corre-
sponding 6eld operators. ' Since the equivalence of these
diGerent definitions has been demonstrated by Sudar-
shan, ' Mandel" and Mehta and Wolf "we may restrict
our discussion to correlation tensors dehned on the
basis of the theory of the quantized 6eld. The electric
correlation tensor of order rjt-&t-I is then defined by the
equation

~(m, n)
ja js."jm+n ( 4X4 ' ' ' X to i Xr«+4 ' ' ' X~o)
=Tr(P». (-&(x,)». (-&(x,). . .». t—&(x„)

X».+,'+&(x~2)" ».+.'+&(x~-)), (4 1)

where»& &(x), 1st+&(x) are Cartesian components of
the operators 8& &(x), 8&+&(x) at the space-time point

~'The correlation tensors of the classical Geld could readily be
rede6ned without any loss of generality, so as to lead to strict
identities g;j= Sij, etc. In particular, the factor $ could be
suppressed by employing a slightly different normalization in
defining the analytic signal (Refs. 13 and 14) by means of which
the complex fields are associated with the real fields. However, we
preferred to retain the customary de6nitions throughout this
investigation.

"M. Born and E. Wolf, Principles of Optics (Pergamon Press,
London and New'York, 1959), Chap. X.

'i D. Gabor, J. Inst. Elec. Engrs. 93, Part III, 429 (1946).
's L. Mandel, in Electronique Quantique 3eme Conference, edited

by N. Bloembergen and P. Grivet (Dunod Cie, Paris, 1964),
p. 101."E.Wolf in Electronique Quantzque 3 erne Conference, edited by
N. Bloernbergen and P. Grivet (Dunod Cie, Paris, 1964), p. 13.

"E.Wolf, in Proceedings of the Symposium on Optical jrlasers
(Polytechnique Press, Brooklyn, New York and John Wiley 8z

Sons, Inc. , New York, ti1963), p. 29.
"C.L. Mehta and E. Wolf (to be published).



II. CORRELATION TENSORS OF QUANTIZED FIELD

x, defined by Eqs. (2.2) and (2.3). It follows from
Sudarshan's discussion'that the expectation value on the
right of (4.1) may be expressed as a phase-space average
of the products of the components of the complex classi-
cal 6eld, in the form

(m, n)
h&ld2, '"f +m& (xl x&2 '&' ' x &mxm+1&

' x»&+»)

APPENDIX

is), (k)i2
(A1)~({ })=II exp

In this Appendix we will verify that the phase-space
distribution (3.1), namely,

1

&({s})E&*(»)E&*(*2)" E&.*(x )

XE' + ( )'''E' .(* )d {} (4 2)

corresponds to the density operator p for radiation
field in thermal equilibrium at temperature T.

On substituting from (A1) and (2.20) into (2.22),
we obtain

00 00

where &t. ({s})is the "phase space" distribution function p= II
associated with the density operator p [cf. (2.22)j and k ™&(»-() m&(k)-o

(22r))ic) '"
E;(x)=ii i P(k)'"2 ")(k)sk(k)e'"* (4 3)(p)

(j=x,y,s) is the eigenvalue of the operator 8;(+)(x)
corresponding to the eigenstate

i {s}).
In the case of blackbody radiation, the phase-space

distribution @({s})is given by (3.1), which is a multi-
variate Gaussian distribution. Now since according to
(4.3) the field components E;„(x„),E;„*(x„)are linear
combinations of the z&, (k) and sk*(k), they will, accord-
ing to a well-known theorem on the Gaussian random
process, be also distributed as Gaussian variates" and
hence all moments involving them may completely be
expressed in terms of the second-order moments"
as follows:

i
S

i

2

)
S»&,(k)gm&, (k)

ng ng 1m),

Xexp{—
i si'} i nk(k))(mk(k) i

d22. (A2)

Xexp—

S)k Sg
X („2)n&, (k) d(r2)

nk(k)!

'g), Bg ~

1 ~-~&,(k)

=II 2 I
1+—

i

k, k »g(k) 222+ 1 ( n»&

Next we set z=r exp(i8), d'2=rdrde and note that the
integration over 0 gives 2mb„„(» „(k).We then obt:ain

1)I=II E —exp —«'I 1+—
I

),k n)i(k) p FL@

&(11s,n)
~&l,j2," jm+»(Xl&X2& ' 'Xm& Xm+i&' ' 'Xm+»)

=P.h;,', „(»;x„)h" (»;.,)".

Next we substitute for nk from (3.2) and find that

exp(nk —1)
p=II P exp{—nk(k)nk}

exp(n)2) ~k(k)

X i nk(k))(nk(k) i, (A4)

X&&„',&, (xm& x&) (44) where n is given by (3,3). But

P exp{—nk(k)n)'2} ink(k))(nk(k) i

(m, n)
h&, ,', , ...;„+„(xi,x2, ~ x; x~2, ~ x~„)=0. (4.S)

ny(k)

=exp{—dk1(k)(lk(k)nk} p i n), (k))(n), (k) i (As)
The second-order coherence tensor h,(,';&)(xi., x„), etc.
on the right of (4.4) is precisely the second order
electric correlation tensors given by (3.10) and
denotes all permutations p, (t, .s of the non-negative
integers m+1, m+2, . -.2m.

Strictly similar expressions can readily be written
down for the magnetic and mixed tensors of an arbitrary
order.

Finally, it should be mentioned that the expression
(4.4) for the electric correlation tensor of blackbody
radiation has also recently been derived by Glauber. "

"Proof of this result for a real Gaussian random process is
given, for example, in Wang and Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945). Generalization to a complex Gaussian random process
is straightforward.' See, for example, I. S.Reed, Inst. Radio Kngrs. frans. Inform.
Theory IT8, 194 (1962).

and we have also the completeness relation

p ink(k))(nk(k)i = l. (A6)

Using (AS) and (A6) in (A4), we finally obtain the
following expression for the density operator p corre-
sponding to the phase-space distribution function (A1):

exp{—nI2(t&, 1(k)(tk(k) }.-=II
k, k exp(nk)/Lexp(nk) —1j

(A7)

This is precisely the density operator for a radiation
field in thermal equilibrium at temperature T."

"A. Messiah, QNuntlm Mechanics (John Wiley R Sons, Inc. ,
New York, 1961), VoL I, p. 448.


